
@NCStateECE

Quantum Circuits
and Algorithms

G. Byrd - ASPLOS Tutorial - Apr 14, 2019

Quantum State (qubit)
Mathematically represented as a vector, or a point on the surface
of the Bloch sphere:

〉|𝜓𝜓 = cos
𝜃𝜃
2

〉|0 + 𝑒𝑒𝑖𝑖𝜑𝜑sin
𝜃𝜃
2

〉|1

https://en.wikipedia.org/wiki/Bloch_sphere

α β

22
1βα + =

Measurement = projection of state to a basis vector
(changes the state – superposition is destroyed)

Quantum gate is a transformation from one qubit state to another.
Single-qubit gate = rotation around Bloch sphere. Reversible.
Represented by a matrix (unitary, …) acting on the vector.

NOTE: There are many possible basis vector sets – any antipodal points
on the Bloch sphere are orthogonal. “Standard” basis is { 〉|0 , 〉|1 }.

X Gate: NOT

Start End
〉|0 〉|1
〉|1 〉|0

𝛼𝛼 〉|0 + 𝛽𝛽 〉|1 𝛽𝛽 〉|0 + 𝛼𝛼 〉|1

𝑋𝑋 = 0 1
1 0

𝑋𝑋 〉|0 = 0 1
1 0

1
0 = 0

1

https://quantumexperience.ng.bluemix.net/qx/tutorial?sectionId=beginners-guide

Hadamard (H) Gate: Superposition

Start End AKA

〉|0
1
2

〉|0 + 〉|1 〉| +

〉|1
1
2

〉|0 − 〉|1 〉| −

1 1
2 2

1 1
2 2

H
−

 
 =
 
 

11 1
22 2

1 1 1
2 2 2

1
0

0
H

 
 
 
 

− 
 

    = =      

https://quantumexperience.ng.bluemix.net/qx/tutorial?sectionId=beginners-guide

Phase: Z, S, T

Rotations around the Z axis

T = π/4
S = π/2
Z = π

〉|𝜓𝜓 = cos
𝜃𝜃
2

〉|0 + 𝑒𝑒𝑖𝑖𝜑𝜑sin
𝜃𝜃
2

〉|1

https://quantumexperience.ng.bluemix.net/qx/tutorial?sectionId=beginners-guide

Phase: Z, S, T

https://quantumexperience.ng.bluemix.net/qx/tutorial?sectionId=beginners-guide

Walsh-Hadamard Transform

Used in the setup phase of
algorithms, to create a
superposition of all inputs.

Transformations occur on all
components of the superposition.
This is the source of quantum
parallelism.

Two-qubit Gate: CNOT

Start End
〉|00 〉|00
〉|01 〉|11
〉|10 〉|10
〉|11 〉|01

CNOT = controlled-NOT Entanglement: Bell Pair

There is no tensor product
〉|𝑎𝑎 ⊗ 〉|𝑏𝑏

that corresponds to this state.

Be careful about notions of “control” and “target.”
More about this later…

Other Two-Bit Gates (IBM Qiskit)

• controlled Pauli gates (X, Y, Z) – controlled X is CNOT
• controlled Hadamard gate
• controlled rotation gates (Rx, Ry, Rz)
• controlled phase gate (u1)
• controlled u3 gate
• swap gate

Three-qubit Gates

Fredkin: controlled swapToffoli: controlled CNOT

These are not implemented directly on the IBM Q. They are built from 1- and 2-qubit gates.

Toffoli: Reversible Classic Gates

NOT AND

XORNAND

Reusing Temporary Bits

These bits are no longer zero, and can’t be reused if
this feeds into additional computation. Can’t just
“reset” them, because that’s not reversible. Need to
uncompute to reclaim them.

Quantum Circuit

Time flows left to right.
Quantum gates (operators) are applied sequentially
to qubit states, with result shown on the right.

Measurement.
Double line represents classical bit.

Standard Circuit Model
• CNOT plus all single-bit transformations
• Measurement in the standard basis

Any quantum transformation can be realized
in terms of the basic gates of the standard
circuit model.

Caution 1: Notion of Control

The notions of control and target bit is a carryover from the classical gate, and should not be
taken too literally. Do not conclude that the control bit is never changed.

Consider the CNOT gate operating in the Hadamard basis:

Start End
〉| + + 〉| + +
〉| + − 〉| −−
〉| − + 〉| − +
〉| − − 〉| + −

In this case, it’s the first qubit that changes.

Caution 2: Reading Circuit Diagram

The graphical representation of a circuit can be misleading. Must “do the math” and figure out
exactly what transformation is happening, even if all qubits are in the standard basis.

What is the output of the following circuit?

Because the H gate is its own inverse, you might think that the first qubit will be unchanged.
But the output is 1

2
〉|00 + 〉|01 + 〉|10 − 〉|11 -- not obvious from the diagram.

Caution 2: Reading Circuit Diagram

The graphical representation of a circuit can be misleading. Must “do the math” and figure out
exactly what transformation is happening, even if all qubits are in the standard basis.

What is the output of the following circuit?

Because the H gate is its own inverse, you might think that the first qubit will be unchanged.
But the output is 1

2
〉|00 + 〉|01 + 〉|10 − 〉|11 -- not obvious from the diagram.

After H:
1
2

〉|00 + 〉|10

After CNOT:
1
2

〉|00 + 〉|11

After H:
1
2

(〉|00 + 〉|10) + (〉|01 − 〉|11)

@NCStateECE

Intro to Qiskit

Qiskit = IBM QC Dev Platform

• Terra: Composing programs
using circuits and pulses

• Aqua: Building algorithms and
applications

• Aer: Simulators, emulators, and
debuggers

• Ignis: Addressing errors and
noise

Qiskit Terra

• Build
• Create circuit out of registers, gates

• Compile
• Translate to QASM, then to backend instructions

• Execute
• Backends = simulators (Aer), hardware

Building a Circuit

QuantumRegister
• Collection of qubits
• Indexed to reference individual qubit: q[0]

ClassicalRegister
• Collection of bits
• Used as the receiver of measurements on qubits

QuantumCircuit
Starts with set of registers
Add gates specifying registers/qubits as arguments

from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit

qreg = QuantumRegister(3) # a 3-qubit register

creg = ClassicalRegister(3) # a 3-bit classical register

qc = QuantumCircuit(qreg,creg) # create a circuit

qc.measure(qreg,creg) # measure all qubits in qr, put results in cr

Basic Gates

Quantum Gate ...on qubits ...on register

X (NOT) qc.x(qreg[0]) qc.x(qreg)

Hadamard qc.h(qreg[0]) qc.h(qreg)

CNOT qc.cx(qreg[0],qreq[1]) --

Toffoli qc.ccx(qreg[0], qreg[1], qreg[2]) --

Phase shift qc.u1(angle,qreq[0]) qc.u1(angle,qreg)

Swap qc.swap(qreg[0],qreg[1]) --

Measure (not a gate) qc.measure(qreg[0],creg[0]) qc.measure(qreg)

Reset (not a gate) qc.reset(qreg[0]) qc.reset(qreg)

summary_of_quantum_operations.ipynb

Other Circuit Operations

Operation Description

qc.barrier() Completes operations before proceeding. Can specify registers,
qubits.

qc.add(regs) Add register(s) to circuit.

qc.combine(circuit) Appends circuit (if compatible). Creates new circuit (qc + circuit)
and returns it.

qc.extend(circuit) Appends circuit (if compatible). Modifies qc.

qc.qasm() Returns a string containing the QASM representation of circuit.

from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit

q = QuantumRegister(2)

c = ClassicalRegister(2)

qc = QuantumCircuit(q, c)

qc.h(q[0]) # Hadamard on first qubit

qc.cx(q[0],q[1]) # CNOT to entangle

creates a Bell state

qc.measure(q,c)

Compiling and Running

• Provider
• Facilitates access to a selection of backends
• Aer Provider

• simulators, running locally on your machine
• IBM Q Provider

• hardware, remote simulator

• Backend
• Runs a compiled program (Qobj) and reports result

• Job
• The result of an execution
• Asynchronous -- query job to see status
• Get result when complete

Backends

• To compile/execute a circuit, must specify a backend.
• Simulators:

• Local (Aer):
qasm_simulator -- emulates a machine with/without noise, multi-shot
statevector_simulator -- single shot, returns state vector
unitary_simulator -- returns unitary matrix represented by circuit

• IBMQ: ibm_qasm_simulator

• Hardware:
• IBMQ provider -- to be discussed later

Job Operations

Operation Description

job.status() Returns current status.

job.done() Returns True if done, False if not.

job.id() Identifier (remote provider only)

job.result() Results from completed job.

job.result().get_counts() Instances of various measured states, e.g.
{'111': 512, '000': 512}

job_monitor(job) Loop that waits for job to complete, periodically printing
the job status.

from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit

from qiskit import Aer, execute

from qiskit.tools.visualization import plot_histogram

... deleted circuit building commands...

qc.measure(q,c)

backend = Aer.get_backend('qasm_simulator')

job = execute(qc, backend, shots=512) # shots default = 1024

result = job.result()

print(result.get_counts())

plot_histogram(result.get_counts())

from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit

from qiskit import Aer, execute

from qiskit.tools.visualization import plot_histogram

... deleted circuit building commands...

qc.measure(q,c)

backend = Aer.get_backend('qasm_simulator')

job = execute(qc, backend, shots=512) # shots default = 1024

result = job.result()

print(result.get_counts())

plot_histogram(result.get_counts())

{'00': 269, '11': 243}

Example 2

What is the result of this
measurement?

After the Toffoli gate, are
the qubits entangled?

Example 2

What is the result of this
measurement?

After the Toffoli gate, are
the qubits entangled?

Example 3

Implement a quantum circuit that checks whether two qubits are
equal (in the computational basis).

Use qiskit to demonstrate that your circuit works.

Qiskit Summary

• Create quantum and classical registers.
• Create quantum circuit, adding registers.
• Add gates and measurements to circuits.

• Choose backend from provider.
• Execute circuit -- compiles circuit to match specifics of backend.
• Get results from job.

Limited Connectivity

https://www.ibm.com/blogs/research/2017/11/the-future-is-quantum/

IBM Q (and other machines) do not provide full connectivity among qubits.
Can’t arbitrarily perform CNOT between any two qubits.
Careful planning, using SWAP to move qubit state where it is needed. (Can’t copy!)

@NCStateECE

Quantum Algorithms

𝑆𝑆𝑋𝑋
𝜙𝜙: �

𝑥𝑥=0

𝑁𝑁−1

𝑎𝑎𝑥𝑥 〉|𝑥𝑥 → �
𝑥𝑥∈𝑋𝑋

𝑎𝑎𝑥𝑥𝑒𝑒𝑖𝑖𝜙𝜙 〉|𝑥𝑥 + �
𝑥𝑥∉𝑋𝑋

𝑎𝑎𝑥𝑥 〉|𝑥𝑥

Quantum Parallelism

A typical transformation 𝑈𝑈𝑓𝑓 :
𝑈𝑈𝑓𝑓: 〉|𝑥𝑥, 0 → 〉|𝑥𝑥,𝑓𝑓 𝑥𝑥

When this acts on a superposition,
it acts on each element of the superposition:

𝑈𝑈𝑓𝑓:∑𝑥𝑥 𝑎𝑎𝑥𝑥 〉|𝑥𝑥, 0 → ∑𝑥𝑥 𝑎𝑎𝑥𝑥 〉|𝑥𝑥,𝑓𝑓 𝑥𝑥

But if you measure 〉|𝑥𝑥,𝑓𝑓 𝑥𝑥 , you’re only going to get one value.
So have to do other things to make this useful.

Quantum Algorithm Strategies

Create superposition of states (quantum parallelism)
Apply transforms that amplify desirable values and diminish unwanted values

• Measure to get desired value with high probability.
• Typically, execute many times (“shots”) to identify high-probability value(s).

• Repeat calculation to learn about relationships among values.
• Measurements can yield information about the properties of values

Deutsch's Algorithm

Problem: Given a Boolean function 𝑓𝑓:ℤ2 → ℤ2, determine whether 𝑓𝑓 is constant.

Requires only a single call to black box 𝑈𝑈𝑓𝑓, while classical algorithm requires two calls.

Apply 𝑈𝑈𝑓𝑓 to the input state 〉| + − .

If 𝑓𝑓(𝑥𝑥) is constant, then output is 〉| + − .
If not, output is 〉| −− .

Apply Hadamard to first qubit and measure: 1 if constant, 0 if not.

(Details on next slides.)

Selective Phase Change

Problem: Change the phase of terms in a superposition 〉|𝜓𝜓 = ∑𝑎𝑎𝑖𝑖 〉|𝑖𝑖 , depending on whether 𝑖𝑖
is in a subset 𝑋𝑋 of 0,1, … ,𝑁𝑁 − 1 or not. More specifically, find an efficient implementation of
the following transform:

𝑆𝑆𝑋𝑋
𝜙𝜙: �

𝑥𝑥=0

𝑁𝑁−1

𝑎𝑎𝑥𝑥 〉|𝑥𝑥 → �
𝑥𝑥∈𝑋𝑋

𝑎𝑎𝑥𝑥𝑒𝑒𝑖𝑖𝜙𝜙 〉|𝑥𝑥 + �
𝑥𝑥∉𝑋𝑋

𝑎𝑎𝑥𝑥 〉|𝑥𝑥

Requires an efficient implementation of 𝑈𝑈𝑓𝑓 for the function 𝑓𝑓 𝑥𝑥 that tests for membership in 𝑋𝑋:

This type of function is often called an Oracle. Used in "black box" algorithms.

Finally, uncompute using 𝑈𝑈𝑓𝑓−1to remove
any entanglement with the output bit.

Special case of π:

Qiskit Example

Create a circuit that generates an equal superposition of two qubits,
except the sign (phase) is flipped when the two qubits are equal.

• Sign flip is phase change of π.
• Use the "equal" circuit from Example 3.

How do you see the phase shift in qiskit?

Deutsch-Josza Algorithm

Problem: Given an n-bit Boolean function (mapping n bits to 1) that is known to be either
constant or balanced, determine whether it is balanced or constant. A function is “balanced” if
an equal number of input values return 0 and 1.

Apply phase shift of π to negate elements where 𝑓𝑓 𝑥𝑥 = 1.
Apply Walsh-Hadamard to the result.

For constant 𝑓𝑓, the final output is 〉|00 … 0 with probability 1.
For balanced 𝑓𝑓, the final output is non-zero with probability 1.

(Details on next slides.)

Requires only a single call to black box 𝑈𝑈𝑓𝑓, while classical algorithm requires at least 2𝑛𝑛−1 + 1 calls.

Background: Hamming Distance

The Hamming distance 𝒅𝒅𝑯𝑯(𝒙𝒙,𝒚𝒚) between two bit strings 𝑥𝑥 and 𝑦𝑦 is the number of bits
in which the two strings differ.

The Hamming weight 𝒅𝒅𝑯𝑯(𝒙𝒙) of a bit string 𝑥𝑥 is the number of 1 bits.

For two bit strings 𝑥𝑥 and 𝑦𝑦, the operator 𝒙𝒙 � 𝒚𝒚 gives the number of common 1 bits.

Some interesting notes:

More on Walsh-Hadamard

Qiskit Example

Use the previous example (phase shift) to demonstrate
Deutsch-Josza algorithm.

• isEqual is a balanced function

Summary

• Any efficient reversible classical circuit can be
efficiently implemented as a quantum circuit.

• Use inverse function to reduce space and unentangle temporary bits.

• For quantum advantage, add some non-classical operations.
• E.g, phase change.

• Are these algorithms really useful?
• Perhaps not directly, but they illustrate ways in which quantum computing

may have an advantage over classical computing.

Grover's Algorithm

• Find one input x for which f(x) is 1 (out of 𝑁𝑁 = 2𝑛𝑛 possible inputs).
• Which box has the prize?

• Classically, have to open all 𝑁𝑁 boxes in the worst case.
• With quantum, can solve in 𝑁𝑁 steps.
• Let's see how...

Grover's Algorithm

• Two transforms:
• 𝑆𝑆𝑋𝑋𝜋𝜋 : change phase (by 𝜋𝜋) for the input for which 𝑥𝑥 ∈ 𝑋𝑋

• We know how to do this already.

• Grover's diffusion operator

• If 〉|𝑠𝑠 = 𝑊𝑊 〉|0 = 1
𝑁𝑁
∑𝑥𝑥 𝑎𝑎𝑥𝑥 〉|𝑥𝑥 (Walsh-Hadamard), then

• 𝑈𝑈𝑠𝑠 = 2 〉|𝑠𝑠 〈𝑠𝑠| − 𝐼𝐼 = −𝑊𝑊 𝑆𝑆0𝜋𝜋𝑊𝑊, which performs

• ∑𝑥𝑥 𝑎𝑎𝑥𝑥 〉|𝑥𝑥 → �𝑥𝑥(2𝐴𝐴 − 𝑎𝑎𝑥𝑥) 〉|𝑥𝑥

(rotates amplitudes around the mean).

Figures from https://phys.org/news/2018-01-qubit-grover-quantum.html

Grover's Algorithm

• Do this 𝑁𝑁 times
• Measure
• Very likely to measure correct result

• From 𝑂𝑂(𝑁𝑁) to 𝑂𝑂(𝑁𝑁)

Shor's Factoring Algorithm

• Given 𝑁𝑁 is a product of two primes, 𝑝𝑝 and 𝑞𝑞
• We have 𝑁𝑁, want to find 𝑝𝑝 and 𝑞𝑞

• For some number 𝑎𝑎 that is not divisible by 𝑝𝑝 or 𝑞𝑞, the following
sequence repeats itself with a period 𝑟𝑟.

• As Euler discovered (~1760), 𝑟𝑟 always divides (𝑝𝑝 − 1)(𝑞𝑞 − 1).

𝑎𝑎1mod𝑁𝑁,𝑎𝑎2mod𝑁𝑁, 𝑎𝑎3mod𝑁𝑁,𝑎𝑎4mod𝑁𝑁, . . .

Shor's Factoring Algorithm

• Example: Let N=15 (3x5) and a=2.
{2, 4, 8, 1, 2, 4, 8, 1, 2, 4, 8, 1, ...} ⇒ r = 4.

Lo and behold, 4 divides (3-1)(5-1) = 8.

• If we can find r, it's pretty easy to find p and q.
• However, finding r is very challenging for a classical computer:

O(exp(n1/3))

• Quantum: O(n2log n log log n)

Shor's Factoring Algorithm

Quantum part

@NCStateECE

Backup Slides

Simon’s Algorithm

Problem: Given a 2-to-1 function 𝑓𝑓, such that 𝑓𝑓 𝑥𝑥 = 𝑓𝑓(𝑥𝑥⊕𝑎𝑎), find the hidden string 𝑎𝑎.

Create superposition 〉|𝑥𝑥 〉|𝑓𝑓(𝑥𝑥)
Measure the right part, which projects the left state into 1

2
〉|𝑥𝑥0 + 〉|𝑥𝑥0 ⊕ 𝑎𝑎 .

Apply Walsh-Hadamard. (Details next slide.)

Measurement yields a random 𝑦𝑦 such that 𝑦𝑦 � 𝑎𝑎 = 0 (mod 2).
Computation is repeated until 𝑛𝑛 independent equations – about 2𝑛𝑛 times.
Solve for 𝑎𝑎 in 𝑂𝑂(𝑛𝑛2) steps.

Requires 𝑂𝑂 𝑛𝑛 calls to 𝑈𝑈𝑓𝑓, followed by 𝑂𝑂(𝑛𝑛2) steps to solve for 𝑎𝑎.

Classical approach requires 𝑂𝑂(2𝑛𝑛/2) calls to 𝑓𝑓.

A word about implementation…

Quotes from IBM Q material
The qubit we use is a fixed-frequency superconducting transmon qubit. It is a Josephson-
junction-based qubit that is insensitive to charge noise.
The devices are made on silicon wafers with superconducting metals such as niobium and
aluminum.

Quantum gates are performed by sending electromagnetic impulses at microwave frequencies to
the qubits through coaxial cables. These electromagnetic pulses have a particular duration,
frequency, and phase that determine the angle of rotation of the qubit state around a particular
axis of the Bloch sphere.

Koch, et al.
Phys. Rev. A 76, 042319 –Oct 2007

A word about implementation…

Quotes from IBM Q material
Two-qubit gates typically require tuning to calibrate the interaction
between the two qubits during the gate duration, and minimizing
the interaction at any other time. Since our qubits of choice are
fixed-frequency transmons, we cannot tune the interaction by
bringing them closer in frequency during the two-qubit gate.
Instead, we exploit the cross-resonance effect, by driving one of
the qubits (called control) with a microwave pulse tuned at the
frequency of the second qubit (called target). By doing this, we
can actively increase the strength of the coupling between them.
The nature of the cross-resonance effect also allows us to
perform rotations in the target qubit conditioned on the state of
the control qubit, a key characteristic of the CNOT operation
required for a universal quantum gate set.

Hegade, et al. arXiv:1712.07326v1, 9 Jul 2018.

	Quantum Circuits �and Algorithms
	Quantum State (qubit)
	X Gate: NOT
	Hadamard (H) Gate: Superposition
	Phase: Z, S, T
	Phase: Z, S, T
	Walsh-Hadamard Transform
	Two-qubit Gate: CNOT
	Other Two-Bit Gates (IBM Qiskit)
	Three-qubit Gates
	Toffoli: Reversible Classic Gates
	Reusing Temporary Bits
	Quantum Circuit
	Caution 1: Notion of Control
	Caution 2: Reading Circuit Diagram
	Caution 2: Reading Circuit Diagram
	Intro to Qiskit
	Qiskit = IBM QC Dev Platform
	Qiskit Terra
	Building a Circuit
	Slide Number 21
	Basic Gates
	Other Circuit Operations
	Slide Number 24
	Compiling and Running
	Backends
	Job Operations
	Slide Number 28
	Slide Number 29
	Example 2
	Example 2
	Example 3
	Qiskit Summary
	Limited Connectivity
	Quantum Algorithms
	Quantum Parallelism
	Quantum Algorithm Strategies
	Deutsch's Algorithm
	Slide Number 39
	Slide Number 40
	Selective Phase Change
	Slide Number 42
	Slide Number 43
	Qiskit Example
	Deutsch-Josza Algorithm
	Background: Hamming Distance
	More on Walsh-Hadamard
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Qiskit Example
	Summary
	Grover's Algorithm
	Grover's Algorithm
	Grover's Algorithm
	Shor's Factoring Algorithm
	Shor's Factoring Algorithm
	Shor's Factoring Algorithm
	Backup Slides
	Simon’s Algorithm
	Slide Number 61
	Slide Number 62
	A word about implementation…
	A word about implementation…

