
Weekly Report Raj kumar Nagarajan
 rknagara@cs.ncsu.edu

Report: Jan 08 – Jan 15’ 2003

Tasks Underway:

Understanding basic block profiling (Edge profiling) implementation

Read the paper
Thomas Ball and James R. Larus, "Optimally Profiling and Tracing Programs"
ACM Transactions on Programming Languages and Systems (TOPLAS), vol. 16,
no. 4, July 1994, pp. 1319-1360.

The paper describes the approach to perform program profiling and instruction
tracing using edge profiling. The algorithm inserts monitoring code along the
edges of the CFG to reduce the overhead of profiling and tracing. Advantage
over vertex-profiling:

• simple and efficient
• more information than vertex profiling
• lower overhead, instruction and execution time.

Issues and To-Do:
The o/p from program profiling and tracing is to be formatted as gmon.out format,
which can be read by gprof tool.
 Would it be possible to write it as gmon.out format?

Study the feasibility and implementation of the approach on Microblaze

Currently the EDK provides call-graph and histogram profiling information. The
o/p is in gmon.out format, which can be read by mb-gprof (gprof for microblaze).
The following steps are followed:

1. Build the profile library, option to EDK.
2. Compile the program with –pg option and link it with the profile library.
3. Run the program using XMD. The profile information is collected by XMD

and it generated the gmon.out file.
4. mb-gprof can be used to read the gmon.out file.

gmon.out can also be generated by collecting information from running the
program in modelsim.

Issues for implementing the new method:

1. Code size – What would be the increase in code size of the application
after compilation (modified application code).

Memory sizes in different chips and reference boards:
BRAMs – Block RAM on FPGA

Spartan II 4k
Spartan IIE 8k

Weekly Report Raj kumar Nagarajan
 rknagara@cs.ncsu.edu

Virtex/VirtexE 16k
Virtex II/Virtex II Pro 64k

Memec Microblaze Boards
SDRAM 4M – 32M
P160 – Flash 8M
P160 – SRAM 1M

* P160 module is an attachment to most of the Memec reference
boards, which apart from the Memory also has Ethernet Phy.,
UART, RS-232, etc.

 Microblaze Demo Board (The board with me)
 5 * 1M – ZBT RAM

Memory access cycles for Memory.
 LMB BRAM 1-2 cycles
 OPB BRAM 3-4 cycles
 External Memory 10 + cycles. ***

2. Execution time – What would be the increase in the execution time,
because of profiling and tracing activity. And also would it (intrusive
method) affect the semantics of the program being executed. E.g. Would it
cause the program to miss its deadline, etc..

What example programs do we plan to use for testing ?
3. How is the trace information going to be represented (memory limitations

and also timing constraints) and how would it be sent to XMD or other tool
to generate the gmon.out format ? Only way of communicating with host
machine is through UART or JTAG, which can be very slow if large
amount of data needs to be sent across.

Alternatives:
Generate the profiling and tracing information from the list of executed PCs. The
PCs can be got using 2 methods:

1. Running modelsim and get the program trace. This information is already
available and used to generate the gmon.out file. But the execution time is
very slow due to simulation. Interrupts and other real-time programs may
not be work in this method !! (don’t know)

2. Have a hardware tracing peripheral. This peripheral can list the executed
PCs of the program. Non-intrusive method of collecting information, but
information maybe humongous.

Plan for next week:
1. Think, Read and Discuss on the following topic.
2. Long term goal of my work, write an abstract of the work that needs to be

done.
3. Identify what this profiled information can be used for ?
4. More related work in this area.

