
Performance evaluation of ASCI
benchmark AZTEC using Paradyn 

Final Report

Instructor:
Dr. Frank Mueller (mueller@cs.ncsu.edu)

Team Members:
Raj kumar Nagarajan (rknagara@cs.ncsu.edu)
Vikram S Poojary (vspoojar@cs.ncsu.edu)

mailto:mueller@cs.ncsu.edu
mailto:rknagara@cs.ncsu.edu
mailto:vspoojar@cs.ncsu.edu


Problem Description:
The main objective of this project is to use Paradyn, a parallel
performance tool, to analyze and evaluate the performance of ASCI
benchmark AZTEC. And to identify the bottlenecks in the benchmark
application, to improve the performance by algorithmic changes or MPI
specific changes, suggest improvements to the tool based on
experience with benchmark evaluation. 

In this document we discuss the following:
• AZTEC Benchmark
• Performance of AZTEC on the cluster
• Paradyn
• Evaluation of AZTEC using Paradyn
• Improvements to tool
• Location of src and binary files on cluster

AZTEC:
AZTEC is a massively parallel iterative solver library for solving sparse
linear systems. It provides state-of-the-art iterative methods that
performs well on parallel computers (applications of over 200 Gflops
have been achieved on the Sandia-Intel TFlop Computer) and at the
same time is easy to use for application engineers.

Simplicity is attained using the notion of a global distributed matrix.
The global distributed matrix allows a user to specify pieces (different
rows for different processors) of his application matrix exactly as he
would in the serial setting (i.e. using a global numbering scheme).
Issues such as local numbering, ghost variables and messages are
ignored by the user and are instead computed by an automated
transformation function (AZ_transform). Efficiency is achieved using
standard distributed memory techniques; locally numbered
submatrices, ghost variables, and message information computed by
the transformation function are maintained by each processor so that
local calculations and communication of data dependencies is fast.
Additionally, AZTEC takes advantage of advanced partitioning
techniques (Linear and Box partitioning) and utilizes efficient dense
matrix algorithms when solving block sparse matrices.

Performance of AZTEC on the Cluster:

The test program solves Poisson’s Equation, using Finite Difference on
an n * n * n Grid. The Grid Sparse matrices are represented using
DMSR (Distributed Modified Sparse Row) format, which is a slightly



modified format of MSR. In the test experiment, the cluster had 13
active processors running. 

Test with varying Grid size and with 128 PDE’s and Linear
partition of matrix:

Finite Difference MSR Poisson with linear 
partition (128 PDE)

0

50

100

150

200

250

300

350

8 27 64 125 216 343 512

n * n * n Grid Points

So
lv

er
 M

flo
ps

 ra
te

2 Proc
4
6
8
10
12
16
20

Observation:
1. Performace increases with increase in the number of processors.
2. But the performance incease is small as the Grid size increases.

This is because of the reduction in the parallel computation on the
cluster. Each node has to compute a large Grid Size.

3. For number of processors >= 20, the performance comes down.
This is because of the inherent limitation of the cluster size.

Test with varying PDE’s and with a GRID size of 216 and linear
partition of matrix:



Finite Difference MSR Poisson with linear 
partition (216 * 216 *216 Grid Pts)

0

50

100

150

200

250

300

350

400

16 32 64 128 256 512 1024

No. of PDE

So
lv

er
 M

flo
ps

 ra
te

2 Proc
4
6
8
10
12
16
20

c

Test with varying Grid size and with 128 PDE’s and Box
partition of matrix:

Grid Size 8 Proc
8 71.66
64 281.9

216 324.5
512 316.88

Observation:
1. The Box partition gives better performance than linear partition. But

it is severly limited by the number of Grid size patterns and
Processors that can be used. The Grid Size needs to be a cube-root
of some integer (box size across each dimension) and number of
processors should be an multiple of grid size.

Paradyn:
It is a tool for measuring the performance of parallel distributed
programs. It achieves this by dynamically inserting (attaching) the
instrumentation code to unmodified executable. The instrumentation is



done automatically by the Performance Consultant module, which
identifies the performance problems, decides where and when to
collect data. It uses a W3 (Why, Where and When) Search model. The
tool also provides an open interface for program visualization and can
be configured for application specific performance data.

Evaluation of AZTEC using Paradyn:

The AZTEC benchmark program was run with the following parameters
under Paradyn:

Num of processors: 5
Finite Difference MSR Poisson method

Grid Size: 27000
Num of PDE: 256
Linear partition

For detailed instructions to run the benchmark under Paradyn, refer to
the readme file.

The following are the screenshots of the program execution:

Fig 1:



The above screenshot depicts the process of launching the benchmark
under paradyn.

Fig 2: Application Initialized and ready to execute

The above screenshot depicts the stage when the paradynd daemons
have been launched on all the nodes to monitor the MPI processes, the
daemons have attached to the processes and before the steps for
gathering performance metrics have been carried out.



Fig 3: Components of the Program (Machine and Program functions)

The above screenshot details the where axis of the search space in W3
model of paradyn. In this screenshot, we have enabled node
152.14.53.70 and the function AZ_solve as the specific foci for which
we want to gather metrics.



Fig 4:Initial Performance Consultant – before application run

The above screenshot is of launching the performance consultant
window just before running the benchmark under paradyn. We can see
that the initial hypotheses have not been tested by means of the green
color on the hypothesis nodes.



Fig 5: Paradyn Metric options – To plot histogram

The above screenshot is one of enabling the metrics cpu_inclusive and
sync_wait_inclusive to be collected for the where axes listed in an
earlier step.

After this step, we can run the benchmark under paradyn. 



Fig 6: Performance Consulatant – After Program Run

The above screenshot shows the conclusion of the Performance
consultant when the application has exited. The above screenshot
shows that all of the top-level hypotheses have evaluated to false,
implying that the performance consultant is unable to find any
bottlenecks for the benchmark.



Fig 6: Histogram Plot of CPU time and Sync Wait time

The above screenshot shows the behavior of the benchmark on one of
the cluster nodes for the function AZ_solve. This shows that the
function is CPU bound as indicated by the blue line and there is no
synchronization overhead as indicated by the yellow line.



The above figure shows that Paradyn outputs the overhead due to its
instrumentation when the benchmark has finished executing.

So, in conclusion, the performance consultant did not show up any
bottlenecks for the benchmark. Consequently, we did not have a
starting point to start a detailed manual search by generating Visi
graphs for each of the points on the W3 search space. We did however
carry out an evaluation for the function AZ_solve by plotting the
graphs that is shown in one of the screen shots above.



Suggestions for functionality Improvements to Paradyn:
• Multithreading support is currently only available for Solaris

platforms. It needs to be enabled for all the platforms and new
abstractions need to be added to the W3 search model to account
for multithreading.

• It should be possible to restart applications from Paradyn itself.
Currently, it does not allow us to restart the application even the
application has finished executing under the tool.

Location of Files in Cluster:
Aztec files: /home/vspoojar/aztec

Test files: /home/vspoojar/aztec/app
Library files: /home/vspoojar/aztec/lib

Paradyn files: /home/vspoojar/paradyn
Binary files: /home/vspoojar/paradyn/bin/i386-unknown-

linux2.2
Source files: /home/vspoojar/paradyn/src/core
Test files: /home/vspoojar/paradyn/apps

Readme file for this project: /home/vspoojar/paradyn/README


	Final Report

