

Project Team
Sibin Mohan, Salil Pant, Harini Ramaprasad

{ smohan, smpant, hramapr }@unity.ncsu.edu

Our Project:
 Installation of Tuning and Analysis Utilities (TAU), a portable

profiling and tracing toolkit, on the i32/Linux platform.
 Evaluation using ParBenCCh (from the ASCI suite of benchmarks).

Project Topic – TAU
Solved issues:

 We configured TAU to work with OpenMP and OpenMP-MPI hybrid
programs. In order to get it to work, we had to make the following
changes to the makefile:

o Include the library libompstub.a
o Include the library libgm.so

 We ran an example program that uses OpenMP with TAU. The

program involves calculations to generate the Mandelbrot set.

o The results obtained from pprof are shown below.

o A snap shot of jRacy outputs for the same program is shown

below.

 We ran an example program to test TAU for hybrid OpenMP-MPI.
The program used is one that solves 2nd Stommel Model of Ocean
Circulation using a Five-Point stencil and Jacobi iteration.

o The results obtained from pprof for this program are shown

below.

o The results obtained from jracy for this program are in the
next figure. We see that the maximum time is spent in the omp
parallel for sections while the next largest is for the calculation
of the jacobians.

Project Topic – ParBenCCh
Solved issues:

 We installed and completely configured ParBenCCh. This required
the following changes to be made to the makefile:

o Include the library libompstub.a
o Include the library libguide.so

 Once ParBenCCh was installed, we had to configure the various tests
in the suite. The tests in the ParBenCCh suite are briefly described
below (information obtained from the README on the website
http://www.llnl.gov/asci/purple/benchmarks/limited/parbencch/p
arbencch.readme.html):

o The Haney Test

This test compares the performance of matrix-vector
operations in the following settings:

 Real matrix multiplication
 Complex matrix multiplication
 Real vector operations to test the cost of overloaded operators for
operations on arrays

o The Stepanov Test

This test measures the compiler support and performance of
expression templates – a C++ template mechanism intended to
achieve FORTRAN-like performance.

o The OpenMP Test

This is a test of OpenMP-style parallel direct and indirect
addressing. In this test, a one-dimensional array of doubles
whose size is close to the maximum heap size is allocated. The
following operations are then performed on this array:

 Linear read
 Linear read-write
 Random read
 Random read-write

o Tests for Indirect Addressing

The tests in this directory exercise parallel indirect addressing
using MPI-based parallelism. There are three related tests that
are performed here.

Project Topic – running ParBenCCh tests with TAU
Solved issues:

 We ran the tests in the ParBenCCh suite using TAU. In order to be

able to run the tests with TAU, the source code was instrumented
according to instructions provided in the TAU installation guide.

 We first had to make the following changes to the makefile for the

tests.
o Include the TAU makefile stub (found in TAU_ROOT

/i386_linux/lib directory) in the makefile of each test.
o Add TAU_INCLUDE and TAU_DEFS in CXXFLAGS,

CXXINCLUDE and CFLAGS.
o Add –ltau, -lpthread and –lstdc++ in LIBS
o Include the library /opt/papi/lib/libpapi.a
o Include the TAU library TAU_ROOT/i386_linux/lib/libtau-

mpi-pthread-papi-pdt-openmp.a

 The next step was the actual instrumentation of the source code of
each test. The process is as follows:

o Parse the source file using
cxxparse <source_file>

to generate a .pdb file.
o Instrument the source file using

tau_instrumentor <pdb file> <source file>

 Make and run the instrumented test programs.

 View the performance results as text using pprof and a graphical
output using jRacy.

 The results obtained from these tests are shown below.

o The Haney Test

The results for the Haney Benchmark on pprof::

The above results show that the maximum number of calls were made to
the constructors of the ComplexArray3 and ComplexArray4 classes. The
most time was spent in the HaneyBench::testRMatMul() and
HaneyBench::testMatMul() methods of the HaneyBench class.

o jRacy outputs for the program are shown below.

o The Stepanov Test

 Instrumentation for this test was causing segmentation
faults. The Non-instrumented program was executing
normally though.

o The Indirect Addressing Tests
The results obtained from TAU for this test are as follows :

This shows the percentage of time spent in various functions are
shown above. The functions and the color keys are :

the MPI_Irecv_wrap() and MPI_send_wrap() are wrappers in
the benchmark for calling MPI functions.

Various statistics obtained for this program are (number of calls,
number of subroutine calls, per-call-value and time spent
inclusive of profiling, in milliseconds) :

[where n – node, c – context, t – thread]

These results are for the test00() function. It shows that this
particular function was called 13 times, called other subroutines
26 times, took 308.0 microseconds for each invocation, and also
that it took totally 4.01 milliseconds to execute all of it’s
invocations.

We also see that this particular function was 3rd in the most time
consuming functions in this particular test (as seen from the very
first image).

The pprof output for the same :

Problems encountered and Changes required in
TAU/ParBenCCh

 We faced the following problems and we have listed what we believe
should be improvements to the Profiler/Benchmark.

 Instrumentation of programs – This was not an easy task,
and involved a lot of intricate changes to the Makefiles, as
well as source code, on our part.

 The libraries and paths were not being set and had to be
often set manually, with the full path.

 Many coding bugs still exist in the Benchmark which made
not only instrumentation difficult, but also just running the
benchmark as is.

 The sample programs provided along with TAU also had
problems in their source code and Makefiles – for eg. : the
OpenMP sample provided wouldn’t compile as is – there
were problems in the Makefile which had to be corrected,
even before the instrumentation.

 The automatic source-code instrumentor, tau_instrument,
would often produce incorrect C++/C output files and put
instrumentation code in the wrong places which would

 In certain cases, when comprehensive instrumentation was
requested (for eg. : instrumentation of all source files in the
Haney Test), Segmentation faults would occur, and hence
the program/profiling would crash.

 In certain cases, (for Eg. : Stepanov test) any form of
automatic instrumentation would cause Segmentation
faults. Hence we were unable to obtain profile data for the
same.

