
REPORT 2
4/23/2003

Name unity id
Anubhav Dhoot avdhoot@unity.ncsu.edu
Kunal Shah kdshah@unity.ncsu.edu

Note that all of the work was done by both of us together.

Table of contents

REPORT 2.. 1

Table of contents .. 1
Installation of ASCI Benchmark SMG200... 1

Compilation of SMG2000 source files ... 1
Installation of DPCL on intel/Linux... 1

Installation of libelf and libdwarf ... 2
Installation of dpcl.. 2
Changes required to execute dpcl programs ... 2

Execution of the Benchmark .. 3
Changing of runtime parameters .. 3
OpenMP-only ... 3
MPI-only .. 3
MPI-OpenMP hybrid.. 3

Results of Benchmark... 4
Comparison of OpenMP only, MPI only and OpenMP-MPI hybrid version ... 4
Effect of different number of threads for OpenMP-MPI hybrid version .. 5
Comparison of OpenMP only versus OpenMP-MPI hybrid version.. 6
Comparison of MPI versus OpenMP-MPI hybrid version ... 7

Installation of ASCI Benchmark SMG200

Compilation of SMG2000 source files
For each of the MPI-only, OpenMP-only and MPI-OpenMP hybrid approaches, the
Makefile.include was updated accordingly by changing the ‘CFLAGS’ and then the
source was compiled using a ‘make veryclean’ command (which removes the .o object
files, libraries, and executables) followed by a simple ‘make’ command in the smg2000
directory.

Installation of DPCL on intel/Linux

We undertook the following steps to install the Benchmark on the Lab machines.

Installation of libelf and libdwarf
We installed the libelf (libelf-0.8.2-2) and libdwarf (libdwarf_shlib-1.1.0-1) libraries
required by the dpcl (dpcl-3.3.2-1) rpm.

Installation of dpcl
After that we were able to install the dpcl rpm. (Note: We could not install this on any of
the cluster machines due to compiler version problem.)

Changes required to execute dpcl programs
To let the dpcld daemon to be executed the xinetd.conf file was required to be modified.
However, we created a file ‘xinetd’ in xinetd.d directory and set the appropriate
directives as required by dpcl.

service dpclSD
{
 socket_type = stream
 protocol = tcp
 wait = no
 user = root
 server = /opt/dpcl/bin/dpclSD
 server_args = /opt/dpcl/bin/dpcld /tmp/dpclSD01 /tmp/dpclsd
 disable = no
}

We added an entry for the port number used by dpcl to the /etc/services file. (This was
actually updated automatically when the dpcl rpm was installed).

Finally we changed the .rhosts.file in our own home directory to include the ‘localhost’ as
an allowed host as we got a rhosts_check_error on execution. One of the things that we
noticed was that the anaylsis tool can’t be run when logged in as root as this may
compromise the security.

Execution of the Benchmark
(using OpenMP only, MPI only and MPI-OpenMP hybrid approaches)

Changing of runtime parameters
The problem size for smg2000, which is a 3-D grid solver, is given by the <Px>*<nx>
by <Py>*<ny> by <Pz>*<nz>, where Px, Py, Pz forms the processor topology given &
the -n option allows one to specify the local problem size per processor, the -P option
during runtime as -n <nx> <ny> <nz> –P <Px> <Py> <Pz>,
e.g. ” ./smg2000 -n 35 70 35 -c 0.1 1.0 10.0 -P 1 1 2
means a problem size of 35x70x70.

(Note: The -c option which specifies the diffusion coefficients were kept to the above
values throughout).

The output wall clock time and cpu time were used to compare

OpenMP-only

The OpenMP only version was executed for a problem size of 35x35x35 by using
runtime parameters as
“./smg2000 -n 35 35 35 -c 0.1 1.0 10.0 -P 1 1 1”
with varying number of threads (1 2 and 4 threads) by setting the
OMP_NUM_THREADS environment variable. With 8 threads the execution did not
finish for a long time and got killed off.

MPI-only
Various executions were done using the following format
“mpirun -machinefile ~/.rhosts -np 8 ./smg2000 -n 35 35 35 -c 0.1 1.0 10.0 -P 2 2 2”

The problem size was kept at 35x35x35 to compare with OpenMP only version.
And then keeping the problem size fixed at 70x70x70 for different number of nodes 1 ,2
and 4 using processor topology -P 1 1 1, -P 1 1 2 and -P 1 2 2 and problem size on each
node being 70 or 35 if the number of processor were 1 or 2 respectively for that
dimension.

MPI-OpenMP hybrid
The same set of parameters used for MPI only is used for OpenMP-MPI hybrid version
as well as for a problem set of 35x35x35 for comparison for all three as well as for
different number of threads for comparison with OpenMP only version.

Results of Benchmark

Comparison of OpenMP only, MPI only and OpenMP-MPI hybrid
version

4
2

1
MPI only

4
2

CPU Time
Wall clock Time

0

2

4

6

8

10

12

14

16

Time (in sec)

Fixed Probsize 35x35x35

OpenMp only
(Number of

threads)
Mpi-OpenMP
(Number of
Threads)

1

In comparison of all three versions, the MPI only gave the shortest wall clock time and
CPU time. The OpenMP only version gave very poor performance for more number of
threads but gave as good performance at one thread. The OpenMP-MPI hybrid version
gave almost uniform results throughout.

We saw that changing number of threads has no considerable difference in the MPI-
OpenMP hybrid versions as seen in the next graph.

Effect of different number of threads for OpenMP-MPI hybrid version

1
2

4
8

4 nodes

2 nodes

1 node
0

5

10

15

20

25

30

OpenMP-MPI Number of threads per node

Wall clock Time MPI only v/s Openmp-MPI Hybrid

MPI only

In the above test the problem size was kept as 70x70x70 by changing the processor
topology and the problem size per processor. It was found as expected that distributing
the same problem to 4 number of nodes showed the least time while for only 1 node it
had the maximum time.

Also note the fact that OpenMP-MPI hybrid and MPI only version gave almost same
Wall-clock times. The CPU clock times were also similar and can be seen in the Excel
file which contains the data of the tests.

The achieved speedup by increasing the number of nodes was found in terms of Wall
clock time to be 3.954715 and in terms of cpu time to be 3.952344 for the hybrid version.

Note that using 8 threads gave very poor performance and hence was not considered.
This is obviously due to the architecture not being bale to sustain more than 4 threads

with 8 threads constantly affecting each other leading to no benefit in increasing the
number of threads to eight.

Comparison of OpenMP only versus OpenMP-MPI hybrid version

OpenMP only vs MPI-OpenMP hybrid version

0

2

4

6

8

10

12

14

16

18

4 2 1

Number of threads

Wall clock time OpenMP only
WallClock time Hybrid
CPU time OpenMP only
CPU time Hybrid

 The test showed that the OpenMP only version gave clearly poor performance at higher
number of threads while almost similar performance was reported for lower number of
threads. The seemingly slight decrease in performance in the hybrid version at lower
number of threads can be attributed to experimental error, as the times reported varied
around 20 percent.

Comparison of MPI versus OpenMP-MPI hybrid version

A detailed test of MPI versus OpenMP-MPI hybrid was necessary as they exhibited
almost similar behavior.

MPi vs OpenMP-MPI hybrid

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

Ti
m

e
(in

 s
ec

)

Mpi 1
Mpi 2
Mpi 4
Mpi 8
Hybrid 1
Hybrid 2
Hybrid 4
Hybrid 8

Wall clock times CPU times

The
number

indicates
number
of nodes

used

This shows that the better behavior is for MPI only.

As the OpenMP was found to be poorer that the hybrid versions for more number of
threads , it seems that MPI only version is the best.

