An Investigation of Symmetric Multi-Threading
Parallelism for Scientific Applications

| nstallation and Perfor mance Evaluation of ASCI
sPPM

Frank Castaneda
fcastaneda@nc.rr.com

NikolaVouk
nvouk @ncsu.edu

North Carolina State University
CSC 591c Spring 2003
May 2, 2003
Dr. Frank Mueller

An Investigation of Symmetric Multi-Threading Parallelism for
Scientific Applications

Introduction

Our project isto investigate the use of Symmetric Multi-Threading (SMT), or
“Hyper-threading” in Intel parlance, gpplied to course-grain pardldismin large-scae
digtributed scientific agpplications. The processors provide the cgpability to run two
streams of ingtruction smultaneoudy to fully utilize dl available functiond unitsin the
CPU. We are investigating the speedup available when running two threads on asingle
processor that uses different functiona units.

The ideawe proposeis to utilize the hyper-thread for asynchronous
communications activity to improve course-grain pardldism. The hypothessisthat there
will belittle contention for smilar processor functiond units when splitting the
communications work from the computationd work, thus dlowing better pardldism and
better explaiting the hyper-thread technology. We believe with minima changes to the
2.5 Linux kernd we can achieve 25-50% speedup depending on the amount of
communication by utilizing a hyper-thread aware scheduler and a custom

communications AP

Experiment Setup

Software Setup Hardware Setup
?? Cugom Linux Kernel 2.5.68 with ?? IBM xSeries 335 Single/Dud Processor
Red Hat distribution 2.0 Ghz Xeon

?? Modification of Kerne Scheduler
to run processes together
?? Custom Test Code

In order to test our code we focus on the following scenarios:
?? A seid execution of communication / computation sections
0 Executing in serid is used to test the expected back-to-back run-time. Thereis
no busy wait in this code.
?? A SPMD execution of the serid program with each process doing %2 work of origind
onaSMT system
0 Wetest how the processors react to the same program forked and each doing
% the rounds of the whole program. It is expected to see mgjor contentionin
the functiona unit usage
?? A SPMD execution of the serid program with each process doing 2 work of origind
on a SMP system (Same system 2" processor enabled and hyperthreads disabled)
0 Thistest would represent the absolute maximum speed that can be achieved if
there was no contention for shared functiond units. (In our ideal application)
?? Threaded communication / computation on a hyperthread-enabled processor
0 A shared memory multi-threaded implementation intended to be the showcase

for the hyper-processor capability.

Test Program Setup

Our test program is designed to smulate atypica scientific application, defined
as, aprocessor intengve gpplication with some communication, but optimized in away
that the processor is utilized dl the time (non-blocking 1/0). The test program consists of
3 parts, asmulated I/O cdl, computation of p (Pi), and another (independent)
computation of e. The test program designed to take full advantage of the SMT
architecture is an gpplication with 2 threads of execution: athread that smulates 1/0
operations and athread that does the computationd work. The work thread alternates
between cdculaing the vaue of e and caculaing the vaue of p for a given number of
iterations. Thereisagloba variable that each thread will busy wait on, if they arewaiting
on each other, either for avaue to be calculated or a communication to complete. We
setup the I/0O simulation to dways last less than or equa time to the calculation of e,
roughly 15%. To Smply things further, the number of iterations to compute e and p are
rigged so that the time they take is roughly equivadent. While e finishes cdculating, the
1/0 thread spins on a globa variable and executes a noop operation waiting for the
computation to complete and another 1/0 call can be smulated. The I/0 thread then setsa
globd variable that dlows p to be executed immediately after e finishes being calculated,
thus dlowing for the case where a communications cal teke longer than the e
computation. We smulate a network read/write by doing memcpy() operations
repeatedly and counting to MAX_LONG and stting a variable equd to each vaue, thus
producing alarge number of non-floating point operations that in theory will not conflict

with the computationa work being scheduled in parald on the same CPU.

Thefalowing isasmple flow diagram for our test gpplication:

Main thread pinned to Hyper thread (handles
physical processor (0) Communication) pinned
To virtual processor (1)
(|
Signal new data i Simulate 1/0 and
Compute | Signal data ready

e i 1
|
Read new data i
\ > |
(|
|
Compute) |
P Signal done |
>

c i Simulate I/0O and

| Signal data ready
Compute) Signal new data :
e |
L Read new data |
- > |
[}
Compute P i
Pl i
S Signal done > |

v \{
Goal to hit only Goal to hit only

FPU unit Integer processing

Kernel Source Modifications

The god isto have apair of processes executing dways a the same time and if

ether is context switched out, then both would stop executing. The purpose isto isolate

the processors for testing the hyperthreading of the processors.

Our test kernd isthe latest as of thiswriting, verson 2.5.68 and utilizes the O(1)

scheduler. Most modifications were made in the schedule() procedure, as highlighted in

the following snipit, to force certain threads to be executed on together on the same

[Processor.

sched.c

pi ck_next _t ask:
if (unlikely(!rg->nr_running)) {

#i f CONFI G_SMP

| oad_bal ance(rq, 1,
cpu_to_node_nmask(snp_processor_id()));

if (rg->nr_running)

goto pick_next _task;

#endi f

next = rg->idle;

rg->expired_timestamp = O;

goto switch_tasks;

}

array = rq->active;
if (unlikely(larray->nr_active)) {
/*

* Switch the active and expired arrays.
*/

rg->active = rq->expired;

rg->expired = array;

array = rq->active;
rqg->expired_tinmestanmp = 0;

}

/* danger danger we will crash no doubt */
/* hyperthread will be pinned to an odd processor
* currently only support 2
* nmodi fied by nik/frank 4/29/2003
*/
#i f def CONFI G_X86_HT
schedCount ++; // counter variable for num sched call
/1if(schedCount %400==0) printk("processor id = %\n",
snp_processor_id());
#war ni ng " Ni kol a/ Frank HT nod enabl ed"
/1 assune odd processors are hyperprocessors

if (smp_processor_id() == 1 & nyBuddy != NULL
&& nyBuddy- >state == 0)
/1 we have to meke sure buddy is on hyper-cpu — if so-mgrate

if (task_cpu(nyBuddy) != 1)
rq = task_rq_|l ock(nyBuddy, &fl ags);
set _task_cpu(nyBuddy, 1);
task_rqg_unl ock(rq, &flags);
}
next = nyBuddy;

el
right thing
run_list);

Il

array/ struct
if

next) {

if

#el i f
i dx
que

next = |ist_entry(queue->next,

#endi f

swi tch_tasks:

se {
/1l we are a normal proc and lets do the
idx = sched_find_first_bit(array->bitnap);
queue = array->queue + idx;
next = |ist_entry(queue->next, task_t,

we currently only support 2 procs - need a gl obal

(snp_processor_id() == 0) {
if (prev->processorBuddy != NULL & prev !=

nmyBuddy = NULL;

/'l invoke schedul er on hyperthread cpu
preenpt _di sabl e();
snp_send_reschedul e(1);
preenpt _enabl e();

}

el se

(next - >processor Buddy != NULL && nyBuddy == NULL)

nmyBuddy = next->processor Buddy;

/'l invoke schedul er on hyperthread cpu
preenpt _di sabl e();
snp_send_r eschedul e(1);
preenpt _enabl e();

}

el se {

}

= sched_find_first_bit(array->bitnap);
ue = array->queue + idx;

task_t, run_list);

prefetch(next);

Modifying the scheduler entailed adding two elements, atask _t* processorBuddy
and atask_t* processorBuddyOwner, that identify to them their corresponding buddy
task running on the hyper thread, and aglobd task_t* myBuddy pointing to the current
hyperthreaded task. Our test program cals a custom system call to manipulate these
variables and define atask to be put on a hyper-processor. These vaues areinitidly null.
We decided to introduce a new system cdl hyperpin() (found in kernel/hyperpin.c) which
will set these valuesto point to a given magter thread (buddyOwner) and dave thread
(buddy). When the system cdll is executed it will queue the master on processor 0, by
cdling set_cpus_dlowed(magter task, bitmask containing only CPU 0). Then whenever
the scheduler (running on CPU 0) sees atask that has a“buddy” it will set the globa
myBuddy, migrates the “buddy” task to CPU 1 if necessary and signals CPU 1 to execute
the scheduler. CPU 1's scheduler will always schedule myBuddy when it is s, if it isnot
st it will schedule using whatever is next in the run queue. We relay on the load balancer
to prevent norma processes running on CPU 1 from being starved. When the master
thread is unscheduled then myBuddy is unset. Also when ether process exits myBuddy,
buddyOwner, and buddy are al reset. The code currently, is meant for demonstration
purposes only it does not handle multiple buddy — buddyOwner pairs, nor multiple SMT
enabled CPUs. None the less, the system call will make some assartions to protect from

improper use which may result in an ungtable system.

Results

Average of 3 Runs—adl timesin seconds — lower is better

Machine Serid Threaded SPMD
Configuration
Sngle 190s 271s 190s
Processor
w/o SMT*
Sngle 190s 164 s ** 224 s
Processor 0% -35% basdine +18% basdine
w/ SMT w/ hyperpin() cal
Dud 189 s 141s 9% s
Processor 0% -48% basdine -98% basdine
w/o SMT 14% faster than 58% fagter than
hyperpin hyperpin
* Baseline Test

** Optimized SMT aware threaded application
Threaded = Threaded application with communications on one thread and computations on another
SPMD =% communication + ¥ computation running in two separate processes

The center cdl represents the time to execute our SMT optimized gpplication
which shows a sgnificant improvement over the unoptimized serid application for only a
rdaively smdl part amount of communications time (recall: about 15% of 1/2 the
combined computation times). Another observation isthe darmingly high pendty
incurred for the SPMD gpplication running with SMT enabled, compared with the Snge
w/o SMT and the dual w/o SMT. The dua processor achieves avery ided 2x speedup
gnce thereisno real communications or synchronization between the two processes. We
have concluded from this datathat SVIT technology can have excessive performance
degradation of scientific gpplicationif used blindly, but if a hyperthread kernd combined
with a hyperthread aware application some significant performance boost can be

achieved.

References

1.

10.

11.

The lA-32 Intel Architecture Software Developer's Manual, Volume 1: Basc

Architecture (Order Number 245470).
ftp://downl oad. i ntel.com desi gn/ Penti umd/ manual s/ 24547011. pdf

The |A-32 Intel Architecture Software Developer's Manual, Volume 2: Ingtruction Set

Reference (Order Number 245471).
ftp://downl oad.intel.confdesign/Pentiund/ manual s/ 24547111 pdf

The IA-32 Intel Architecture Software Developer's Manual, Volume 3: Sysem

Programming Guide (Order Number 245472).
ftp://downl oad. i ntel.com desi gn/ Penti umd/ manual s/ 24547210. pdf

D. Tullsen, S. Eggers, J. Emer, H. Levy, J. Lo, and R. Stamm, "Exploiting choice:
Ingtruction fetch and issue on an implementable smultaneous multithreading
processor,” 23rd Annual International Symposium on Computer Architecture,

May 1996.

http://citeseer.nj.nec.conl cache/ papers/cs/ 7286/ http: zSzzSzww. cs
rd. ui uc. eduzSz~ece412zSzpaper szSzt ul | sen_| SCA96. pdf/tul | sen96expl
oi ti ng. pdf

Download of performance libs
http://ww.intel.conlsoftware/products/global/eval.htnm#perflib

Pentium optimized libraries
http://ww.intel.com software/products/ipp/ipp30/index.htm

Detalled Article on Hyper-threading on the Pentium Xeon
http://devel oper.intel.conltechnol ogy/itj/2002/vol ume06i ssue0l/ ar
t01 hyper/p0l abstract.htm

Intel Processor Programming Manuas
http://devel oper.intel.conf desi gn/ Penti und/ manual s/

Pentium 4 and the G4e: architecturd Comparison
http://arstechni ca.conf cpu/ 0192/ p4andg4e/ p4andg4e-6. ht m

IBM Hyperthreading architecture article
http://ww- 106.i bm conf devel operworks/linux/library/l-htl/

Linux Cross-Reference Site— Linux Source Code hyper-linked browsing
http://1xr.linux.no/

Installation and Performance Evaluation of ASCI sPPM

Introduction

The sPPM benchmark solves a 3D gas dynamics problem on auniform Cartesian
mesh using asmplified versgon of the PPM (Piecewise Parabolic Method). The codeis
written to Smultaneoudy exploit explicit threads for multiprocessng shared memory
paraldism and domain decomposition with message passing for distributed pardlelism.
We focus mainly on MPI and OpenMP for this benchmark. sSPPM’s primary MPI calls
areto MPI_Allreduce, MPI_lIsend, MPI_Irecv, and MPI_Wait, therefore mainly
asynchronous calls are used and we will run with the file 1/0 routines disabled (timing
only results are thrown away), so we would expect close to 100% CPU utilization for

these runs.

Experiment Setup

The sPPM benchmark was downloaded from

http:/Amww.lInl.gov/asci/purpl &/benchmarks/limited/sppm/sppml. 1.tar. A makefile was

created for Intel/Linux pointing to the MPI Fortran and C compilers. Since sSPPM uses
both OpenMP and MPI within the Fortran code we needed to rebuild the MPI libraries
with icc compiler because the current libraries were built with the gec compiler which
will not link correctly with the Fortran OpenMP librariesin icc. We built the mpich-1.2.5
libraries and linked to them explicitly in our make file to overcome this problem. The

built mpich libraries are located in /homeffjcastan/asci/mpi/mpich-1.2.5. We aso had to

explicity link to /usr/lib/gee-1ib/i 386- redhat- linux/3.2/libg2c.a to support the “Fortan 2 ¢”
compatibility routines

The following is the section added to the Makefile :

HHHHHHHH B R R R R R R R R R AR R AR
HHHHE | Nt el HHHHHH R HHH
BHAHHHHH AR AR AR R H R R R R AR R R R R

SYS= PCsI X

#FC = npi f 77 #fortran gcc (does not support opennp)

#LD = npi f 77 # "

#CC = npi cc # "

FC = / hone/fj castan/ asci/ npi/npich-1.2.5/bin/npi f77 # # Fortran conpiler
LD = /hone/fj castan/ asci/ npi/ npich-1.2.5/bin/npif77 # # | oader
CC = / hone/fj castan/ asci/ npi/ npi ch-1.2.5/bi n/npicc # # C conpil er
M = ml -Uormat # # ml preprocessor

CPP = gcc -E # # cpp preprocessor

#CPPOPT= - DNOWPI - DGNU - DDEBUG # # don't use MPI

CPPOPT= -DWPI - DG\U - DDEBUG # # use Ml

LIBDR = # # MPl library path

INCDI R= #-1/usr/| pp/ ppe. poe/include # Ml include path

#THMODE = - DTHREADED=0 # # don't use threads

#THMODE = - DTHREADED=1 # # use direct pthreads calls

THMODE = - DTHREADED=1 - DOPENWP=1 # # use OpenMP for threads

OWCOPT= -opennp # # Fortran QpenMP option

COVPOPT= - opennp # # C OpenMP option

THLD= # # threaded | oad options

FPS| ZE= - DREAL=f| oat # # single precision reals

#FPS| ZE= - DREAL=doubl e # # doubl e precision reals

TOPT= # # doubl e precision options

FOPT3= # # Fortran conpiler options, double precision

MOPT= - DBOBQUT=0 - DDUMPS=0 -DNOCHDI R=1 # no dunps and no directory change
LI BS= /fusr/lib/gcc-1ib/i386-redhat-1inux/3.2/1ibg2c.a -Ipthread
COPT= -8B -DF2C=1 - DG\U # C conpiler options

1. SYS=POSIX will be used if you enable compilation of POSIX threads instead of
OpenMP threads, this specifies to use standard unix POSIX threads if OpenMPis
disabled.

2. The—DGNU definition enables some code that had to be added in order to support the
icc & gee limitetions.

3. By switching the comment on the CPPOPT you can enable/disable MPI and by
swithing the THM ODE you can enable OpenMP, posix, or no threads

Needed to link specid libraries into the compile for fortan 2 C support since the
gpplication uses both C and fortran. (C for 1/0 and native thread support) currently the
makefile supports severd builds. MPI w/ OpenMP, MPI w/ pthreads, MPI w/o threads,
OpenMP only, and pthreads only. All have been tested and are working.

The—-GNU function enables a modification to the Fortran code to not use

complex (intringc) functionsin the parameter definitions, snce icc and gec do not

support this. The POSIX pthread code was modified to use constant definitions for

severd functions which gppear to have been added after the origind code was written and

did not have congtants, which was causing compile errors since the C function names

have different values depending on the f2C definition of the target platform. Thelast

obstacle was coming up with the correct linker and compiler options for f2C support and

so forth, ie. (f2C=1).

The ligt of modified files are:

Added:

Modi fi ed:
Modi fi ed:
Modi fi ed:
Modi fi ed:
Modi fi ed:

buf fers _GNU. h

cpt hreads_sppm POSI X. ¢
mai n. md

Makefil e

runhyd3. mi

sync. h

Source, binaries and outpuit files located in /homeffjcastan/asci/sppm

Also note that the gpplication must be run using the mpirun built withiccin
/homeffjcastan/asci/mpi/mpich-1.2.5/bin.

Results

The following are the CPU only times for the SPPM runs on two data sizes:

Size = 384x384x384
250
200 41—
@ 1 MPI Task
150 1
2 MPI Tasks
O 4 MPI Tasks
100 1 —
0O 8 MPI Tasks
50 1
0 T T
2 3 4
openmp threads
Size = 192x192x192
250
200 A
E 1 MPI Task
150 +
2 MPI Tasks
0O 4 MPI Tasks
100 1
1 0O 8 MPI Tasks
50 1
0 T T
2 3 4
openmp threads

The following are the overdl times for the same runs:

Size = 384x384x384
400
350 1
300 —
250 B | || |@1MPITask
2 MPI Tasks
200 A —
04 MPI Tasks
150 1] | |08 MPITasks
100 + —
50 A —
O T T
2 3 4
openmp threads
Size = 192x192x192
350
300
250]
] — @1 MPI Task
200 A N 2 MPI tasks
150 4 — | | 004 MPI Tasks
0O 8 MPI Tasks
100 + —
50 A —
0 T T
2 3 4
openmp threads

The firgt two charts show the CPU time only which shows a decent reduction in
CPU time per processor as MPI tasksincrease, and some decrease in CPU time from 1 to
2 OpenMP threads, and little or no change above 2 threads. This makes sense since there
areonly 2 physical processors per node for the OpenMP behavior, the MPI behavior also
is as expected since the load is distributed among more nodes. The next two charts show
total time which includes computation time and communicationstime. 1 MPI task
performs best every time, this seems to indicate a serious communications bottleneck, the
next logical step would be to increase the data Size to see if better speedups are achieved,
unfortunately icc currently has alimitation on the size of arraysin Fortran which prevents

us from running any tests with larger data 9zes than 384x384x384.

