
 
 
 
 
 
 
 
 
 

Final Report 
 
 
 
 
 

Design Study for DPCL Port for MPICH on Linux 
And Performance Evaluation  of SMG2000 Benchmark on 

Myrinet Cluster 
 
 
 

Team Members 
 

Kunal Shah 
Anubhav Dhoot 



Table of Contents 
 

Introduction ............................................................................................................................................ 4 
DPCL System Architecture .................................................................................................................... 4 
PoeAppl Class Design ............................................................................................................................ 5 
Design Details ........................................................................................................................................ 7 

PoeApplD ........................................................................................................................................... 7 
PoeAppl .............................................................................................................................................. 7 

Limitations of this design for use with MPICH...................................................................................... 9 
Proposed Changes In Mpich................................................................................................................. 10 
Proposed MpichAppl Class Design....................................................................................................... 10 

MpichApplD..................................................................................................................................... 10 
MpichAppl........................................................................................................................................ 11 

Implementation and Feasibilty tests ..................................................................................................... 11 
Conclusions .......................................................................................................................................... 12 
References ............................................................................................................................................ 13 



Acknowledgements 
 
We are thankful to Dave Wootton (Project lead for DPCL Linux port) for providing us 
with insights on the design details of the DPCL and Rusty Lusk (one of the designers of 
MPICH) for providing us with some of the details of MPICH implementation. We also 
thank Dr. Mueller for helping us out with some problems that we faced.



DPCL SUPPORT FOR MPICH ON LINUX 
 
Introduction 
 
DPCL is a C++ class library whose application programming interface (API) enables a program 
to dynamically insert instrumentation code patches, or "probes", into an executing program. The 
program that uses DPCL calls to insert probes is called the "analysis tool", while the program that 
accepts and runs the probes is called the "target application". The ability of DPCL to dynamically 
insert probes relieves the need to recompile the code, allows switching from one tool to other 
without restarting the application and a slew of other advantages that can be found in [3] and [4]. 
 
DPCL System Architecture 
 
The following figure taken from DPCL user guide documentation explains the way DPCL 
analysis tool instruments a parallel application. A DPCL daemon, which is created per user on 
each different node is responsible for communication co-ordination between the DPCL analysis 
tool and the target application process. When an analysis tool tries to connect to a target 
application, a DPCL superdaemon (dpclSD) is created, if it is not already running. Then, the 
dpclSD creates a DPCL Daemon (dpclD) if there is no DPCL daemon already running for this 
user. dpclSD is also responsible for user authentication on remote host. dpclD then performs 
much of the work requested via DPCL function calls by the analysis tool. It also relays data 
collected by the instrumentation probes within the target application back to the analysis tool. 
 

 
 

Figure 1. DPCL System Architecture 



The DPCL port on Linux doesn’t support instrumentation of MPI applications. The class which 
handles MPI application on IBM AIX is the PoeAppl class.Hence to provide support for MPICH 
on Linux, we need to replicate much of the functionality provide by PoeAppl class, taking into 
consideration the differences between POE and MPICH and other runtime environment 
differences between Linux and AIX. Our design takes into account these differences as well as 
the current limitations of MPICH and proposes some changes not only in the MpichAppl class, 
but also in MPICH.  
 
First, we describe the way PoeAppl class has been designed and handles parallel processes. Then, 
we point out the limitations of this design for MPICH and the changes needed in MPICH. Finally, 
we propose a design of the MpichAppl class so that the analysis tool can use it very much the 
same way it uses PoeAppl for instrumenting parallel processes running under POE. 
 
PoeAppl Class Design 
 
This is a C++ class derived from Application class, which is responsible for providing 
convenience functions for connecting to or starting a job in the Parallel Operating Environment 
(POE). It makes the instrumentation of a parallel application transparent to the analysis tool by 
hiding the differences in the methods required for instrumenting serial and parallel jobs. In POE, 
a parallel application (called POE job) is executed from a home node, and POE will allocate host 
machines on which the various processes of the POE job will run. PoeAppl class makes use of the 
information available from the run time environment for automatically finding out the various 
host machines on which the POE processes are running and their process ids. Once it has this 
information available, it will create Process objects for each of the POE processes and will 
encapsulate all of them. It then functions the same way as an Application class object works. The 
Application class is a grouping of related Process class objects. By grouping a number of Process 
objects under an Application object, the analysis tool is able to manipulate a set of related UNIX 
processes (represented by the Process objects) as a single unit. More information about it can be 
found in [1] and [2].  
 
The following figure explains the various possible states a Process object can have and the 
functions which lead to transition from one state to another. 
 



 
 
 
 
 
Since PoeAppl is derived from Application, it inherits all the methods contained in Application, 
and overrides some of them. The methods of interest for the purpose of providing MPICH support 
are 
 
• create() 
 

It is responsible for creation of POE application in suspended state. At the completion of this 
operation, the PoeApp object will contain Process objects that represent the various processes 
of the POE application. The analysis tool can insert probes into this application and then start 
its execution.  
 

• bcreate() 
 

blocking create (synchronous). 
 

• init_procs() 
 

It initializes an empty PoeAppl object to contain Process objects representing a particular 
POE target application’s processes. It is used by the analysis tool to connect to an already 

Figure 2. Process State Diagram 



running POE application. i.e. it first calls init_procs() followed by connect()/bconnect() on 
the PoeAppl object. 
 

• binit_procs() 
 

blocking init_procs (synchronous). 
 
 
Design Details 
 

PoeApplD 
 
This is the Poe application daemon which is responsible for reading the Poe configuration file 
(task list file). This file contains information about: 

  
• Machines on which the poe processes are running 
• Pids of the poe processes 
• Task numbers of the poe processes 
 

and some other information such as task session id and the name of the executable for the poe 
process. This task list file is created for each POE job and is found as 
/tmp/.ppe.<poe_pid>.attach.config 
 

PoeAppl 
 
• init_procs() 
 

The flow diagram for the init_procs method is shown below. It first creates a Processs object 
for the poe process using the hostname and its pid information. It then communicates with the 
PoeApplD. Before it actually initiates PoeApplD, init_proc registers a callback with it that 
will be invoked once the daemon is done reading the Poe task list file. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Get hostname of 
home node 

Open Connection to PoeAppl 
Daemon (PoeApplD) 

Create Process object for the 
poe process using hostname 

and poe_pid. 

Register callback  ‘convert_cb’ with PoeApplD 
which is called when PoeApplD is done reading 

the poe task list file 

Initiate PoeApplD to start 
reading poe task list file 

Figure 3.Flow diagram for init_procs(homenode,poe_pid) 



• convert_cb() 
 

This is the callback that is invoked once the poe task file has been read. It is responsible for 
creating the Process objects for each Poe process. These Process objects are added to the 
PoeAppl object, which is then ready to be used by the analysis tool. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
• create() 

 
This creates a poe application. This includes creating poe itself on the host specified and 
having poe start the individual application processes in the stopped state. dpcl will then attach 
to them. This involves the following important steps. 

  
1. adding the _MP_DBG_STOPTASK env variable to poe so that  the application processes 

start under ptrace control and  they stop at the first executable instruction 
2. creating the poe home node process 
3. Issuing init_procs to get locations of application processes and add them to the PoeAppl's 

list 
4. Connecting to the poe app processes 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Verify if the poe task file has been 
properly read by PoeApplD 

Populate version and numtask data 
members of the PoeAppl object 

For each entry in poe task file, create a Process 
object using hostname, task_pid and task_num 

Figure 4. Flow Diagram for convert_cb 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
• binit_procs() 

 
This internally calls init_procs and waits until a response is received. 
 

• bcreate() 
 
This internally calls create and waits until a response is received. 

 
 
Limitations of this design for use with MPICH 
 
• As of the current implementation of MPICH, there is no support for querying the process 

manager to get the list of nodes on which the mpi processes are running and their process ids.  
 
In an upcoming version of MPD process manger for MPICH2, there will be a way to inquire 
this of a running program. The way it would work is that that the job would be given a name 
(alias), or it would return an id, when the job is run with mpiexec.  Then the process manager 
can be queried about this job, specifying it by either id or alias, and it would return the ranks, 
hosts, and pids for the job. 
 

• It is not possible to start MPI Processes in a stopped state. Hence, it is not possible to support 
create/bcreate() methods. 

 

Setup environment for poe. 
Add 
_MP_DBG_STOPTASK = 1 

Create poe process using path 
and environment and register 
poe_create_done_cb callback 
to be invoked upon creation. 
The process is stopped as 
_MP_DBG_STOPTASK is 
set. 

Create() 
Get instrumentation point at 
pe_dbg_breakpoint.(2 such 
points actually, set probe at 
point which has greater 
address) 

Put probe at the 
instrumentation point and 
register 
poe_config_written_cb to be 
invoked when probe hit. 

Start poe process, which was 
in stopped state. This will 
create parallel processes, 
which will be in stopped state 
because of the env variable.

poe_create_done_cb() 

Deactivate and remove probe 

Call init_procs, which 
populates PoeAppl object 
with Process objects.  

Change states of the process 
objects created in the 
previous state to 
PRC_Created 

poe_config_written_cb() 

Figure 5. Flow diagram for create(host, path, argv, envp. ……) 



Proposed Changes In Mpich 
 
As mentioned earlier, in the current MPICH implementation, no task list file is written. However, 
for the ch_p4 device, there is a structure called ‘proctable’ that is maintained which keeps a track 
of the pids of the remotely started processes along with the hostnames. The loop which fills in 
this proctable can be modified so that it writes all the records to the MPICH task list file, 
containing task index and the hostname and pid of each task. This file should be ended with a 
special end of file delimiter once the loop terminates. We were able to get this working by 
modifying the file /home/kdshah/mpich-1.2.5/src/env/initutil.c . A cleaner solution to this 
problem is to have mpirun accept a –mpirun <pid> option. The mpirun script will set an 
evironment variable in the master task’s environment pool with the value of pid of the mpirun 
script. MPIR_Init function which is called by MPI_Init will be modified to handle the –mpirunpid 
option. The pid specified with this opiton will be used to create the task list file named 
/tmp/mpich_appl_<pid>. mpirun script will be modified to remove the /tmp/mpich_appl_<pid> 
file after the application terminates. This file will always be written and the environment variable 
will always be set since the invoker of mpirun may not anticipate DPCL connection to the 
running application. 
 
The current implementation of mpich does not provide any method to create a process and 
suspend it at entry to main. To get around this, mpirun script will be modified so that it accepts –
dpcl as an option. When mpirun is invoked with –dpcl flag, it will set an environment variable 
which will indicate that all  application tasks are to be suspended in MPI_Init processing in order 
for DPCL to be able to attach to those tasks. The way this will work is by modifying the 
MPIR_Init function which is called by MPI_Init to check this environment variable in all tasks. If 
this environment variable is set, a loop will be entered which periodically queries a global flag 
MPIR_debug_gate to determine if the loop should be exited. This variable will be set by DPCL 
when it successfully attaches to the process and runs a one-shot probe intended to set the flag. 
However, with this scheme, if DPCL detaches from the application before the variable is set, then 
it may not be possible to ensure that all application tasks are terminated. The other implication is 
that only those instrumentations which execute after MPI_Init will work correctly. Those 
installed at points prior to MPI_Init will never be executed. 
 
 
Proposed MpichAppl Class Design 
 
MpichAppl is our proposed class and it is based on PoeAppl Class. This class will be used by the 
client exactly the same was as it uses PoeAppl class for instrumenting a parallel process in POE. 
In order for MpichAppl to provide the same functionality as PoeAppl, a mechanism is needed for 
obtaining the hosts and pids of processes. Below, we describe the way this can be achieved and 
also some other changes that need to be made to the PoeAppl class. 

MpichApplD 
 
This is the MpichAppl daemon, and this class will be based on PoeApplD class. The only 
function in this class is read_POEconfig, which will be renamed to read_MPICHConfig. This 
function will need to poll for the existence of the config (task list) file, as it is not possible to use 
probes (see figure 5) in mpirun (as it is a script and there is no support for instrumenting shell 
scripts) to indicate that the file has been completely written. The other issue that needs to be dealt 
with is determining whether the file has been completely written or not. To overcome this, the 



read_MPICHConfig will repeatedly read the file until it encounters a special end of file delimiter. 
Once the file is completely read, the data will be returned to the caller. 

MpichAppl 
 
This class will be based on the PoeAppl class.  
 
• init_procs() 
 

The process of connecting to an existing MPICH application will be essentially the same as 
connecting to an existing POE application (see figure 3 and figure 4).  
 

• convert_cb() 
 

convert_cb() callback function needs to properly parse the MPICH task list file created by 
MPICH. So that the existing parsing code for POE can be reused, the format of the task list 
file generated by MPICH should be the same as that generated by POE. 
 

• create() 
 

The process of creating a new MPICH application will follow the same basic model as for 
creating a new POE applicaton. However, some changes need to be done due to difference 
between MPICH and POE. 
 
The code which sets up the _MP_DBG_STOPTASK will be removed. A Process object for 
representing the mpirun script will be created, and mpirun script will be invoked with the -
dpcl flag (this will cause MPICH to suspend all tasks in MPI_Init) and other arguments. This 
is similar to the PoeAppl::create function creating the POE home task. However, since 
mpirun may be a shell script, DPCL cannot insert a probe to detect when the MPICH task list 
file has been created. This is taken care of by the MPICHApplD::read_MPICHConfig class 
which polls for the existence of the MPICH task list file and returns only when that file has 
been completely read or a reasonable time out occurs. 
 
Mpich_create_done_cb will be same as poe_create_done_cb, except that it does not install 
probes for detecting the creation of  the task list file.  It will poll for the existence of the task 
list file, very much like the MpichApplD and does not exit until the file has been completely 
written. When this function exits, DPCL will have connected to all the application tasks. 
 
The function start() will be overwritten. This will load and invoke a one-shot probe on each 
task in the application. This one shot will set the environment variable MPIR_debug_gate, 
which will allow task execution to continue past the point of MPI_Init. 

 
Implementation and Feasibilty tests 
 
• Installed MPICH on os29 and os30. 
• Installed rsh server required by MPICH on os29 and os30. 
• Used dpcl to profile simple serial test program and two parallel processes running on same 

and separate nodes. 
• Wrote an analysis tool to instrument a simple MPI test program. 
• Modified a MPICH source file to dump the task lists to STDOUT. 



 
We installed the MPICH ch_p4 version on the linux machine. Initially the compilation gave an 
error. After removing the initial path which was set for the Cluster, we did make again which 
succeeded this time. Then when we ran a few test programs, but it did not work because rsh was 
not installed. Hence we then installed and enables rsh server. After this the sample programs 
which used communication started working. 
  
We were able to use DPCL for simple serial programs. DPCL requires the hostname and pid of 
the executing processes so that it can connect to it. As explained in our report, for MPI support, it 
needs the same for all master and worker processes. As that is not provided by MPICH by 
default, DPCL can’t connect to it. However, since the MpichAppl class would be inherited from 
the Application class, we wrote an analysis tool for instrumenting two processes on a single node. 
The analysis tool was successful in instrumenting the two processes. Then, we tried running these 
processes on two separate nodes. However, due to a bug in the current DPCL implementation in 
the way a socket connection is established between the analysis tool and the dpcl daemon, the 
analysis tool did not succeed in attaching to the process. We identified this bug and modified one 
of the source files (/root/kunalanu/dpcl/src/lib/src/Daisd.C). After this, we were successful in 
instrumenting processes running on separate nodes with a single analysis tool. 
 
Applying the same concept, we tried to instrument an MPI application. Note that we explicitly 
specified the process ids of the MPI processes started. But we encountered that communication 
failed while connecting to the MPI processes which was due to the DPCL daemon aborting. 
Upon investigating the reasons for that, we found that the target application was not 
being compiled with the –gdwarf-2 flag and some compile and link flags were required to 
link the target with DPCL support routines. After these flags were specified, we could 
successfully instrument the MPI application. 
 
Next, our goal was to get the process ids and hostnames from MPICH so that we need not specify 
them explicitly. We did find the structure, as suggested by one of the designers of MPICH, where 
the process ids for each of the master and worker MPI processes are stored, and we were able to 
dump it to the screen. This is done in the MPIR_Init function in the file 
/home/kdshah/mpich-1.2.5/src/env/initutil.c.Now we could get the pids and hostnames which 
can be used by DPCL to connect to the MPI programs so that it can be instrumented.  

 
 
Conclusions 
 
From the above two  tests viz. 
 

1) Changing the MPICH source file to write the task list to a file 
2) Instrumenting an MPI application by explicitly specifying the process ids and hostnames 

 
We can conclude that it is possible to create an MpichAppl class which makes use of the task file 
and uses the process ids and host names to build Process objects which represent the parallel 
processes. We haven’t still conducted a test for suspending MPI processes in MPI_Init(), which is 
required by the MpichAppl::create() function. However, this should be trivial as explained in 
“Proposed changes to MPICH” section. 
 



 
 
 
References 
 
 [1] 
http://oss.software.ibm.com/developerworks/opensource/dpcl/doc/dpclpg/dpclpg08.html#HDRA
PPLICC 
[2] 
http://oss.software.ibm.com/developerworks/opensource/dpcl/doc/dpclref/dpclref07.html#HDRC
H3  
[3] http://oss.software.ibm.com/developerworks/opensource/dpcl/ 
[4] http://www.ptools.org/projects/dpcl/ 
 
 
 
 


