

An Investigation of Symmetric Multi-Threading
Parallelism for Scientific Applications

Installation and Performance Evaluation of ASCI
sPPM

Frank Castaneda
fcastaneda@nc.rr.com

Nikola Vouk

nvouk@ncsu.edu

North Carolina State University
CSC 591c Spring 2003

May 2, 2003
Dr. Frank Mueller

An Investigation of Symmetric Multi-Threading Parallelism for

Scientific Applications

Introduction

 Our project is to investigate the use of Symmetric Multi-Threading (SMT), or

“Hyper-threading” in Intel parlance, applied to course-grain parallelism in large-scale

distributed scientific applications. The processors provide the capability to run two

streams of instruction simultaneously to fully utilize all available functional units in the

CPU. We are investigating the speedup available when running two threads on a single

processor that uses different functional units.

The idea we propose is to utilize the hyper-thread for asynchronous

communications activity to improve course-grain parallelism. The hypothesis is that there

will be little contention for similar processor functional units when splitting the

communications work from the computational work, thus allowing better parallelism and

better exploiting the hyper-thread technology. We believe with minimal changes to the

2.5 Linux kernel we can achieve 25-50% speedup depending on the amount of

communication by utilizing a hyper-thread aware scheduler and a custom

communications API.

Experiment Setup

Software Setup
?? Custom Linux Kernel 2.5.68 with

Red Hat distribution
?? Modification of Kernel Scheduler

to run processes together
?? Custom Test Code

Hardware Setup
?? IBM xSeries 335 Single/Dual Processor

2.0 Ghz Xeon

In order to test our code we focus on the following scenarios:

?? A serial execution of communication / computation sections

o Executing in serial is used to test the expected back-to-back run-time. There is

no busy wait in this code.

?? A SPMD execution of the serial program with each process doing ½ work of original

on a SMT system

o We test how the processors react to the same program forked and each doing

½ the rounds of the whole program. It is expected to see major contention in

the functional unit usage

?? A SPMD execution of the serial program with each process doing ½ work of original

on a SMP system (Same system 2nd processor enabled and hyperthreads disabled)

o This test would represent the absolute maximum speed that can be achieved if

there was no contention for shared functional units. (In our ideal application)

?? Threaded communication / computation on a hyperthread-enabled processor

o A shared memory multi-threaded implementation intended to be the showcase

for the hyper-processor capability.

Test Program Setup

Our test program is designed to simulate a typical scientific application, defined

as, a processor intensive application with some communication, but optimized in a way

that the processor is utilized all the time (non-blocking I/O). The test program consists of

3 parts, a simulated I/O call, computation of p (Pi), and another (independent)

computation of e. The test program designed to take full advantage of the SMT

architecture is an application with 2 threads of execution: a thread that simulates I/O

operations and a thread that does the computational work. The work thread alternates

between calculating the value of e and calculating the value of p for a given number of

iterations. There is a global variable that each thread will busy wait on, if they are waiting

on each other, either for a value to be calculated or a communication to complete. We

setup the I/O simulation to always last less than or equal time to the calculation of e,

roughly 15%. To simply things further, the number of iterations to compute e and p are

rigged so that the time they take is roughly equivalent. While e finishes calculating, the

I/O thread spins on a global variable and executes a noop operation waiting for the

computation to complete and another I/O call can be simulated. The I/O thread then sets a

global variable that allows p to be executed immediately after e finishes being calculated,

thus allowing for the case where a communications call take longer than the e

computation. We simulate a network read/write by doing memcpy() operations

repeatedly and counting to MAX_LONG and setting a variable equal to each value, thus

producing a large number of non-floating point operations that in theory will not conflict

with the computational work being scheduled in parallel on the same CPU.

The following is a simple flow diagram for our test application:

Main thread pinned to
physical processor (0)

Hyper thread (handles
Communication) pinned
To virtual processor (1)

Compute
e

Simulate I/O and
Signal data ready

Compute
PI

Compute
e

Compute
PI

Goal to hit only
FPU unit

Goal to hit only
Integer processing
unit

Simulate I/O and
Signal data ready

Read new data

Signal done

Read new data

Signal new data

Signal new data

Signal done

Kernel Source Modifications

The goal is to have a pair of processes executing always at the same time and if

either is context switched out, then both would stop executing. The purpose is to isolate

the processors for testing the hyperthreading of the processors.

Our test kernel is the latest as of this writing, version 2.5.68 and utilizes the O(1)

scheduler. Most modifications were made in the schedule() procedure, as highlighted in

the following snipit, to force certain threads to be executed on together on the same

processor.

sched.c
pick_next_task:
 if (unlikely(!rq->nr_running)) {
#if CONFIG_SMP
 load_balance(rq, 1,
cpu_to_node_mask(smp_processor_id()));
 if (rq->nr_running)
 goto pick_next_task;
#endif
 next = rq->idle;
 rq->expired_timestamp = 0;
 goto switch_tasks;
 }

 array = rq->active;
 if (unlikely(!array->nr_active)) {
 /*
 * Switch the active and expired arrays.
 */
 rq->active = rq->expired;
 rq->expired = array;
 array = rq->active;
 rq->expired_timestamp = 0;
 }

 /* danger danger we will crash no doubt */
 /* hyperthread will be pinned to an odd processor
 * currently only support 2
 * modified by nik/frank 4/29/2003
 */
#ifdef CONFIG_X86_HT
 schedCount++; // counter variable for num sched call

 //if(schedCount%100==0) printk("processor id = %d\n",
smp_processor_id());
#warning "Nikola/Frank HT mod enabled"
 // assume odd processors are hyperprocessors
 if (smp_processor_id() == 1 && myBuddy != NULL
 && myBuddy->state == 0) {
 // we have to make sure buddy is on hyper-cpu – if so-migrate
 if (task_cpu(myBuddy) != 1) {
 rq = task_rq_lock(myBuddy, &flags);
 set_task_cpu(myBuddy, 1);
 task_rq_unlock(rq, &flags);
 }
 next = myBuddy;
 }

 else {
 // we are a normal proc and lets do the
right thing
 idx = sched_find_first_bit(array->bitmap);
 queue = array->queue + idx;
 next = list_entry(queue->next, task_t,
run_list);
 }

 // we currently only support 2 procs - need a global
array/struct
 if (smp_processor_id() == 0) {
 if (prev->processorBuddy != NULL && prev !=
next) {
 myBuddy = NULL;
 // invoke scheduler on hyperthread cpu
 preempt_disable();
 smp_send_reschedule(1);
 preempt_enable();
 }
 else
 if (next->processorBuddy != NULL && myBuddy == NULL)
{
 myBuddy = next->processorBuddy;

 // invoke scheduler on hyperthread cpu
 preempt_disable();
 smp_send_reschedule(1);
 preempt_enable();
 }
 else {
 ;
 }
 }
#elif
 idx = sched_find_first_bit(array->bitmap);
 queue = array->queue + idx;
 next = list_entry(queue->next, task_t, run_list);
#endif

switch_tasks:
 prefetch(next);

Modifying the scheduler entailed adding two elements, a task_t* processorBuddy

and a task_t* processorBuddyOwner, that identify to them their corresponding buddy

task running on the hyper thread, and a global task_t* myBuddy pointing to the current

hyperthreaded task. Our test program calls a custom system call to manipulate these

variables and define a task to be put on a hyper-processor. These values are initially null.

We decided to introduce a new system call hyperpin() (found in kernel/hyperpin.c) which

will set these values to point to a given master thread (buddyOwner) and slave thread

(buddy). When the system call is executed it will queue the master on processor 0, by

calling set_cpus_allowed(master task, bitmask containing only CPU 0). Then whenever

the scheduler (running on CPU 0) sees a task that has a “buddy” it will set the global

myBuddy, migrates the “buddy” task to CPU 1 if necessary and signals CPU 1 to execute

the scheduler. CPU 1’s scheduler will always schedule myBuddy when it is set, if it is not

set it will schedule using whatever is next in the run queue. We relay on the load balancer

to prevent normal processes running on CPU 1 from being starved. When the master

thread is unscheduled then myBuddy is unset. Also when either process exits myBuddy,

buddyOwner, and buddy are all reset. The code currently, is meant for demonstration

purposes only it does not handle multiple buddy – buddyOwner pairs, nor multiple SMT

enabled CPUs. None the less, the system call will make some assertions to protect from

improper use which may result in an unstable system.

Results

Average of 3 Runs—all times in seconds – lower is better

Machine
Configuration

Serial Threaded

SPMD

Single
Processor
w/o SMT*

190 s 271 s

190 s

Single
Processor
w/ SMT

190 s
0%

164 s **
-35% baseline

w/ hyperpin() call

224 s
+18% baseline

Dual

Processor
w/o SMT

189 s
0%

141 s
-48% baseline
14% faster than

hyperpin

96 s
-98% baseline
58% faster than

hyperpin
* Baseline Test
** Optimized SMT aware threaded application
Threaded = Threaded application with communications on one thread and computations on another
SPMD = ½ communication + ½ computation running in two separate processes

The center cell represents the time to execute our SMT optimized application

which shows a significant improvement over the unoptimized serial application for only a

relatively small part amount of communications time (recall: about 15% of 1/2 the

combined computation times). Another observation is the alarmingly high penalty

incurred for the SPMD application running with SMT enabled, compared with the singe

w/o SMT and the dual w/o SMT. The dual processor achieves a very ideal 2x speedup

since there is no real communications or synchronization between the two processes. We

have concluded from this data that SMT technology can have excessive performance

degradation of scientific application if used blindly, but if a hyperthread kernel combined

with a hyperthread aware application some significant performance boost can be

achieved.

References
1. The IA-32 Intel Architecture Software Developer’s Manual, Volume 1: Basic

Architecture (Order Number 245470).
ftp://download.intel.com/design/Pentium4/manuals/24547011.pdf

2. The IA-32 Intel Architecture Software Developer’s Manual, Volume 2: Instruction Set

Reference (Order Number 245471).
ftp://download.intel.com/design/Pentium4/manuals/24547111.pdf

3. The IA-32 Intel Architecture Software Developer’s Manual, Volume 3: System
Programming Guide (Order Number 245472).
ftp://download.intel.com/design/Pentium4/manuals/24547210.pdf

4. D. Tullsen, S. Eggers, J. Emer, H. Levy, J. Lo, and R. Stamm, "Exploiting choice:

Instruction fetch and issue on an implementable simultaneous multithreading
processor," 23rd Annual International Symposium on Computer Architecture,
May 1996.
http://citeseer.nj.nec.com/cache/papers/cs/7286/http:zSzzSzwww.cs
rd.uiuc.eduzSz~ece412zSzpaperszSztullsen_ISCA96.pdf/tullsen96expl
oiting.pdf

5. Download of performance libs

http://www.intel.com/software/products/global/eval.htm#perflib

6. Pentium optimized libraries

http://www.intel.com/software/products/ipp/ipp30/index.htm

7. Detailed Article on Hyper-threading on the Pentium Xeon

http://developer.intel.com/technology/itj/2002/volume06issue01/ar
t01_hyper/p01_abstract.htm

8. Intel Processor Programming Manuals

http://developer.intel.com/design/Pentium4/manuals/

9. Pentium 4 and the G4e: architectural Comparison

http://arstechnica.com/cpu/01q2/p4andg4e/p4andg4e-6.html

10. IBM Hyperthreading architecture article

http://www-106.ibm.com/developerworks/linux/library/l-htl/

11. Linux Cross-Reference Site – Linux Source Code hyper-linked browsing

http://lxr.linux.no/

Installation and Performance Evaluation of ASCI sPPM

Introduction

The sPPM benchmark solves a 3D gas dynamics problem on a uniform Cartesian

mesh using a simplified version of the PPM (Piecewise Parabolic Method). The code is

written to simultaneously exploit explicit threads for multiprocessing shared memory

parallelism and domain decomposition with message passing for distributed parallelism.

We focus mainly on MPI and OpenMP for this benchmark. sPPM’s primary MPI calls

are to MPI_Allreduce, MPI_Isend, MPI_Irecv, and MPI_Wait, therefore mainly

asynchronous calls are used and we will run with the file I/O routines disabled (timing

only results are thrown away), so we would expect close to 100% CPU utilization for

these runs.

Experiment Setup

 The sPPM benchmark was downloaded from

http://www.llnl.gov/asci/purple/benchmarks/limited/sppm/sppm1.1.tar. A makefile was

created for Intel/Linux pointing to the MPI Fortran and C compilers. Since sPPM uses

both OpenMP and MPI within the Fortran code we needed to rebuild the MPI libraries

with icc compiler because the current libraries were built with the gcc compiler which

will not link correctly with the Fortran OpenMP libraries in icc. We built the mpich-1.2.5

libraries and linked to them explicitly in our make file to overcome this problem. The

built mpich libraries are located in /home/fjcastan/asci/mpi/mpich-1.2.5. We also had to

explicity link to /usr/lib/gcc-lib/i386-redhat-linux/3.2/libg2c.a to support the “Fortan 2 c”

compatibility routines.

 The following is the section added to the Makefile :

Intel ##

SYS= POSIX

#FC = mpif77 #fortran gcc (does not support openmp)
#LD = mpif77 # "
#CC = mpicc # "

FC = /home/fjcastan/asci/mpi/mpich-1.2.5/bin/mpif77 # # Fortran compiler
LD = /home/fjcastan/asci/mpi/mpich-1.2.5/bin/mpif77 # # loader
CC = /home/fjcastan/asci/mpi/mpich-1.2.5/bin/mpicc # # C compiler
M4 = m4 -Uformat # # m4 preprocessor
CPP = gcc -E # # cpp preprocessor

#CPPOPT= -DNOMPI -DGNU -DDEBUG # # don't use MPI
CPPOPT= -DMPI -DGNU -DDEBUG # # use MPI
LIBDIR = # # MPI library path
INCDIR= #-I/usr/lpp/ppe.poe/include # MPI include path

#THMODE = -DTHREADED=0 # # don't use threads
#THMODE = -DTHREADED=1 # # use direct pthreads calls
THMODE = -DTHREADED=1 -DOPENMP=1 # # use OpenMP for threads
OMPOPT= -openmp # # Fortran OpenMP option
COMPOPT= -openmp # # C OpenMP option
THLD= # # threaded load options

FPSIZE= -DREAL=float # # single precision reals
#FPSIZE= -DREAL=double # # double precision reals
TOPT= # # double precision options
FOPT3= # # Fortran compiler options, double precision

MOPT= -DBOBOUT=0 -DDUMPS=0 -DNOCHDIR=1 # no dumps and no directory change
LIBS= /usr/lib/gcc-lib/i386-redhat-linux/3.2/libg2c.a -lpthread
COPT= -O3 -DF2C=1 -DGNU # C compiler options

1. SYS=POSIX will be used if you enable compilation of POSIX threads instead of
OpenMP threads, this specifies to use standard unix POSIX threads if OpenMP is
disabled.

2. The –DGNU definition enables some code that had to be added in order to support the
icc & gcc limitations.

3. By switching the comment on the CPPOPT you can enable/disable MPI and by
swithing the THMODE you can enable OpenMP, posix, or no threads
Needed to link special libraries into the compile for fortan 2 C support since the
application uses both C and fortran. (C for I/O and native thread support) currently the
makefile supports several builds: MPI w/ OpenMP, MPI w/ pthreads, MPI w/o threads,
OpenMP only, and pthreads only. All have been tested and are working.

The –GNU function enables a modification to the Fortran code to not use

complex (intrinsic) functions in the parameter definitions, since icc and gcc do not

support this. The POSIX pthread code was modified to use constant definitions for

several functions which appear to have been added after the original code was written and

did not have constants, which was causing compile errors since the C function names

have different values depending on the f2C definition of the target platform. The last

obstacle was coming up with the correct linker and compiler options for f2C support and

so forth, ie. (f2C=1).

The list of modified files are:

Added: buffers_GNU.h
Modified: cpthreads_sppm_POSIX.c
Modified: main.m4
Modified: Makefile
Modified: runhyd3.m4
Modified: sync.h

Source, binaries and output files located in /home/fjcastan/asci/sppm

Also note that the application must be run using the mpirun built with icc in

/home/fjcastan/asci/mpi/mpich-1.2.5/bin.

Results

The following are the CPU only times for the sPPM runs on two data sizes:

Size = 384x384x384

0

50

100

150

200

250

1 2 3 4

openmp threads

1 MPI Task

2 MPI Tasks

4 MPI Tasks

8 MPI Tasks

Size = 192x192x192

0

50

100

150

200

250

1 2 3 4

openmp threads

1 MPI Task

2 MPI Tasks

4 MPI Tasks

8 MPI Tasks

The following are the overall times for the same runs:

Size = 384x384x384

0

50

100

150

200

250

300

350

400

1 2 3 4

openmp threads

1 MPI Task

2 MPI Tasks

4 MPI Tasks

8 MPI Tasks

Size = 192x192x192

0

50

100

150

200

250

300

350

1 2 3 4

openmp threads

1 MPI Task

2 MPI tasks

4 MPI Tasks

8 MPI Tasks

The first two charts show the CPU time only which shows a decent reduction in

CPU time per processor as MPI tasks increase, and some decrease in CPU time from 1 to

2 OpenMP threads, and little or no change above 2 threads. This makes sense since there

are only 2 physical processors per node for the OpenMP behavior, the MPI behavior also

is as expected since the load is distributed among more nodes. The next two charts show

total time which includes computation time and communications time. 1 MPI task

performs best every time, this seems to indicate a serious communications bottleneck, the

next logical step would be to increase the data size to see if better speedups are achieved,

unfortunately icc currently has a limitation on the size of arrays in Fortran which prevents

us from running any tests with larger data sizes than 384x384x384.

