USERS – User Specified Efficient Reliable Service

Objective:

The main objective of the project is to develop a user-specific simple reliable transport service over UDP. There are two main reasons why one would want a separate transport layer, instead of using reliable TCP transport layer.

· TCP provides reliable transport, but there are some applications that do not require the complexity of TCP. TCP is not flexible. So applications, which require simple reliability, use UDP and have their own reliability service. Such applications would benefit, if they can select the reliable service they require of the transport layer.

· For some applications like wireless networks, TCP is not the ideal medium of transport. TCP performs badly in wireless networks, because of the way it handles congestion in the networks. Such applications should be able to implement their custom algorithm to get the best out of the transport layer.

Our SRTP is designed to provide the user, option to select reliability services, capability to implement their own algorithms and with scalability in mind.

SRTP salient features:

· Multiple full-duplex connection support

· Flexible buffer management – Data can be buffered, queried or retrieved from the buffer in sequential and random order.

· Van Jacobson’s method used for calculating the RTO. We use timestamp value in the srtp header to get accurate value for RTT.

· Delayed ACK is used, to piggyback the ACK along with the data.

· Error detection using checksum in the header.

· Retransmission strategy – sliding window with fast retransmission.

· Flow control – sliding window, widow size advertised by the receiver using window size value in the srtp header.

Design issues:

SRTP complements the functionality of UDP, by providing reliable service. It doesn’t try to duplicate the functionalities of UDP. Components of the SRTP should be relatively independent of the specific implementations of flow control, congestion control techniques. So they are general and provide interface, so that they can be called by these routines. The state diagram resembles that of TCP, but the other implementations are different from TCP.

Multiple connections:

SRTP provides full-duplex multiple connection support. This enables the server to support multiple client connections. This is how the multiple connections are handled in the SRTP.

The user application provides the number of connections that it can accept simultaneously. This is the backlog variable in the srtp_listen() function. This number of connections is accepted by the SRTP for that connection. When the srtp gets a connection establishment request (SYN) from the srtp client at the srtp server port, it creates a new connection (allocate buffer, timer, socket, bind it to an ephemeral port, etc). It sends an ACK to the SYN, with the new ephemeral port of the created server thread. The srtp client gets this new port number, updates this information and then communicates to this new port. The accepted connection (complete connection establishment), with the connection number is returned to the srtp server application, when it calls srtp_accept() function call.

Another design alternative is, to have the SRTP listen on the single port. i.e. there is a single point of entry and exit for the SRTP to the UDP layer below. In this case the allocation of the port needs to be handled by the SRTP and this needs to be encapsulated in the UDP header. This leads to the duplication of the UDP functions and an unwanted processing overhead for the SRTP. And also this leads to extra source and destination fields in the SRTP header, which aren’t needed.

SRTP packet header:

Sequence number: Provides stream based sequence numbering of the data packets. 32-bit field that is initialized from the Initial Sequence Number (ISN) global variable during connection establishment. This field is used for flow control.

Acknowledgement number: This is used by the receiver of data, to acknowledge the data packets, SYN and FIN. The acknowledgements provide cumulative ack for the data that has been received properly.

Window size: This is used by the receiver to provide flow control. The receiver can control the window size of the receiver buffer using this.

Checksum: Checksum is calculated on the entire header and data. The checksum is calculated according to the specifications mentioned in RFC 1071 and RFC 1141. This provides error detection.

Timestamp: The timestamp values are used to calculate the RTT of the packet. This provides an accurate estimate of the RTT and hence the RTO calculations. It is a 32 bit value, so can support pretty long fat pipes. And also accurate RTT estimate can be used by some wireless application to calculate the location of the mobile node, mobility rate, etc.

SRTP Timer routine:

The timer module operates on a 500ms timer tick. After 500ms time, the timer routines scans the timer values for retransmission, ack, etc. It provides the following timers and functions:

Retransmission timer: This is maintained for each srtp packet. After timeout the packet is retransmitted.

Keepalive timer: This is used to detect half open connection. After this timeout, the connection is closed.

Delayed ACK: The 500ms timer tick is used to provide delayed ACK. ack’s are generally piggybacked with the data to be sent, else it is delayed.

Van Jacobson’s method of calculating RTO: The timestamp values in the header are used to calculate the RTT and then RTO calculation is done.

SRTP Buffer routine:

SRTP has a send and receive buffer for each connection. The buffer can support any flow control or congestion control techniques that the user wants to implement.

Send buffer is used when the application sends data to the other end. The data sent by the application is buffered. The control routine that handles sending of data across the socket reads the data from the buffer. It can read the data sequentially or can access the buffer randomly (for retransmissions). The control routine deletes the data in the send buffer, after is gets an ack for that data.

Receive buffer is used when the application receives data from the other end. The data can be written into the buffer in any order (generally the receiver routine writes the data into the buffer in the order it gets, which could be random). The buffer handles the condition properly, keeps track of the sequential data that has been received and which can be acked. The application reads the data from this buffer, sequentially in the proper order.

Control module:

This coordinates the activities of all the basic modules and implements the flow, congestion control. Basically a structure is maintained per connection that is used for this purpose. This is the basic flow of the control module:

Sliding window protocol is used to provide flow control and timeout is used for retransmission of the packets. The following variables in the connection structure is used to handle the flow control:

 /* Flow control - related variables. */

 int_32 send_uack ;

 /* The first unacked data in the buf */

 int_32 send_next ;

 /* The next seg. seq. num. to send */

 int_32 send_max ;

 /* The max. data sent - seq. num */

 int_32 send_wnd ;

 /* The maximum data in the buffer */

 int_32 send_wnd_adv;
 /* Available receiver wnd size */

 int_32 send_timestamp_echo ;
 /* Timestamp echo in the srtp header */

 int_32 send_ack ;

 /* The ack seq. num. for the recv. */

 int_32 recv_wnd_adv ;
 /* Window advertisement from receiver */

 int_32 recv_exp_ack ;
 /* The expected ack for the data sent */

These variables contain the sequence numbers of the packets that have been sent, acked, retransmitted, etc. These variables could be generalized for use for different techniques.

Congestion control can be provided, by implementing the algorithm in the control module. This would require the use of two more variables in the connection structure and logic in the code. The following variables need to be used.

 /* Congestion control variables */

 int_32 cwnd ;

 /* Congestion window size. */

 int_32 ssthresh ;

 /* Slow start threshold.
 */

SRTP client

SRTP server (port X)

SYN (port X)

SRTP client

SRTP server (port X1)

SYN, ACK (port X1)

SRTP server (port X1)

ACK (port X1)

Create new connection

User applications

srtp_send()		srtp_receive()

SRTP user APIs

Control module

Send buffer

Receive Buffer

SRTP buffer module

SRTP Timer module

Socket listener

Packet module

Network later (UDP/IP)

Control Module

