TAU3HG Flnal Report

Project Team
Sibin Mohan, Salil Pant, Harini Ramaprasad
{ smohan, smpant, hramapr }@unity.ncsu.edu

Our Project:
» Installation of Tuning and Analysis Utilities (TAU), a portable
profiling and tracing toolkit, on the 132/Linux platform.
» Evaluation using ParBenCCh (from the ASCI suite of benchmarks).

Project Topic — TAU

Solved issues:

» We configured TAU to work with OpenMP and OpenMP-MPI hybrid
programs. In order to get it to work, we had to make the following
changes to the makefile:

o Include the library libompstub.a
o Include the library libgm.so

» We ran an example program that uses OpenMP with TAU. The
program involves calculations to generate the Mandelbrot set.

o The results obtained from pprof are shown below.

NODE O;CONTEXT O;THREAD O:

%Time Exclusive Inclusive #Call #Subrs Inclusive Name

msec total msec usec/call

100.0 0.505 20,238 1 5 20238593 main() int {(int, char *¥)

99.1 20,064 20,065 1 800 20065216 pParallel Region

0.9 172 172 1 2 172817 ppmwrite() void (char *, field,
int, const ColorTable&)

0.0 0.573 0.573 800 0 1 foo

0.0 0.038 0.038 1 0 38 ColorTable::~ColorTable() void
Q

0.0 0.013 0.013 1 0 13 ColorTable::ColorTable() wvoid
(int, 1int)

0.0 0.004 0.004 1 0
smoothColortable: :smoothColorTahle() void (int, direction, base, base, bhase)

0.0 0.002 0.002 1 0 2 ColorTable::numColors() int
(void)

0.0 0.001 0.001 1 0 1 ColorTahle::shades() int (void)

o A snap shot of jRacy outputs for the same program is shown
below.

iRacy Main Window: pprof. dat/c++/apenmp /examples/tau-2 1
File Options Windows Help

COUNTER MAME: Default

Mean

n,ct 0,0, 0 I —

Function Data Window: ppiof.dat/c++/openmp/examples/tau-2.12.5/TAL/
File Options Windows Help

COUNTER NAME: Default
FUMNCTION MAME: Parallel Regwﬂn
Function Data Window: pprof.dat/c++/openmp/examples| 99,143 I rre:ar
File Options Windows Help 99.14% I n,c,t 0,0,0

COUNTER MAME: Default
FUNCTION NAME: Parallel Region

2.0064543E7 I v ear
2 006464267 I 1,1 0,0,0

Function Ledger Win
File Windows Help

COUNTER. MAME: Default

W ColorTable: ColorTabled void tint, inty

W colorTable numColors{ int fwoid)

W cColorTable: shadesq int tvoic)

W ColorTable: ~ColarTablag void O

M Farallel Region

B sroothColorT able::SrmoathColorT abled woid (nt, dir
O foo

B maing int dnt, char *)

O ppmwrited) woid {char *, field, int, const ColorTable&

digitalblasphem)

» We ran an example program to test TAU for hybrid OpenMP-MPI.
The program used is one that solves 2md Stommel Model of Ocean
Circulation using a Five-Point stencil and Jacobi iteration.

o The results obtained from pprof for this program are shown
below.

FUNCTION SusmaRry (total):

%Time Exclusive Inclusive #cCall #subrs Inclusive Name
msec total msec usec/call

100.0 29 4,550 2 GOS0 2275313 main() int {int, char
Eg.ﬂ 537 3,909 2000 BODO0D0D 1955 do_jacobi() woid (FLT
= FLT *®, FLT ®*%, INT, INT, INT, INT}

74.1 3,372 1,372 BOOOOOD o 4 pperme Parallel for
(do_jacobi)

4.8 41 218 2000 16000 109 do_transfer() void (FLT
%+ INT, INT, INT, INT)

4.6 210 210 2 16 105126 MPI_Init()

3.4 154 154 BO0OO0 o 19 MPI_Recwv()

2.1 97 a7 2 8 48588 MPI_Finalize()

1.5 67 b7 2000] 14 MpPI_peduce()

0.5 22 22 D00 0 1 mpI_send()

0.2 10 10 16 0 BES MPI_Bcast()

0.1 4 4 2 0 2382 do_force() woid (INT,
INT, INT, INT)

0.1 2 2 4 0 519 MPI_comm_split()

0.0 0.236 0.236 4 0 59 MPI_wtime(

0.0 0.064 0.064 ["] 11 matrix{) FLT ** (INT,
INT, INT, INT)

0.0 0.013 0.013 2 0 6 be() wvoid {FLT **, INT,
INT, INT, INT)

0.0 0.012 0.012 8 0 2 MPI_attr_get{)

0.0 0.01 0.01 g 0 1 MPI_attr_puti)

0.0 0.007 0.007 8 o 1 h1PI_K.ey\ra€_'Free(}

0.0 0.004 0.004] 0 1 MPI_cComm_size()

0.0 0.003 0.003] 0 0 MPI_comm_rank()

FUNCTION SUMMARY (mean):

%Time Exclusive Inclusive #call #subrs Inclusive Name

msec total msec usec/call
100.0 14 2,275 1 025 2275313 main() int (int, char
Eg.ﬂ 268 1,954 1000 400000 1955 do_jacobi{) wvoid (FLT
== FLT *=, FLT *=, INT, INT, INT, INT}

.1 1,686 1,686 400000 0 4 openmP Parallel for

74
(do_jacobi)
4.8 20 109 1000 BOO0 10% do_transfer() woid (FLT
**_ INT, INT, INT, INT)
105

4.6 105 1 8 105126 MPI_Init()

3.4 77 7 A000 0 19 MPI_Recvi)

e | 48 48 1 4 48588 mpI_Finalize ()

1.5 33 33 1000 o 34 MPI_Reduce()

0.5 11 11 4000 0 1 MPI_send()

0.2 5 5 8 0 BES MPI_Bcast()

0.1 z 2 1 1] 2382 do_force() wvoid (INT,
INT, INT, INT)

0.1 1 2 0 619 MPI_cComm_split()

0.0 0.118 0.118 2 0 59 MPI_wtimel

0.0 0.032 0.032 3 o 11 matrix{) FLT ** {(INT,
INT, INT, INT)

0.0 0. 0065 0. 006S 1 o 6 be() woid (FLT *%, INT,
INT, INT, INT)

0.0 0.006 0.006 4 o 2 MPI_attr_get()

0.0 0.005 0.005 4 0 1 r-1|=1_,n.ttr_|iut(‘j

0.0 0.0035 0.0035 4 0 1 MPI_Keyval_frea()

0.0 0.002 0.002 E] W] 1 MPI_cComm_sizel)

0.0 0.0015 0.0015 3 1] 0 MPI_comm_rank)

o The results obtained from jracy for this program are in the
next figure. We see that the maximum time is spent in the omp
parallel for sections while the next largest is for the calculation
of the jacobians.

iRacy Main Window: pprof.dat/openmpi/examples/tau-2.12.5/TAU/CSC_531C/smoha
File Options Windows Help

COUNTER MAME: Default

Mean
net0,0,0 [I T T
et 1,0,0 S T

Function Data Window: pprof.dat/openmpi/examples/lau-:
Function Data Window: pprof. dat/openmpi/examples/tau-: | File Options Windows Help
File Options Windows Help

COUNTER MAME: Default =
COUNTER MAME: Default FUMCTION MNAME: main(int {int, char **)

FUMCTION NAME: OpenMP Parallel for (do_jacobi) P ——

16851075] rriean 1.01%[Inct 0,00
16843370 [i c, 1 ,0,0 ozrmC——dnct 1,00
1687578.0 [fc b 1,0,0

Function Data Window: pprof.dat/openmpi/examples/tau-2.12. 5/ TAU/CS!
File Options Windows Help

COUNTER MAME: Default
FUNCTION MAME: MPIL_InitQ)

4.62% [rriear
4.76% [et 0,0,0
4.465 I n,et 1,0,0

Function Ledger Window: ppiof.dal
File Windows Help

4| | COUNMTER MAME: Default

B MPI_Attr_get)
W MPI_Attr_put))

B mPl_Beasty)

B MPI_Comm_rankg

W MPI_Comm_size)

W MPI_Corrn_splitd

O MPI_Finalize

E MPI_Intg

MPI_Keyval_free

E MPI_Recv)

MPI_Redure()

W mPI_Sendp

O MmPI_Wtime)

] QpenMP Parallel for (do_jacobi)

[ke void (FLT **, INT, INT, INT, INT)
[do_forceq void (INT, INT, INT, INT}
B do_jacobig void (FLT **, FLT *%, FLT **, INT, INT, INT, INT)
B do_transfer) woid (FLT ™, INT, INT, INT, INT)

O rnaing int dnt, char *+)

O ratrix FLT ** (NT, INT, INT, INT)

Project Topic — ParBenCCh
Solved issues:

» We installed and completely configured ParBenCCh. This required
the following changes to be made to the makefile:
o Include the library libompstub.a
o Include the library libguide.so

» Once ParBenCCh was installed, we had to configure the various tests
in the suite. The tests in the ParBenCCh suite are briefly described
below (information obtained from the README on the website
http://www.linl.gov/asci/purple/benchmarks/limited/parbencch/p
arbencch.readme.html):

o The Haney Test

This test compares the performance of matrix-vector

operations in the following settings:
A Real matrix multiplication
A Complex matrix multiplication
A Real vector operations to test the cost of overloaded operators for
operations on arrays

o The Stepanov Test

This test measures the compiler support and performance of
expression templates — a C++ template mechanism intended to
achieve FORTRAN-like performance.

o The OpenMP Test

This is a test of OpenMP-style parallel direct and indirect
addressing. In this test, a one-dimensional array of doubles
whose size is close to the maximum heap size is allocated. The

following operations are then performed on this array:
A Linear read
A Linear read-write
A Random read
A Random read-write

o Tests for Indirect Addressing

The tests in this directory exercise parallel indirect addressing
using MPI-based parallelism. There are three related tests that
are performed here.

Project Topic — running ParBenCCh tests with TAU

Solved issues:

» We ran the tests in the ParBenCCh suite using TAU. In order to be
able to run the tests with TAU, the source code was instrumented
according to instructions provided in the TAU installation guide.

» We first had to make the following changes to the makefile for the
tests.
o Include the TAU makefile stub (found in TAU_ROOT
/1386__linux/lib directory) in the makefile of each test.
o Add TAU INCLUDE and TAU_DEFS in CXXFLAGS,
CXXINCLUDE and CFLAGS.
Add —ltau, -Ipthread and —Istdc++ in LIBS
Include the library /opt/papi/lib/libpapi.a
o Include the TAU library TAU_ROOT/i386_linux/lib/libtau-
mpi-pthread-papi-pdt-openmp.a

o O

» The next step was the actual instrumentation of the source code of
each test. The process is as follows:
o Parse the source file using
cxxparse <source_ file>
to generate a .pdb file.
o Instrument the source file using
tau_instrumentor <pdb file> <source file>

» Make and run the instrumented test programs.

» View the performance results as text using pprof and a graphical
output using jRacy.

» The results obtained from these tests are shown below.
o The Haney Test

The results for the Haney Benchmark on pprof::

NODE O;CONTEXT 0;THREAD O:

%Time Exclusive Inclusive #call #subrs Inclusive Name
msec total msec usec,/call
100.0 1 4:30.521 1 B 270521253 int main(int, char %)
36.7 1:39.394 1:39.394 28 0 3549819 void
HaneyBench: :testRMatMul (int, double *)
12.6 33,983 33,983 2B 336 1213684 woid
HaneyBench: :testmatmMul (int, double *)
0.0 0.373 0.373 1 84 373 void
HaneyBench: :writeLabels(std::ostream &)
0.0 0.001 0.06 1 28 60 void HaneyBench::finalize()
0.0 0.034 0.034 24 0 0 complexarray3

&Cowp1exArray3::Comp1exArray3(Integer, Integer, Integer, Boolean)

0.0 0.029 0.029 4 0 0 complexarrayd

&ComplexArrayd: :Complexarray4(Integer, Integer,Integer,Integer, Boolean)
0.0 0.002 0.002 1 1 2 HaneyBench

&HaneyBench: :HaneyBench(int, int, int)
0. 0.001 0.001 1

28 1 void

HaneyBench::initialize(int, char *%)

0.0 0 1 84 0 void
Hanegsench::runBenchmark(j

0. 0 1 0 0 void
HaneyBench: :setArraySize(int)

0.0 0 0 28 0 0 void
HaneyBench: :testvecops(int, double *)

0.0 0 0 1 0 0 void
HaneyBench: :writeToFile(std::ostream &)

0.0 0 0 1 1 0 void

HanéyBench::wHaneyBench()

The above results show that the maximum number of calls were made to
the constructors of the ComplexArray3 and ComplexArray4 classes. The
most time was spent in the HaneyBench: :testRMatMul() and
HaneyBench: :testMatMul() methods of the HaneyBench class.

o jRacy outputs for the program are shown below.

jRacy Main Window: pprof.dat/Haney/ParBenCCh-1.1.2 /ParBenCCh/CSC_591C/smohan;home; Function Data Window: pprof.dat/Haney/ParBenCCh-1.1.2/ParBenCCh/CSCES91CS) -0 il
file Options Windows Help File Options Windows Help
COUNTER NAME: Default COUNTER NAME: Default =
FUNCTION NAME: void HaneyBench::testMatMul(int, double *)
Mean [] 12.49% [ean
net 00,01] [] —— A X
-

Function Data Window: ppri

File Options Windows Help

ile Options Windows Help

COUNTER NAME: Default

-
FUMCTION NAME: woid HaneyBench::testEMatMul(int, doufale =)
35 81 I 1iean

COUNTER MNAME: Default
FUNCTION MAME: void HaneyBench:testyecQpsiint, double %)

50.7% [] rean
50.7% [Inct 0,00

36.81% I 1,1 0,0,0

i start “ o 7= G H ﬁc:\wx..] Eeeoc... | ¥ X-Win32| x smuha.ul X moxterm | X smuhaml el o]jml X iRacy’...l X Functi.. X Functiml X Functiml &untit\e...l ‘F@qué@-ﬁwu 11:02 &M

o The Stepanov Test
¢ [Instrumentation for this test was causing segmentation
faults. The Non-instrumented program was executing
normally though.
o The Indirect Addressing Tests

This shows the percentage of time spent in various functions are
shown above. The functions and the color keys are :

Function Ledger Window: pprof.dat/IndirectAddressing/ParBenCCh-1.1.2/ParBenCCh/CSC_591C/smohanfhomes

d File Windows Help

COUNTER MAME: Default

B int MPI_Irecv_wrap(const tyoe _tag<longs & woid *, int, int, int, MPI_Corarm, MPI_Reguest %)
W int MPI_lsend_wrapicanst type_tag<long> &, woid *, int, int, int, MPI_Comm, MPI_Request *)
W woid testo0(long, DistMappingTyie, int, int, long, DistMappingType, int, int, const std:vector<long, std:allocator<long s > &)
B -woidt testO4(lang, DistMappingType, int, int, long, DistMappingTyoe, int, int, canst std:wvector<long, std:allocator<longs > &)
B woidt test25(ang, DistMappingType, int, int, long, DistMappingType, int, int, const st wector<long, std:allocator<longs > &)

the MPI_Irecv_wrap() and MPI_send_wrap() are wrappers in
the benchmark for calling MPI functions.

Various statistics obtained for this program are (number of calls,
number of subroutine calls, per-call-value and time spent
inclusive of profiling, in milliseconds) :

Function Data Window: pprof.dat/IndirectAddressing/PaiBenCCh-1.1.2/ParBenCCh/CSC_591C/smohan/home/
File Options Windows Help

=10l x|

120 I 1riean

COUNTEE. MAME: Default -
FUMCTION MAME: woid testQ0(ong, DistMappingType, int, int, long, DistMappingTyoe, int, int, const std:vector<long, st allocator<long s > &)
12,0 I it 0,0,0

Function D ata Window: pprof_dat/IndirectAddreszing/ParBenCCh-1.1_2/PaiBenCCh/CSC_591C/zmohanf/home:
File Options Windows Help

COUMTER MAME: Default
FUMCTION MAME: woid test0O0{long, DistMappingType, int, int, long, DistMappingType, int, int, const std:wector<long, std:;allocator<long > > &)

26.0 I rriean
26,0 [N 11, ,t ©,0,0

File Options Windows Help

COUNTER MAME: Default
FUMCTION MAME: woid test00{ong, DistMappingType, int, int, long, DistMappingTyoe, int, int, const std:vector<long, st allocator<longs > &)

zog.0 I rean
208.0 I 1t 0,0,0

Function D ata Window: pprof_dat/Indirectiddressing/ParBenCCh-1.1_2/PaiBenCCh/C5C_5391C/smohan/home.

Function D ata Window: pprof_dat/IndirectAddressing/ParBenCCh-1.1_2/PaiBenCCh/CSC_591C/smohan/home: B] 4
=loi=|

File Options Windows Help

COUMTER MAME: Default =
FURCTION MAME: woid testQ0(long, DistMappingType, int, int, long, DistMappingType, int, int, const std:wector<long, std::allocator<longz = &)

4.01 I rriEan
4.01 not 0,00

[where n — node, ¢ — context, t — thread |

These results are for the testoo() function. It shows that this
particular function was called 13 times, called other subroutines
26 times, took 308.0 microseconds for each invocation, and also
that it took totally 4.01 milliseconds to execute all of it’s
invocations.

We also see that this particular function was 3 in the most time
consuming functions in this particular test (as seen from the very
first image).

The pprof output for the same :

[smohan@os07 IndirectAddressing]$ pprof
Reading Profile files in profile.*

NODE 0;CONTEXT O;THREAD O:

%Time Exclusive Inclusive #call #Subrs Inclusive Name
msec total msec usec/call
100.0 10 10 13 26 844 void test04(long,

DistMappingType, int, int, long, DistMappingType, int, int, const std::vector<long,
std::allocator<long>> &)

54.4 5 5 13 0 459 void test25(long,
DistMa??ingType, int, int, long, DistMappingType, int, int, const std::vector<long,
std::allocator<long>> &)

36.5 3 4 13 26 308 void test00(long,
DistMappingType, int, int, long, DistMappingType, int, int, const std::vector<long,
std::allocator<long>> &)

0.4 0.044 0.044 26 0 2 int
MPI_Isend_wrap(const type_tag<long> &, void *, 1int, int, int, MPI_Comm, MPI_Request
5':)

0.2 0.026 0.026 26 0 1 1int
MPI_Irecv_wrap(const type_tag<long> &, void *, int, int, int, MPI_Comm, MPI_Request

Problems encountered and Changes required in
TAU/ParBenCCh

We faced the following problems and we have listed what we believe
should be improvements to the Profiler/Benchmark.

» Instrumentation of programs — This was not an easy task,
and involved a lot of intricate changes to the Makefiles, as
well as source code, on our part.

» The libraries and paths were not being set and had to be
often set manually, with the full path.

» Many coding bugs still exist in the Benchmark which made
not only instrumentation difficult, but also just running the
benchmark as is.

» The sample programs provided along with TAU also had
problems in their source code and Makefiles — for eg. : the
OpenMP sample provided wouldn’t compile as is — there
were problems in the Makefile which had to be corrected,
even before the instrumentation.

» The automatic source-code instrumentor, tau_instrument,
would often produce incorrect C++/C output files and put
instrumentation code in the wrong places which would

» In certain cases, when comprehensive instrumentation was
requested (for eg. : instrumentation of all source files in the
Haney Test), Segmentation faults would occur, and hence
the program/profiling would crash.

» In certain cases, (for Eg. : Stepanov test) any form of
automatic instrumentation would cause Segmentation

faults. Hence we were unable to obtain profile data for the
same.

