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An Investigation of Symmetric Multi-Threading Parallelism for 

Scientific Applications 

Introduction 
 
 Our project is to investigate the use of Symmetric Multi-Threading (SMT), or 

“Hyper-threading” in Intel parlance, applied to course-grain parallelism in large-scale 

distributed scientific applications. The processors provide the capability to run two 

streams of instruction simultaneously to fully utilize all available functional units in the 

CPU. We are investigating the speedup available when running two threads on a single 

processor that uses different functional units. 

The idea we propose is to utilize the hyper-thread for asynchronous 

communications activity to improve course-grain parallelism. The hypothesis is that there 

will be little contention for similar processor functional units when splitting the 

communications work from the computational work, thus allowing better parallelism and 

better exploiting the hyper-thread technology. We believe with minimal changes to the 

2.5 Linux kernel we can achieve 25-50% speedup depending on the amount of 

communication by utilizing a hyper-thread aware scheduler and a custom 

communications API. 

 



  

Experiment Setup 

Software Setup 
?? Custom Linux Kernel 2.5.68 with 

Red Hat distribution 
?? Modification of Kernel Scheduler 

to run processes together 
?? Custom Test Code 

Hardware Setup 
?? IBM xSeries 335 Single/Dual Processor  

2.0 Ghz Xeon  

 

 
 
In order to test our code we focus on the following scenarios: 
 
?? A serial execution of communication / computation sections 

o Executing in serial is used to test the expected back-to-back run-time. There is 

no busy wait in this code. 

?? A SPMD execution of the serial program with each process doing ½ work of original 

on a SMT system 

o We test how the processors react to the same program forked and each doing 

½ the rounds of the whole program. It is expected to see major contention in 

the functional unit usage 

?? A SPMD execution of the serial program with each process doing ½ work of original 

on a SMP system (Same system 2nd processor enabled and hyperthreads disabled) 

o This test would represent the absolute maximum speed that can be achieved if 

there was no contention for shared functional units. (In our ideal application) 

?? Threaded communication / computation on a hyperthread-enabled processor 

o A shared memory multi-threaded implementation intended to be the showcase 

for the hyper-processor capability.  

 



 
Test Program Setup 

Our test program is designed to simulate a typical scientific application, defined 

as, a processor intensive application with some communication, but optimized in a way 

that the processor is utilized all the time (non-blocking I/O). The test program consists of 

3 parts, a simulated I/O call, computation of p (Pi), and another (independent) 

computation of e. The test program designed to take full advantage of the SMT 

architecture is an application with 2 threads of execution: a thread that simulates I/O 

operations and a thread that does the computational work. The work thread alternates 

between calculating the value of e and calculating the value of p for a given number of 

iterations. There is a global variable that each thread will busy wait on, if they are waiting 

on each other, either for a value to be calculated or a communication to complete. We 

setup the I/O simulation to always last less than or equal time to the calculation of e, 

roughly 15%. To simply things further, the number of iterations to compute e and p are 

rigged so that the time they take is roughly equivalent. While e finishes calculating, the 

I/O thread spins on a global variable and executes a noop operation waiting for the 

computation to complete and another I/O call can be simulated. The I/O thread then sets a 

global variable that allows p to be executed immediately after e finishes being calculated, 

thus allowing for the case where a communications call take longer than the e 

computation. We simulate a network read/write by doing memcpy() operations 

repeatedly and counting to MAX_LONG and setting a variable equal to each value, thus 

producing a large number of non-floating point operations that in theory will not conflict 

with the computational work being scheduled in parallel on the same CPU. 



 
The following is a simple flow diagram for our test application: 
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Kernel Source Modifications 

 
The goal is to have a pair of processes executing always at the same time and if 

either is context switched out, then both would stop executing. The purpose is to isolate 

the processors for testing the hyperthreading of the processors.  

Our test kernel is the latest as of this writing, version 2.5.68 and utilizes the O(1) 

scheduler. Most modifications were made in the schedule() procedure, as highlighted in 

the following snipit, to force certain threads to be executed on together on the same 

processor. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

sched.c 
pick_next_task: 
 if (unlikely(!rq->nr_running)) { 
#if CONFIG_SMP 
  load_balance(rq, 1, 
cpu_to_node_mask(smp_processor_id())); 
  if (rq->nr_running) 
   goto pick_next_task; 
#endif 
  next = rq->idle; 
  rq->expired_timestamp = 0; 
  goto switch_tasks; 
 } 
 
 array = rq->active; 
 if (unlikely(!array->nr_active)) { 
  /* 
   * Switch the active and expired arrays. 
   */ 
  rq->active = rq->expired; 
  rq->expired = array; 
  array = rq->active; 
  rq->expired_timestamp = 0; 
 } 
  
 /* danger danger we will crash no doubt */ 
 /* hyperthread will be pinned to an odd processor 
  * currently only support 2 
  * modified by nik/frank 4/29/2003 
  */  
#ifdef CONFIG_X86_HT  
 schedCount++; // counter variable  for num sched call
 
 //if(schedCount%100==0) printk("processor id = %d\n", 
smp_processor_id()); 
#warning "Nikola/Frank HT mod enabled" 
 // assume odd processors are hyperprocessors 
 if (smp_processor_id() == 1 && myBuddy != NULL 
       && myBuddy->state == 0) { 
  // we have to make sure buddy is on hyper-cpu – if so-migrate
  if (task_cpu(myBuddy) != 1) { 
         rq = task_rq_lock(myBuddy, &flags);
   set_task_cpu(myBuddy, 1); 
   task_rq_unlock(rq, &flags); 
  } 
  next = myBuddy; 
 }  

  
  else { 
  // we are a normal proc and lets do the 
right thing 
  idx = sched_find_first_bit(array->bitmap);
  queue = array->queue + idx; 
  next = list_entry(queue->next, task_t, 
run_list); 
 } 
  
 // we currently only support 2 procs - need a global 
array/struct 
 if (smp_processor_id() == 0) { 
  if (prev->processorBuddy != NULL && prev != 
next) { 
   myBuddy = NULL; 
  // invoke scheduler on hyperthread cpu 
   preempt_disable(); 
   smp_send_reschedule(1); 
   preempt_enable(); 
  } 
  else  
 if (next->processorBuddy != NULL && myBuddy == NULL) 
{ 
   myBuddy = next->processorBuddy;
  
  // invoke scheduler on hyperthread cpu 
   preempt_disable(); 
   smp_send_reschedule(1); 
   preempt_enable(); 
  }  
  else { 
          ; 
  } 
 } 
#elif 
 idx = sched_find_first_bit(array->bitmap); 
 queue = array->queue + idx; 
 next = list_entry(queue->next, task_t, run_list); 
#endif 
 
switch_tasks: 
 prefetch(next); 
 



Modifying the scheduler entailed adding two elements, a task_t* processorBuddy 

and a task_t* processorBuddyOwner, that identify to them their corresponding buddy 

task running on the hyper thread, and a global task_t* myBuddy pointing to the current 

hyperthreaded task. Our test program calls a custom system call to manipulate these 

variables and define a task to be put on a hyper-processor. These values are initially null. 

We decided to introduce a new system call hyperpin() (found in kernel/hyperpin.c) which 

will set these values to point to a given master thread (buddyOwner) and slave thread 

(buddy). When the system call is executed it will queue the master on processor 0, by 

calling set_cpus_allowed(master task, bitmask containing only CPU 0). Then whenever 

the scheduler (running on CPU 0) sees a task that has a “buddy” it will set the global 

myBuddy, migrates the “buddy” task to CPU 1 if necessary and signals CPU 1 to execute 

the scheduler. CPU 1’s scheduler will always schedule myBuddy when it is set, if it is not 

set it will schedule using whatever is next in the run queue. We relay on the load balancer 

to prevent normal processes running on CPU 1 from being starved. When the master 

thread is unscheduled then myBuddy is unset. Also when either process exits myBuddy, 

buddyOwner, and buddy are all reset. The code currently, is meant for demonstration 

purposes only it does not handle multiple buddy – buddyOwner pairs, nor multiple SMT 

enabled CPUs. None the less, the system call will make some assertions to protect from 

improper use which may result in an unstable system. 



Results 
 
Average of 3 Runs—all times in seconds – lower is better 

Machine 
Configuration 

Serial Threaded 
 

SPMD  

Single 
Processor 
w/o SMT* 

190 s 271 s 
 

190 s 

Single 
Processor 
w/ SMT 

190 s 
0% 

164 s  ** 
-35% baseline 

w/ hyperpin() call 

224 s 
+18% baseline 

 
Dual 

Processor 
w/o SMT 

189 s 
0% 

141 s 
-48% baseline 
14% faster than 

hyperpin 

96 s 
-98% baseline 
58% faster than 

hyperpin 
* Baseline Test 
** Optimized SMT aware threaded application 
Threaded = Threaded application with communications on one thread and computations on another 
SPMD = ½ communication + ½ computation running in two separate processes 
 
 

The center cell represents the time to execute our SMT optimized application 

which shows a significant improvement over the unoptimized serial application for only a 

relatively small part amount of communications time (recall: about 15% of 1/2 the 

combined computation times). Another observation is the alarmingly high penalty 

incurred for the SPMD application running with SMT enabled, compared with the singe 

w/o SMT and the dual w/o SMT. The dual processor achieves a very ideal 2x speedup 

since there is no real communications or synchronization between the two processes. We 

have concluded  from this data that SMT technology can have excessive performance 

degradation of scientific application if used blindly, but if a hyperthread kernel combined 

with a hyperthread aware application some significant performance boost can be 

achieved. 
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Installation and Performance Evaluation of ASCI sPPM 
 

Introduction 
 

The sPPM benchmark solves a 3D gas dynamics problem on a uniform Cartesian 

mesh using a simplified version of the PPM (Piecewise Parabolic Method). The code is 

written to simultaneously exploit explicit threads for multiprocessing shared memory 

parallelism and domain decomposition with message passing for distributed parallelism. 

We focus mainly on MPI and OpenMP for this benchmark. sPPM’s primary MPI calls 

are to MPI_Allreduce, MPI_Isend, MPI_Irecv, and MPI_Wait, therefore mainly 

asynchronous calls are used and we will run with the file I/O routines disabled (timing 

only results are thrown away), so we would expect close to 100% CPU utilization for 

these runs.  

 

Experiment Setup 
 
 The sPPM benchmark was downloaded from 

http://www.llnl.gov/asci/purple/benchmarks/limited/sppm/sppm1.1.tar. A makefile was 

created for Intel/Linux pointing to the MPI Fortran and C compilers. Since sPPM uses 

both OpenMP and MPI within the Fortran code we needed to rebuild the MPI libraries 

with icc compiler because the current libraries were built with the gcc compiler which 

will not link correctly with the Fortran OpenMP libraries in icc. We built the mpich-1.2.5 

libraries and linked to them explicitly in our make file to overcome this problem. The 

built mpich libraries are located in /home/fjcastan/asci/mpi/mpich-1.2.5. We also had to 



explicity link to /usr/lib/gcc-lib/i386-redhat-linux/3.2/libg2c.a to support the “Fortan 2 c” 

compatibility routines.  

 The following is the section added to the Makefile : 
 
######################################################################### 
###### Intel ############################################################ 
######################################################################### 
 
SYS= POSIX 
 
#FC = mpif77    #fortran gcc (does not support openmp) 
#LD = mpif77    # " 
#CC = mpicc     # " 
 
FC = /home/fjcastan/asci/mpi/mpich-1.2.5/bin/mpif77 #        # Fortran compiler 
LD = /home/fjcastan/asci/mpi/mpich-1.2.5/bin/mpif77 #        # loader 
CC = /home/fjcastan/asci/mpi/mpich-1.2.5/bin/mpicc #        # C compiler 
M4 = m4 -Uformat #                  # m4 preprocessor 
CPP = gcc -E #                      # cpp preprocessor 
 
#CPPOPT= -DNOMPI -DGNU -DDEBUG  #     # don't use MPI 
CPPOPT= -DMPI -DGNU -DDEBUG #        # use MPI 
LIBDIR = #                           # MPI library path 
INCDIR= #-I/usr/lpp/ppe.poe/include  # MPI include path 
 
#THMODE = -DTHREADED=0  #             # don't use threads 
#THMODE = -DTHREADED=1  #            # use direct pthreads calls 
THMODE = -DTHREADED=1 -DOPENMP=1 #  # use OpenMP for threads 
OMPOPT= -openmp #                    # Fortran OpenMP option 
COMPOPT= -openmp #                   # C OpenMP option 
THLD= #                              # threaded load options 
 
FPSIZE= -DREAL=float  #            # single precision reals 
#FPSIZE= -DREAL=double  #          # double precision reals 
TOPT=   #                          # double precision options 
FOPT3=   #                         # Fortran compiler options, double precision 
 
MOPT=  -DBOBOUT=0 -DDUMPS=0 -DNOCHDIR=1  # no dumps and no directory change 
LIBS= /usr/lib/gcc-lib/i386-redhat-linux/3.2/libg2c.a -lpthread 
COPT= -O3 -DF2C=1 -DGNU          # C compiler options 
 
1. SYS=POSIX will be used if you enable compilation of POSIX threads instead of 
OpenMP threads, this specifies to use standard unix POSIX threads if OpenMP is 
disabled. 
 
2. The –DGNU definition enables some code that had to be added in order to support the 
icc & gcc limitations. 
 
3. By switching the comment on the CPPOPT you can enable/disable MPI and by 
swithing the THMODE you can enable OpenMP, posix, or no threads 
Needed to link special libraries into the compile for fortan 2 C support since the 
application uses both C and fortran. (C for I/O and native thread support) currently the 
makefile supports several builds: MPI w/ OpenMP, MPI w/ pthreads, MPI w/o threads, 
OpenMP only, and pthreads only. All have been tested and are working. 



 
The –GNU function enables a modification to the Fortran code to not use 

complex (intrinsic) functions in the parameter definitions, since icc and gcc do not 

support this. The POSIX pthread code was modified to use constant definitions for 

several functions which appear to have been added after the original code was written and 

did not have constants, which was causing compile errors since the C function names 

have different values depending on the f2C definition of the target platform. The last 

obstacle was coming up with the correct linker and compiler options for f2C support and 

so forth, ie. (f2C=1). 

The list of modified files are: 
 

Added:    buffers_GNU.h 
Modified: cpthreads_sppm_POSIX.c 
Modified: main.m4 
Modified: Makefile 
Modified: runhyd3.m4 
Modified: sync.h 

 
Source, binaries and output files located in /home/fjcastan/asci/sppm 
 
Also note that the application must be run using the mpirun built with icc in 

/home/fjcastan/asci/mpi/mpich-1.2.5/bin. 
 



 

Results 
 
The following are the CPU only times for the sPPM runs on two data sizes: 
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The following are the overall times for the same runs: 
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The first two charts show the CPU time only which shows a decent reduction in 

CPU time per processor as MPI tasks increase, and some decrease in CPU time from 1 to 

2 OpenMP threads, and little or no change above 2 threads. This makes sense since there 

are only 2 physical processors per node for the OpenMP behavior, the MPI behavior also 

is as expected since the load is distributed among more nodes. The next two charts show 

total time which includes computation time and communications time. 1 MPI task 

performs best every time, this seems to indicate a serious communications bottleneck, the 

next logical step would be to increase the data size to see if better speedups are achieved, 

unfortunately icc currently has a limitation on the size of arrays in Fortran which prevents 

us from running any tests with larger data sizes than 384x384x384. 


