
FuncyTuner: Auto-tuning Scientific Applications With Per-loop
Compilation

Tao Wang
Dept. of Computer Science

North Carolina State University
twang15@ncsu.edu

Nikhil Jain
Lawrence Livermore National

Laboratory
nikhil.jain@acm.org

David Beckingsale
Lawrence Livermore National

Laboratory
beckingsale1@llnl.gov

David Boehme
Lawrence Livermore National

Laboratory
boehme3@llnl.gov

Frank Mueller
Dept. of Computer Science

North Carolina State University
fmuelle@ncsu.edu

Todd Gamblin
Lawrence Livermore National

Laboratory
gamblin2@llnl.gov

ABSTRACT
The de facto compilationmodel for production software compiles all
modules of a target program with a single set of compilation flags,
typically O2 or O3. Such a per-program compilation strategy may
yield sub-optimal executables since programs often have multiple
hot loops with diverse code structures and may be better optimized
with a per-region compilation model that assembles an optimized
executable by combining the best per-region code variants.

In this paper, we demonstrate that a naïve greedy approach to
per-region compilation often degrades performance in comparison
to the O3 baseline. To overcome this problem, we contribute a novel
per-loop compilation framework, FuncyTuner, which employs light-
weight profiling to collect per-loop timing information, and then
utilizes a space-focusing technique to construct a performant exe-
cutable. Experimental results show that FuncyTuner can reliably
improve performance of modern scientific applications on several
multi-core architectures by 9.2% to 12.3% and 4.5% to 10.7%(geomet-
ric mean, up to 22% on certain program) in comparison to the O3
baseline and prior work, respectively.

KEYWORDS
per-loop, fine-grained, auto-tuning, ICC, compiler, optimization,
profile, OpenMP, HPC, scientific simulation
ACM Reference Format:
Tao Wang, Nikhil Jain, David Beckingsale, David Boehme, Frank Mueller,
and Todd Gamblin. 2019. FuncyTuner: Auto-tuning Scientific Applications
With Per-loop Compilation. In 48th International Conference on Parallel
Processing (ICPP 2019), August 5–8, 2019, Kyoto, Japan. ACM, New York, NY,
USA, 10 pages. https://doi.org/10.1145/3337821.3337842

1 INTRODUCTION
The de facto compilation model compiles all source files of a pro-
gramwith a single set of compiler flags, typically O2 or O3. However,
it is well-known that O2/O3 may not generate the most performant
executables [7]. This is because optimizations enabled by flags such

ACMacknowledges that this contributionwas authored or co-authored by an employee,
contractor, or affiliate of the United States government. As such, the United States
government retains a nonexclusive, royalty-free right to publish or reproduce this
article, or to allow others to do so, for government purposes only.
ICPP 2019, August 5–8, 2019, Kyoto, Japan
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6295-5/19/08. . . $15.00
https://doi.org/10.1145/3337821.3337842

 0.4

 0.6

 0.8

 1

 1.2

GCC ICC
Sp
ee
du
p
no
rm
al
iz
ed

to

O
3

LULESH Cloverleaf AMG

Figure 1: Combined Elimination does not improve perfor-
mance significantly.

as O2/O3 are empirically determined to maximize performance
for certain benchmark suites, while other programs and architec-
tural platforms may have different characteristics that require other
optimizations. As a result, for a given program, other compiler
flag combinations may exist that can produce more performant
executables than the default O2/O3 choice.

In order to identify the most performant optimizations for a pro-
gram, researchers have proposed iterative compilation [14]. Given a
program, iterative compilation first generates code variants by com-
piling the source code with different compiler flags, and then evalu-
ates their performance either by execution [7] or prediction [6, 22].

Several algorithms have been proposed for generating compiler
flag combinations to create code variants, e.g., predictive machine
learning models [4, 6, 13, 20] and optimization flag correlation-
based combined elimination [21]. They perform compilation on a
per-program basis. However, their effectiveness is limited. While
machine learning based predictive models [6] performwell on small
training datasets, a recent study [10] shows that their prediction
accuracy drops dramatically for large-scale datasets and exhibits
close to random behavior.

Combined elimination (CE) [21] takes advantage of interactions
among compiler flags to find the best combination. However, our
evaluation of CE, shown in Fig. 1, for three benchmarks on Intel’s
Broadwell architecture shows minimal performance benefit in com-
parison to the O3 baseline for both the GNU C/C++ compiler (GCC
release 5.4.0) and the Intel C/C++ compiler (ICC release 17.0.4). A
closer inspection of the experiments for CE revealed that it can be
limited by the results for local minima.

Fine-grained per-region compilation techniques [11, 21, 22, 25]
divide a program into different compilation modules and optimize

1

https://doi.org/10.1145/3337821.3337842
https://doi.org/10.1145/3337821.3337842

ICPP 2019, August 5–8, 2019, Kyoto, Japan Tao Wang and Nikhil Jain, et al.

each separately. Specifically, source-code level auto-tuners [11, 25]
focus on a single simple computation kernel without considering
module interactions in real-world applications. As prior work in
compiler flag selection [21, 22] also assumes that compilation mod-
ules are independent, they assemble an optimized executable by
greedily picking the best code variant of each module. However,
the modules of a program may not be independent due to cross-
module interference, such as shared data structures and link-time
inter-procedural optimizations across multiple modules. In particu-
lar, link-time optimizations can drive optimization decisions, such
as loop unrolling, and may invalidate earlier transformations that
were made independently for the compilation modules.

Contributions: Based on the observations above, we develop a
fine-grained auto-tuning framework, FuncyTuner, that targets mod-
ern scientific applications. Our overall objective is to extract the
best performance out of an application that is executed repeatedly,
such as in high-performance computing (HPC) where scientists
test their hypotheses in experiments repeatedly with similar inputs
using the same algorithms. To clarify, we neither attempt to derive
a better set of optimizations for O3, nor do we attempt to generalize
a specific set of optimizations across region boundaries or select dif-
ferent algorithmic code variants according to input characteristics
(in contrast to [18]). Instead, our objective is to 1) assess whether
or not there are module interactions and, if so, 2) understand how
to capitalize on such interactions.

Our target HPC applications exploit multi-core parallelism via
OpenMP. Their hot-spots consist of OpenMP loops that account
for a significant fraction of execution time. FuncyTuner outlines
these loops and converts them into individual functions, whose
compilation can be auto-tuned. To this end, FuncyTuner employs
a novel and effective search space focusing technique to guide
random search based auto-tuned compilation.

The contributions of this paper are:

• We develop a per-loop compiler flag selection frame-
work, FuncyTuner, that combines program profiling with
Caliper [5] and search space focusing algorithms to tune hot
loops of modern scientific programs simultaneously with-
out sacrificing the indispensable optimization context for
production compilers.
• We demonstrate that FuncyTuner is able to improve program
performance for a set of scientific benchmarks by 9.3% to
12.3% in comparison to the O3 baseline and 4.5% to 10.7%
relative to prior work, both in geometric mean (up to 22%
on certain programs), on several generations of HPC archi-
tecture, and thus refreshes the state of the art.
• We conduct an in-depth case study for Cloverleaf [24] on the
Intel Broadwell architecture to elaborate how fine-grained
compiler flag selection is affected by inter-module depen-
dencies and demonstrate that it should not be performed
greedily, but rather in a focused and targeted manner.

Our FuncyTuner implementation automates these steps, with
the exception of Caliper [5] profile instrumentation and collection
of timing results, which are manual in our research prototype, but
could be automated with further engineering efforts invested (but
are of no research value).

2 DESIGN OF FUNCYTUNER
This section first defines terminologies and notations used through-
out this work and then details the design of the FuncyTuner frame-
work.

2.1 Compiler Flag Space Construction
Modern optimizing compilers feature many internal optimization
passes and may expose several hundreds of command-line flags to
parameterize them. Each flag could either be a binary switch to turn
on/off a certain optimization, e.g., loop unrolling and loop tiling, or
a multi-valued parametric option to set pass-specific parameters,
e.g., thresholds for function inlining and algorithmic variants of
register allocation. The set of all flags composes a space called the
compiler optimization space (COS , size roughly 2.3e13 in this work
since there are 33 selected flags while some have multiple values), in
which each point is a set of instantiated flags called a compilation
vector (CV). Suppose there are N compiler flags, denoted as Fi
(1 ≤ i ≤ N), and suppose Fi has ni possible values fi1, fi2, ..., fini .
Then a sample CV is represented as (F1 = f1k1 , F2 = f2k2 , ..., FN =

fNkN), where 1 ≤ ki ≤ ni . Thus, there are in total C0 =
∏N

i=1 ni
CV s, each of which could be used to compile all source files of a
program in a traditional compilation model.

Given a program P , a traditional compilation model treats all
source files as a single compilation module M , within which the
source files are compiled with the sameCV . In contrast, FuncyTuner
divides program P into J compilation modules M1,M2, ...,M J (J
is program-specific and ranges from 5 to 33 in this work). These
modules are created based on the time spent in various regions, in
particular loops, of the program P . FuncyTuner then compilesMj
with a CV , which could be determined independently from other
modules and links all object files together to produce the executable.
Our hypothesis is that different compilation modules may need
different CV s to obtain the best performance due to their diverse
code structures.

However, to identify the best CV s, the primary challenge is that
the new search space size COSnew increases significantly from C0
to C1 = C0 J . Exhaustive search is not a viable option within such
an excessively large space while machine learning-based predictive
models require a significant amount of training data andmeaningful
features to begin with [10]. To address this challenge, we propose
several algorithms, as detailed in the rest of this section. We do
not differentiate between a program source code module and its
corresponding object/binary module. Therefore, Pk andMjk (j-th
compilationmodule of Pk) may represent the source codemodule or
compiled program object/binary module, depending on the context.

2.2 Space Search Algorithms
In this section, we introduce four different search algorithms. Note
that per-program random search is a classical algorithm and is used
as a reference to understand the other three algorithms.

2.2.1 Per-program Random Search. Per-program random search
(denoted as Random) does not modify program source code and
applies a single CV to all source files of any program P . As shown
in Fig. 2, in step 1⃝, 1000 CV samples are randomly selected from
COS . In step 2⃝, each CV is used to compile P to obtain a code

2

FuncyTuner ICPP 2019, August 5–8, 2019, Kyoto, Japan

Figure 2: Per-program random search.CVk and Pk with min-
imal runtime Tk is its final result.

variant, Pk (1 ≤ k ≤ 1000). In step 3⃝, runtimes are collected for all
code variants. In the end, the code variant with the least runtime is
selected as the result. The size of its search space is C0.

Figure 3: Per-function random search. Step 3⃝ is performed
1000 times.

2.2.2 Per-function Random Search. As shown in Fig. 3, per-function
random search (denoted as FR) begins with Caliper profiling a pro-
gram P to identify hot loops and outlines each of them into a
separate source file so that there are J compilation modules. In step
3⃝, J CV s are randomly selected from 1000 pre-sampled CV s with
replacement. Each selectedCV is used to compile one of the J com-
pilation modules. Note that the selection of J CV s and compilation
is performed 1000 times in step 3⃝ to generate 1000 code variants,
which are executed to collect runtimes T1, ..., T1000. FR reports the
code variant with the minimum runtime as the best version.

FR uses Caliper [5] profiling only for identifying hot loops, but it
does not collect the per-loop runtime information for searching the
best per-loop CV s. However, when such information is available,
one may choose better CV s for each compilation module. To this
end, we introduce FuncyTuner, our per-loop runtime collection
framework, shown in Fig. 4. As in FR, a program P is first divided
into J compilation modules. In step 2⃝, FuncyTuner instruments
modules via Caliper’s light-weight [5] APIs to measure per-loop
runtimes. Then, in step 4⃝, 1000 pre-sampled CV1, ..., CV1000 are
used to compile P such that all modules within P are compiled with
the same k-th CV to generate Pk . In step 5⃝, the generated 1000
code variants are executed to collect per-loop runtimes, denoted
as Tjk for the moduleMj of the code variant Pk . This information
is utilized in different ways by the next two algorithms, namely

Figure 4: FuncyTuner per-loop runtime collection frame-
work is a part of both greedy combination and Caliper-
guided random search.

greedy combination (see Section 2.2.3) and Caliper-guided random
search (see Section 2.2.4).

2.2.3 Greedy Combination. Greedy combination (denoted as G)
exploits per-loop runtimes in a straight-forward way. It assembles
the final executable by picking the fastest code variant for each
module and links them together, assuming that there are no inter-
module dependencies such that the greedy composition produces
the fastest executable. Formally, G chooses the i-th CV to compile
Mj such that i = argmink {Tjk |1 ≤ k ≤ 1000}, and then links all
modules to produce the target executable.

2.2.4 Caliper-guided Random Search. Similar toG , Caliper-guided
random search (denoted as CFR, see Algorithm 1) also relies on
per-loop runtime information to make informed selections of CV s.
However, CFR examines more code variants than G to take poten-
tial inter-module dependencies into consideration. In contrast to FR,
CFR prunes the pre-sampled search space for each hot loop before
re-sampling per-loop CV s (line 13 of Algorithm 1). The intuition
is that more performant CV s, which generate faster per-loop code
variants, should be kept in the re-sampling search space, because
they may have a higher chance to compose a performant target
executable. Within a unified algorithmic framework, G can be con-
sidered as only selecting the top-1CV s, and that FR selects all 1000
or the top-1000 CV s, while CFR selects the top-X (1 < X << 1000)
CV s, all on a per-loop basis.

To summarize, Random is a traditional search algorithm that per-
forms on per-program granularity, while FR,G, and CFR perform
on a per-loop basis but with different mechanisms and motivations:
FR is to evaluate if random search with per-loop granularity alone
is sufficient to achieve the best performance;G is to assess if there
are inter-module dependencies by evaluating the effectiveness of
greedily combining the best per-loop code variants; and CFR is to
see if a focused search space can improves the performance beyond
that of Random, FR and G. Note that FR and CFR are proposed by
us, while Random and G are based on prior work [21, 22].

3 EXPERIMENTAL DESIGN
In order to evaluate the efficacy of schemes presented in Section 2,
we have performed experiments for seven modern scientific bench-
marks on three architectures. This section describes the setup used
in our experiments.

3

ICPP 2019, August 5–8, 2019, Kyoto, Japan Tao Wang and Nikhil Jain, et al.

Algorithm 1: Caliper-guided Random Search (CFR)
Input :COS, K, P, X , TO3
Output :speedup, CV

1 k = 1, K = 1000, T = [], CV s= [] , CVpruned = [][]
2 CV s = randomSample (COS, K)
3 //step-1: FuncyTuner per-loop data collection
4 for k = 0; k < K ; k++ do
5 compile P with CV s[k] to generate Pk
6 run P to measure T1k , ..., TJk
7 for j = 0; j < J ; j + + do
8 T [j][k] = Tj+1k
9 //prune pre-sampled 1000 CVs

10 for j = 0; j < J ; j++ do
11 CVpruned [j][] = {CV s[i] | T [j][i] is amonд top X -

smallest in T [j][0] , ..., T [j][K − 1]}
12 for k = 0; k < K ; k++ do
13 //re-sampling per-loop cv in pruned space.
14 for j = 0; j < J ; j++ do
15 tempCVs[k][j] = randomSample(CVpruned [j], 1)
16 for j = 0; j < J ; j++ do
17 compile Mj with tempCVs[k][j]
18 link M1 , ..., M J to generate Pk

19 //Tk : end-to-end runtime for Pk and Tk =
J∑
j=1

Tjk

20 run Pk to measure Tk
21 T [k] = Tk
22 k = argmink {T [k] |1 ≤ k ≤ K }
23 CV = tempCV s[k]
24 //TO3 : end-to-end runtime for P compiled with O3
25 speedup = TO3/T [k]

3.1 Systems and Benchmarks
We conducted our experiments on three platforms: AMD Opteron,
Intel Sandy Bridge, and Intel Broadwell. The architectural details
for these systems are provided in Table 2. Our benchmark suite
(see Table 1) consists of seven HPC programs: AMG [17], LULESH
[17], Cloverleaf (CL) [24], 351.bwaves, 362.fma3d, 363.swim and
Optewe [23]. 351.bwaves, 362.fma3d, and 363.swim are from the
SPEC OMP 2012 suite, while the rest are widely used HPC proxy
applications. These benchmarks have been selected based on two
criteria. First, they are written in different languages and exploit
multi-core parallelism suitable for HPC via OpenMP pragmas. Sec-
ond, they feature more than one hot loop, which resembles realistic
applications (unlike many other benchmarks with just a single hot
loop). While multiple hot loops present difficulties for the compiler
in coordinating various loop optimizations, they also provide an
opportunity to optimize different parts of the code differently.

All our experiments have been run on CentOS Linux 7.3.1611
and the benchmarks were compiled with the Intel C/C++ Compiler
17.04. OpenMP thread placement has been set to fine, proclist=[...]
explicit, where proclist is specified in Table 2. Details of the OpenMP
configurations are presented in Table 2. Since scientific codes follow
a time-step execution pattern repeatedly performing approxima-
tions with decreasing numerical error in an outer loop, we only run
for a small number of time-steps (seconds) and then exit prema-
turely once we have obtained a stable execution time for a time-step.
Any optimization then scales up to a full run over all time-steps
(hours). To this end, input sizes and time-steps have been adjusted
so that every single run is less than 40 seconds for the O3 baseline
compilation. In the first experiments (Section 4.1 and Section 4.2),
we use the same inputs for tuning and testing, whereas we evaluate
the impact of different inputs (Section 4.3) in later experiments to

Table 1: List of benchmarks. LOC: lines of source code.

Name Language LOC Domain
AMG C 113k Math: linear solver
LULESH C++ 7.2k Hydrodynamics
Cloverleaf (CL) C, Fortran 14.5k Hydrodynamics
351.bwaves Fortran 1.2k Computational fluid dynamics
362.fma3d Fortran 62k Mechanical simulation
363.swim Fortran 0.5k Weather prediction
Optewe C++ 2.7k Seismic wave simulation

Table 2: Platform overview, runtime configurations, and
benchmark inputs.

Machine AMD
Opteron

Intel Sandy
Bridge

Intel Broadwell

Processor Opteron
6128

Xeon E5-
2650 0

Xeon E5-2620 v4

Sockets 2 2 2
NUMA nodes 4 2 2
Cores/Socket 4 8 8
Threads/Core 2 2 2
Core Frequency [GHz] 2.0 2.0 2.1
processor-specific flag default -xAVX -xCORE-AVX2
Memory size [GB] 32 16 64
OpenMP thread count 16 16 16
OpenMP thread proclist [0-15] [0-15] [0-15]
LULESH: size, steps 120, 10 150, 10 200, 10
Cloverleaf: size, steps 2000,30 2000,30 2000,60
AMG: size 18 20 25
Optewe: size, steps 320, 5 384, 5 512, 5
bwaves: input, steps train, 10 train, 15 train, 50
fma3d: input train train train
swim: input train train train

reflect typical usage patterns of repeated HPC application runs with
different scientific inputs.

3.2 Compiler Flag Selection
We experiment with 33 optimization-related compilation flags of
the Intel compilers. For flags that support any value in a continuous
range as input, we discretize the values in the given range. Then,
for each flag Fi , FuncyTuner selects a value fi from fi1, fi2, ..., fini
with equal probability. A CV is constructed by concatenating the
selected values for all Fi s. We had to consider several restrictions
when selecting the flags. First, a flag must not prevent a program
from running successfully on a given target architecture. For ex-
ample, use of the -fpack flag generates code variants that cause a
segmentation fault at runtime and thus -fpack is excluded. Second,
for fair performance comparison among different code variants,
FuncyTuner enforces strict floating point reproducibility by dis-
carding floating point related optimization flags, and always uses
-fp-model source in the presented results. Last, optimized library
options, such as Intel MKL and IPP related linkage options, are also
excluded since they are not used by our benchmarks.

Also, in order to reach the full optimization potential of the Intel
compiler tool chain, according to the Intel optimization note, Intel’s
linker xild and library archive tool xiar should be used. We thus
modify build systems of all benchmarks accordingly. Processor-
specific flags are also considered for the best performance on each
architecture.

4

FuncyTuner ICPP 2019, August 5–8, 2019, Kyoto, Japan

3.3 Loop Outlining and Caliper
Instrumentation

To identify hot loops that need to be outlined into individual mod-
ules, FuncyTuner uses Caliper [5] to profile the target application
compiled with -O3 -qopenmp -fp-model source. Every loop whose
runtime is at the least 1.0% of the baseline’s end-to-end runtime is
outlined as an independent compilation module for maximum free-
dom ofCV selection. The runtime for code other than the hot loops
(non-loop code) cannot be directly measured because such code
tends to be scattered across many source files. Thus, the runtime of
non-loop code is derived by subtracting the aggregate runtime of
hot loops from the end-to-end runtime for each code variant of a
program. Caliper instrumentations generally introduce less than
3% overhead and the per-loop runtimes are sufficiently informa-
tive to FuncyTuner so that measurement noise is tolerated with its
search algorithms. To evaluate performance, we use -O3 -qopenmp
-fp-model source as the baseline and report speedups relative to this
baseline unless otherwise specified.

3.4 CV Independence Assumption
Note that there are two sets of results for the greedy combina-
tion. One is obtained by runtime measurement and is denoted as
G .realized . The other marked G.Independent is calculated by sum-
ming up the best per-loop and non-loop code runtimes obtained
with differentCV s.G .Independent is used as the hypothetical upper
bound for the greedy combination and serves as a reference to as-
sess if there is pairwise independence among different compilation
modules.

4 RESULTS AND ANALYSIS
In this section, we first present results of the four algorithms in
Sec. 2 on three HPC architectures. We then compare FuncyTuner
CFR with prior work, and study their sensitivity on different inputs.
To shed light on why CFR performs the best, we conduct a case
study on Cloverleaf.

4.1 Overall Performance Comparison
Fig. 5 compares the performance for the four algorithms in Sec. 2, i.e.,
Random is the classical per-program random search; FR and CFR
are the two per-loop algorithms proposed by us; G .realized and
G .Independent are results for greedy combinationG as explained
in Sec. 3.4. Note that Random is applied on the original benchmarks
while others are all applied on the benchmarks with their hot loops
outlined. Moreover, Caliper instrumentations are needed only in
the per-loop runtime collection but not in the final optimized exe-
cutables. For all results over the 7 programs on both training and
testing inputs, execution times were between 3 and 36 seconds with
a standard deviation of 0.04 to 0.2 (except for two cases with 1.5
and 0.7 for longer LULESH runs) measured over 10 experiments,
i.e., results are very uniform with high statistical significance. From
these results, we make the following observations.
(1) FuncyTuner CFR provides the best performing executables for
most scenarios across benchmarks and architectures. It provides
9.2%, 10.3%, 9.4% geometric mean speedups for Opteron, Sandy
Bridge and Broadwell, respectively. It also achieves the best case

improvement of 18.1% for AMG on AMD Opteron (see Fig. 5a)
in comparison to the O3 baseline. In contrast, the performance
improvement due to Random is only 3.4%, 5.0%, 4.6% on the same
respective architectures. In certain cases, Random does not improve
performance at all while CFR does much better, e.g., for AMG on
Sandy Bridge and Broadwell.
(2) G results in significant slowdowns for many benchmark and
architecture combinations. Although it improves performance of
AMG on Opteron and Sandy Bridge, the improvement is still in-
ferior to that of FuncyTuner CFR. The huge differences between
G .realized and G .Independent substantiate that there are inter-
module dependencies for benchmarks in our experiment.
(3) FR’s performance is inferior to that ofCFR and has high variance.
For example, it achieves less than a 3% improvement for Cloverleaf
on Opteron, Sandy Bridge and Broadwell, whileCFR achieves 13.6%,
15.2% and 12.7%, respectively. Such results demonstrate that random
search with per-loop granularity alone is insufficient for achieving
the best performance and CFR’s effective utilization of per-loop
runtime information is critical.

4.2 Comparison to the State-of-the-art
We first introduce the state-of-art techniques and experimental
settings to fairly compare with FuncyTuner CFR on Intel Broad-
well. Then, we present the results and our observations that CFR
outperforms all of them.

4.2.1 The State-of-the Art. Prior techniques are either search-
based [2, 22] or predictive modeling-based [4]. In particular,
Cere [22] performs a fine-grained compiler flag selection for hot
code regions and generates the optimized executable in the same
greedy fashion as G in our work. Our results in Fig. 5 show that
this often degrades performance for the Intel compilers.

OpenTuner [2] performs per-program search with an ensemble
of search algorithms, including differential evolution, Torczon hill-
climbers, Nelder-Mead and many others. It also employs a meta
search (AUC Bandit) technique to coordinate different search al-
gorithms for the best performance. To compare with FuncyTuner
CFR, we run OpenTuner with 1000 test iterations using the same
CV search space.

COBAYN [4], a state-of-the-art machine learning-based ap-
proach, infers performant CV s for a new program by extracting
static and dynamic program features and providing them as in-
puts to a pre-trained Bayesian network. To compare, we first train
COBAYN with cBench [8]. Specifically, we select the top 100 per-
formant CV s out of 1000 random CV samples for each cBench ap-
plication to extract their static and dynamic features with Milepost-
gcc [9] and Mica [12]. We then train three models, static, dynamic,
and hybrid, using static features, dynamic features and all features,
respectively. SinceCOBAYN can only perform inferences on binary
compiler flags, we turn each multi-valued ICC flag into a binary one
by allowing it to have two values. Then, we use each of the three
models to generate 1000 code variants. The fastest code variant is
considered as the result of each model.

Aside from the above meta-compilation techniques, Intel com-
pilers support built-in profile-guided optimization (PGO), which

5

ICPP 2019, August 5–8, 2019, Kyoto, Japan Tao Wang and Nikhil Jain, et al.

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

LULESH CL AMG Optewe bwaves fma3d swim GMSp
ee
du
p
no
rm
al
iz
ed

to

O
3

Random G.realized FR CFR G.Independent

1.521.52

(a) Normalized speedups on AMD Opteron

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

LULESH CL AMG Optewe bwaves fma3d swim GMSp
ee
du
p
no
rm
al
iz
ed

to

O
3

Random G.realized FR CFR G.Independent

(b) Normalized speedups on Intel Sandy Bridge. G.realized’s Optewe speedup: 0.34

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

LULESH CL AMG Optewe bwaves fma3d swim GMSp
ee
du
p
no
rm
al
iz
ed

to

O
3

Random G.realized FR CFR G.Independent

1.731.731.241.24 1.241.24

(c) Normalized speedups on Intel Broadwell

Figure 5: CFR outperforms other methods for most cases: geometric mean of speedups relative to the O3 baseline 9.2%, 10.3%,
and 9.4% on Opteron, Sandy Bridge and Broadwell, respectively.

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

LULESH CL AMG Optewe bwaves fma3d swim GMSp
ee
du
p
no
rm
al
iz
ed

to

O
3

static COBAYN
dynamic COBAYN

hybrid COBAYN
PGO

OpenTuner
CFR

Figure 6: FuncyTuner provides better performance than all variants of COBAYN(static, dynamic, hybrid), PGO, andOpenTuner.

utilizes an instrumentation run of a target program to collect pro-
file information, such as loop trip counts and indirect function call
targets. The comparison to PGO offers a perspective to evaluate
the trade-off between benefits and complexities for all approaches.
We use -qopenmp -fp-model source -prof-gen -prof-dir/app for an
instrumented compilation (see recommendations for PGO in Intel’s

compiler optimization manual) and then run the programs with
tuning inputs in Table 2. Afterward, the programs are recompiled
with -O3 -qopenmp -fp-model source -prof-use -prof-dir/app.

4.2.2 Observations. We make the following observations from the
experimental results shown in Fig. 6.

6

FuncyTuner ICPP 2019, August 5–8, 2019, Kyoto, Japan

(1) OpenTuner achieves a 4.9% geometric mean speedup on our
benchmark suite and is 4.5% inferior to that of FuncyTuner CFR.
In particular, CFR achieves 12.7% speedup over O3 on AMG while
OpenTuner is only marginally (1.7%) better than O3. We notice that
OpenTuner ’s performance benefit increases very slow after tens of
test iterations.
(2)COBAYN performs similar toOpenTuner and is also inferior to
FuncyTunerCFR. Specifically,COBAYN ’s static and hybrid models
perform 4.6% and 2.1% (geometric mean) better than the O3 baseline,
respectively, while COBAYN ’s dynamic model is worse than the
O3 baseline. In contrast, FuncyTuner CFR improves performance
by 9.4% beyond the O3 baseline. The performance of COBAYN ’s
static model is consistent with the findings in the work that pro-
posed byCOBAYN [4] and other previous research [1, 6, 10]. These
related works also show that a machine learning-based approach is
able to reduce search overhead but does not perform better than
traditional random search (Random in our paper) when the sample
size is sufficiently large, e.g., 1000 samples. The poor performance
of COBAYN ’s dynamic and hybrid models may be attributed to
limited dynamic features, since MICA [12] only works with serial
code while our target benchmarks are parallel.
(3) PGO results in only minor performance improvements relative
to O3 and is not comparable to FuncyTuner CFR. While PGO is
1.8% better than O3 for AMG, it shows little improvement on six
other programs. In fact, PGO instrumentation runs fail for LULESH
and Optewe.

In brief, FuncyTuner CFR delivers significantly better perfor-
mance than state-of-the-art techniques on our modern scientific
simulation codes. It only relies on Caliper light-weight source-code
level instrumentation [5], entailing much less engineering complex-
ities than others, especially COBAYN and PGO . Such simplicity is
extremely noticeable when one considers the fact that Intel com-
pilers are industry-quality production compilers and have been
tuned for several decades, and COBAYN depends on a variety of
large tools, such as Milepost GCC [9] and Mica. Nevertheless, their
performance is inferior to FuncyTuner CFR and their robustness is
limited.

4.3 Impact Of Different Inputs
The over-arching goal of our work is to auto-tune large scientific
simulation codes with a given input. Results in Sec. 4.1 and Sec. 4.2
use the same input as both tuning and test inputs. These inputs
capture the typical sizes of application work sets in practice, hence,
their performance benefits can generalize to other inputs, e.g., for
inputs with the same work-set size but different simulation time-
steps. This is shown in Fig. 8 for Cloverleaf on Broadwell by varying
the number of time-steps as part of the input.

Inputs with different work-set sizes are addressed as follows. We
experimented on Broadwell with two sets of inputs that have dif-
ferent input sizes from those in Table 2. For 351.bwaves, 362.fma3d,
and 363.swim, we use “test” and “ref” as their small and large inputs,
respectively. For LULESH, AMG, Cloverleaf, Optewe, their small
input sizes are 180, 20, 1000, 384, respectively, while their large
input sizes are 250, 30, 4000, 768, respectively.

As shown in Fig. 7, we observe little sensitivity for our bench-
mark applications on their small and large inputs , except that for

351.swim FuncyTuner CFR does not perform as well as the other
three approaches for its small input. Nonetheless,CFR for 351.swim
is still 20.6% better than PGO and the O3 baseline. We attribute such
performance to the fact that the “test” input is so small that each
time-step takes less than .01 seconds, which significantly differs
from the performance profile of its tuning input in just this one case.
FuncyTuner CFR achieves 5.5%, 9.5% and 10.7% (all in geometric
mean) better performance than OpenTuner , COBAYN , and PGO
on large input, respectively. It is notable that the speedup of AMG
under CFR over the O3 baseline is 22% while the benefit of other
techniques is marginal.

The capability of generalizing performance benefits on tuning
inputs to test inputs justifies the tuning overhead of all approaches,
which is about 1.5 days for Random/G , 2 days forOpenTuner , 3 days
forCFR and 1 week forCOBAYN , for each benchmark. Specifically,
for CFR’s target HPC applications, the overhead is amortized in
repetitive production runs. Moreover, the tuning overhead may be
dramatically reduced via various techniques [6, 22] or by exploiting
program-specific CFR convergence trends, i.e., CFR finds the best
code variant in tens or several hundreds of evaluations.

4.4 Deep Dive: Cloverleaf On Broadwell
4.4.1 Case Study Design. To understand why FuncyTuner CFR
performs the best, we selected Cloverleaf to conduct an in-depth
case study on Intel Broadwell. Five hot loops of Cloverleaf are
selected since they have comparatively high per-loop runtime ratios
(see Table 3, others are less than 3.0%) and were found to produce
large performance differences (see Fig. 9) across different tuning
techniques.

To identify performance-critical flags for the bestCV s, we design
an iterative greedy algorithm to eliminate the flags that have low
impact on the program runtime. Each iteration, the algorithm tries
to remove one flag for a given loop’sCV (focused CV) while keeping
all other CV s intact. If excluding a flag from focused CV does not
degrade program performance, the flag is removed; otherwise, it is
kept for the current iteration. This process is performed iteratively
until no more flags of focused CV can be eliminated.We consider the
remaining flags in focused CV as the critical ones for the given loop.
Note that we only consider the static COBAYN model, because it
is superior to its dynamic and hybrid counterparts for Cloverleaf.

4.4.2 Observations. Fig. 9 shows the per-loop performance
results for the five Cloverleaf hot loops on Broadwell. After
greedy elimination, Random, COBAYN and OpenTuner retain -
qopt-streaming-stores=always -no-ansi-alias -ipo -xCORE-AVX2 as
their critical flags; FuncyTunerCFR retains -no-vec fordt andmom9
but no special flags for the other three loops;G .realized also has no
special flags for mom9. Table 3 reveals which critical optimizations,
such as loop unrolling and vectorization, are exploited by different
algorithms in this case. We make the following observations:
(1) Vectorization is not always profitable. First, cell3 and cell7 ex-
perience a 27.7% and 13.6% slowdown, respectively, when 256-bit
vectorization is performed by Random. Other algorithms have simi-
lar performance benefits, yet they do not vectorize. O3 uses 128-bit
SIMD (single instruction multiple data) instructions. Second, even
though Random achieves a 34.8% speedup for dt with 256-bit vec-
torization, the performance is 12.8% worse than a scalar version.

7

ICPP 2019, August 5–8, 2019, Kyoto, Japan Tao Wang and Nikhil Jain, et al.

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

LULESH CL AMG Optewe bwaves fma3d swim GM

S
p

e
e
d

u
p

 n
o
rm

a
liz

e
d

 t
o
 O

3 Random G.realized COBAYN PGO OpenTuner CFR

(a) Normalized speedups for small inputs

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

LULESH CL AMG Optewe bwaves fma3d swim GM

S
p

e
e
d

u
p

 n
o
rm

a
liz

e
d

 t
o
 O

3 Random G.realized COBAYN PGO OpenTuner CFR

(b) Normalized speedups for large inputs

Figure 7: CFR shows little performance sensitivity on small and large inputs with geometric mean of speedup relative to the
O3 baseline 12.3% and 10.7% respectively.

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

100 200 400 800 GMS
p
e
e
d
u
p
 n

o
rm

a
liz

e
d
 t

o
 O

3

Random
G.realized

COBAYN
PGO

OpenTuner
CFR

Figure 8: For Cloverleaf on Broadwell, FuncyTuner CFR pro-
vides a stable performance benefit than all others while scal-
ing from 100 to 800 time-steps.

 0

 0.4

 0.8

 1.2

 1.6

dt cell3 cell7 mom9 accS
p
e
e
d
u
p
 n

o
rm

a
liz

e
d
 t

o
 O

3

Random
G.realized

CFR
G.Independent

Figure 9: Normalized speedups for top-5 loops of Cloverleaf
on Intel Broadwell. Note: COBAYN (static), OpenTuner and
Random generate the same code.

Inspection of assembly code shows that there are many data per-
mutations and mask operations to handle control flow divergence,
which are known to degrade vectorization efficiency.
(2) FuncyTuner CFR has more informed freedom (compared to
G, COBAYN and OpenTuner) to select non-conflicting CV s and
prioritize performant CV s (compared to FR). For instance, CFR

Table 3: Comparison of optimizations for 5 Cloverleaf ker-
nels onBroadwell. S(Scalar): not vectorized; {128,256}: vector-
izedwith {128,256}-bit SIMD; unroll{2,3}: unroll 2/3 times; IO:
instruction reordering; IS: instruction selection; RS: register
spilling.

Algorithm Kernel, O3 runtime ratio %
dt cell3 cell7 mom9 acc
6.3 2.9 3.5 3.5 4.2

G.realized S S S 256 256
IO unroll2 IS, IO

G.Independent S, RS, IO S S S 256, IS
O3 baseline S, unroll2 S S 128 S, unroll3
Random 256 256 256 256, IS 256, IS
CFR S S S S, IS 256

is able to select -no-vec formom9 to avoid vectorization-induced
slowdown.
(3) G (see data point marked as G .realized) performs worse
than other algorithms and invalidates the assumption that there
are no inter-module dependencies. Note that G .realized and
G .Independent have the same per-loop CV s. But G .Independent
does not practically assemble an executable while G .realized does.
The comparison between them demonstrates that there are interfer-
ence among different modules. For example, G .realized vectorizes
mom9 with 256-bit AVX2 instructions and further unrolls the vec-
torized loop twice while G .Independent does not.
(4) Other optimizations, such as loop unrolling and instruction se-
lection, also matter, e.g., FuncyTuner CFR andG .Independent both
choose not to vectorize mom9, but their difference in instruction
selection results in better performance for CFR.

8

FuncyTuner ICPP 2019, August 5–8, 2019, Kyoto, Japan

In summary, we observe that such findings are difficult to derive
manually for compiler writers while per-loop auto-tuning with
FuncyTuner CFR is able to capitalize on them.

5 RELATEDWORK
The first order objective of compiler-based auto-tuning techniques
is performance, while the second order objectives are code size,
power draw, and energy consumption. We divide prior work into
the following two categories
(1) Compiler flag selection techniques [6, 7, 14, 15, 19, 21, 22]: given
a set of compiler flags, the objective is to determine the combination
that generates the most performant executable on a given architec-
ture. Our work and many related papers [7, 21, 22] belong to this
category. [21, 22] also take a fine-grained per-region approach. They
select the best code variant for each region in a greedy fashion with-
out considering interactions among different code variants. This is is
effective for their case studies but results in worse performance than
random search for OpenMP-based scientific applications. As the
state-of-art search-based auto-tuning technique,OpenTuner [2] co-
ordinates many different search algorithms. Furthermore, to reduce
the overhead of search-based approaches, researchers have also
proposed schemes based on machine learning techniques [1, 4, 6].
As the state-of-the-art, COBAYN [4] infers compiler flags for a
new program by representing them as static/dynamic features to
a pre-trained Bayesian network. Our experimentation shows that
FuncyTuner CFR outperforms both OpenTuner and COBAYN for
Intel compilers while incurring similar cost.
(2) Compiler phase ordering techniques [3, 13, 15, 16]: given a set
of compiler optimization passes, there are many valid orders, each
of which may generate different runtime performance. Our work
focuses on the Intel tool chain, which does not provide command-
line flags to perform phase ordering.

6 CONCLUSION
In this work, we presented a fine-grained per-loop compiler flag
selection framework, FuncyTuner, that combines program profiling
and search space focusing algorithms to improve performance of
parallelized scientific programs, in which different code region-
s/loops may be optimized with different flags. Our experimental
evaluation shows that FuncyTuner’s Caliper-guided random search
(CFR) effectively utilizes collected per-loop runtimes to focus the
search on performant program compilation configurations. Fun-
cyTuner achieves a 9.2% to 12.3% (geometric mean, up to 22% for
AMG) performance improvement in comparison to O3 baseline,
outperforms the state-of-art search-based technique OpenTuner ,
machine learning-based approachCOBAYN and PGO of Intel com-
pilers by 4.5% to 5.5%, 4.8% to 9.5%, and 10.7%, respectively. We
also showed that greedily picking the per-loop best compiler flags
often degrades program performance due to complex inter-module
dependencies, and per-function random search without guidance
of runtime information does not guarantee performance improve-
ments.

ACKNOWLEDGMENTS
This work was funded in part by NSF grants 1058779, 1217748
and 1525609, by US Air Force, Office of Scientific Research grants

AFOSR-FA9550-12-1-0442 andAFOSR-FA9550-17-1-0205, and under
the auspices of the U.S. Department of Energy by Sandia National
Laboratories subcontract DOE-1403482 and Lawrence Livermore
National Laboratory (LLNL) under contract DE-AC52-07NA27344.

REFERENCES
[1] F. Agakov, E. Bonilla, J. Cavazos, B. Franke, G. Fursin, M. F. P. O’Boyle, J. Thomson,

M. Toussaint, and C. K. I.Williams. 2006. Usingmachine learning to focus iterative
optimization. In International Symposium on Code Generation and Optimization
(CGO’06). 11 pp.–. DOI:https://doi.org/10.1109/CGO.2006.37

[2] Jason Ansel, Shoaib Kamil, Kalyan Veeramachaneni, Jonathan Ragan-Kelley, Jef-
frey Bosboom, Una-May O’Reilly, and Saman Amarasinghe. 2014. OpenTuner:
An Extensible Framework for Program Autotuning. In Proceedings of the 23rd In-
ternational Conference on Parallel Architectures and Compilation (PACT ’14). ACM,
New York, NY, USA, 303–316. DOI:https://doi.org/10.1145/2628071.2628092

[3] Amir H. Ashouri, Andrea Bignoli, Gianluca Palermo, Cristina Silvano, Sameer
Kulkarni, and John Cavazos. 2017. MiCOMP: Mitigating the Compiler Phase-
Ordering Problem Using Optimization Sub-Sequences and Machine Learning.
ACM Trans. Archit. Code Optim. 14, 3, Article 29 (Sept. 2017), 28 pages. DOI:
https://doi.org/10.1145/3124452

[4] Amir Hossein Ashouri, Giovanni Mariani, Gianluca Palermo, Eunjung Park, John
Cavazos, and Cristina Silvano. 2016. COBAYN: Compiler Autotuning Framework
Using Bayesian Networks. ACM Trans. Archit. Code Optim. 13, 2, Article 21 (June
2016), 25 pages. DOI:https://doi.org/10.1145/2928270

[5] D. Boehme, T. Gamblin, D. Beckingsale, P. T. Bremer, A. Gimenez, M. LeGendre, O.
Pearce, andM. Schulz. 2016. Caliper: Performance Introspection for HPC Software
Stacks. In SC16: International Conference for High Performance Computing, Net-
working, Storage and Analysis. 550–560. DOI:https://doi.org/10.1109/SC.2016.46

[6] John Cavazos, Grigori Fursin, Felix Agakov, Edwin Bonilla, Michael F. P. O’Boyle,
and Olivier Temam. 2007. Rapidly Selecting Good Compiler Optimizations Using
Performance Counters. In Proceedings of the International Symposium on Code
Generation and Optimization (CGO ’07). IEEE Computer Society, Washington,
DC, USA, 185–197. DOI:https://doi.org/10.1109/CGO.2007.32

[7] Yang Chen, Yuanjie Huang, Lieven Eeckhout, Grigori Fursin, Liang Peng, Olivier
Temam, and ChengyongWu. 2010. Evaluating Iterative Optimization Across 1000
Datasets. In Proceedings of the 31st ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI ’10). ACM, New York, NY, USA,
448–459. DOI:https://doi.org/10.1145/1806596.1806647

[8] Grigori Fursin. 2018. Shared programs, benchmarks and kernels for
autotuning/crowd-tuning. https://github.com/ctuning/ctuning-programs. (May
2018).

[9] Grigori Fursin, Yuriy Kashnikov, Abdul Wahid Memon, Zbigniew Chamski,
Olivier Temam, Mircea Namolaru, Elad Yom-Tov, Bilha Mendelson, Ayal Zaks,
Eric Courtois, Francois Bodin, Phil Barnard, Elton Ashton, Edwin Bonilla, John
Thomson, Christopher K. I. Williams, and Michael O’Boyle. 2011. Milepost GCC:
Machine Learning Enabled Self-tuning Compiler. International Journal of Par-
allel Programming 39, 3 (01 Jun 2011), 296–327. DOI:https://doi.org/10.1007/
s10766-010-0161-2

[10] Grigori Fursin, Abdul Wahid Memon, Christophe Guillon, and Anton Lokhmotov.
2015. Collective Mind, Part II: Towards Performance- and Cost-Aware Software
Engineering as a Natural Science. CoRR abs/1506.06256 (2015). arXiv:1506.06256
http://arxiv.org/abs/1506.06256

[11] Mary Hall, Jacqueline Chame, Chun Chen, Jaewook Shin, Gabe Rudy, and Ma-
lik Murtaza Khan. 2010. Loop Transformation Recipes for Code Generation and
Auto-Tuning. In Languages and Compilers for Parallel Computing, Guang R. Gao,
Lori L. Pollock, John Cavazos, and Xiaoming Li (Eds.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 50–64.

[12] Kenneth Hoste and Lieven Eeckhout. 2007. Microarchitecture-Independent
Workload Characterization. IEEE Micro 27, 3 (May 2007), 63–72. DOI:https:
//doi.org/10.1109/MM.2007.56

[13] M. R. Jantz and P. A. Kulkarni. 2013. Exploiting phase inter-dependencies for
faster iterative compiler optimization phase order searches. In 2013 International
Conference on Compilers, Architecture and Synthesis for Embedded Systems (CASES).
1–10. DOI:https://doi.org/10.1109/CASES.2013.6662511

[14] T. Kisuki, P.M.W. Knijnenburg, M.F.P. O’Boyle, and H. A. G. Wijshoff. 2000.
Iterative Compilation in Program optimization. (2000).

[15] Prasad Kulkarni, Stephen Hines, Jason Hiser, David Whalley, Jack Davidson, and
Douglas Jones. 2004. Fast Searches for Effective Optimization Phase Sequences.
In Proceedings of the ACM SIGPLAN 2004 Conference on Programming Language
Design and Implementation (PLDI ’04). ACM, New York, NY, USA, 171–182. DOI:
https://doi.org/10.1145/996841.996863

[16] Sameer Kulkarni and John Cavazos. 2012. Mitigating the Compiler Optimization
Phase-ordering Problem Using Machine Learning. In Proceedings of the ACM
International Conference on Object Oriented Programming Systems Languages
and Applications (OOPSLA ’12). ACM, New York, NY, USA, 147–162. DOI:https:

9

https://doi.org/10.1109/CGO.2006.37
https://doi.org/10.1145/2628071.2628092
https://doi.org/10.1145/3124452
https://doi.org/10.1145/2928270
https://doi.org/10.1109/SC.2016.46
https://doi.org/10.1109/CGO.2007.32
https://doi.org/10.1145/1806596.1806647
https://github.com/ctuning/ctuning-programs
https://doi.org/10.1007/s10766-010-0161-2
https://doi.org/10.1007/s10766-010-0161-2
http://arxiv.org/abs/1506.06256
http://arxiv.org/abs/1506.06256
https://doi.org/10.1109/MM.2007.56
https://doi.org/10.1109/MM.2007.56
https://doi.org/10.1109/CASES.2013.6662511
https://doi.org/10.1145/996841.996863
https://doi.org/10.1145/2384616.2384628
https://doi.org/10.1145/2384616.2384628

ICPP 2019, August 5–8, 2019, Kyoto, Japan Tao Wang and Nikhil Jain, et al.

//doi.org/10.1145/2384616.2384628
[17] Lawrence Livermore National Lab. 2018. LLNL Codesign. https://codesign.llnl.

gov. (2018).
[18] Jiajia Li, Guangming Tan, Mingyu Chen, and Ninghui Sun. 2013. SMAT: An Input

Adaptive Auto-tuner for Sparse Matrix-vector Multiplication. In Proceedings
of the 34th ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI ’13). ACM, New York, NY, USA, 117–126. DOI:https://doi.
org/10.1145/2491956.2462181

[19] San-Chih Lin, Chi-Kuang Chang, and Nai-Wei Lin. 2008. Automatic selection
of GCC optimization options using a gene weighted genetic algorithm. In 2008
13th Asia-Pacific Computer Systems Architecture Conference. 1–8. DOI:https:
//doi.org/10.1109/APCSAC.2008.4625477

[20] Ricardo Nobre, Luiz G. A. Martins, and João M. P. Cardoso. 2016. A Graph-based
Iterative Compiler Pass Selection and Phase Ordering Approach. In Proceedings
of the 17th ACM SIGPLAN/SIGBED Conference on Languages, Compilers, Tools, and
Theory for Embedded Systems (LCTES 2016). ACM, New York, NY, USA, 21–30.

DOI:https://doi.org/10.1145/2907950.2907959
[21] Zhelong Pan and Rudolf Eigenmann. 2008. PEAK: a Fast and Effective Per-

formance Tuning System via Compiler Optimization Orchestration. ACM
Trans. Program. Lang. Syst. 30, 3, Article 17 (May 2008), 43 pages. DOI:https:
//doi.org/10.1145/1353445.1353451

[22] Mihail Popov, Chadi Akel, William Jalby, and Pablo de Oliveira Castro. 2016.
Piecewise Holistic Autotuning of Compiler and Runtime Parameters. In Euro-Par
2016 Parallel Processing - 22nd International Conference (Lecture Notes in Computer
Science), Christos Kaklamanis, Theodore S. Papatheodorou, and Paul G. Spirakis
(Eds.), Vol. 9833. 238–250.

[23] Mohammed Sourouri. 2018. Optewe. https://github.com/mohamso/optewe. (April
2018).

[24] UK-MAC. 2018. Cloverleaf. http://uk-mac.github.io/CloverLeaf/. (April 2018).
[25] Qing Yi. 2012. POET: A Scripting Language for Applying Parameterized Source-

to-source Program Transformations. Softw. Pract. Exper. 42, 6 (June 2012), 675–706.
DOI:https://doi.org/10.1002/spe.1089

10

https://doi.org/10.1145/2384616.2384628
https://codesign.llnl.gov
https://codesign.llnl.gov
https://doi.org/10.1145/2491956.2462181
https://doi.org/10.1145/2491956.2462181
https://doi.org/10.1109/APCSAC.2008.4625477
https://doi.org/10.1109/APCSAC.2008.4625477
https://doi.org/10.1145/2907950.2907959
https://doi.org/10.1145/1353445.1353451
https://doi.org/10.1145/1353445.1353451
https://github.com/mohamso/optewe
http://uk-mac.github.io/CloverLeaf/
https://doi.org/10.1002/spe.1089

	Abstract
	1 Introduction
	2 Design of FuncyTuner
	2.1 Compiler Flag Space Construction
	2.2 Space Search Algorithms

	3 Experimental Design
	3.1 Systems and Benchmarks
	3.2 Compiler Flag Selection
	3.3 Loop Outlining and Caliper Instrumentation
	3.4 CV Independence Assumption

	4 Results and Analysis
	4.1 Overall Performance Comparison
	4.2 Comparison to the State-of-the-art
	4.3 Impact Of Different Inputs
	4.4 Deep Dive: Cloverleaf On Broadwell

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

