<3

NnVIDIA.

CUDA
CUFFT Library

PG-00000-003_V03
February, 2007

CUFFT Library PG-00000-003_V03

Published by
NVIDIA Corporation
2701 San Tomas Expressway
Santa Clara, CA 95050

Notice
This source code is subject to NVIDIA ownership rights under U.S. and international Copyright laws.

This software and the information contained herein is PROPRIETARY and CONFIDENTIAL to NVIDIA
and is being provided under the terms and conditions of a Non-Disclosure Agreement. Any reproduction
or disclosure to any third party without the express written consent of NVIDIA is prohibited.

NVIDIA MAKES NO REPRESENTATION ABOUT THE SUITABILITY OF THIS SOURCE CODE FOR
ANY PURPOSE. IT IS PROVIDED “AS IS” WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY
KIND. NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOURCE CODE,
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY, NONINFRINGEMENT, AND
FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY
SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF
CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION
WITH THE USE OR PERFORMANCE OF THIS SOURCE CODE.

U.S. Government End Users. This source code is a “commercial item” as that term is defined at 48 C.E.R.
2.101 (OCT 1995), consisting of “commercial computer software” and “commercial computer software
documentation” as such terms are used in 48 C.F.R. 12.212 (SEPT 1995) and is provided to the U.S.
Government only as a commercial end item. Consistent with 48 C.F.R.12.212 and 48 C.F.R. 227.7202-1
through 227.7202-4 (JUNE 1995), all U.S. Government End Users acquire the source code with only those
rights set forth herein.

Trademarks

NVIDIA, CUDA, and the NVIDIA logo are trademarks or registered trademarks of NVIDIA Corporation
in the United States and other countries. Other company and product names may be trademarks of the
respective companies with which they are associated.

Copyright
© 2006-2007 by NVIDIA Corporation. All rights reserved.

NVIDIA Corporation

CUFFT Library........

CUFFT Types and Definitions oot it e e e e et e e

Type cufftHandle
Type cufftResult
Type cufftComplex . . .

CUFFT Transform Directions. v v vttt s e e e et st it e et et as

CUFFT API Functions. . . .
Function cufftPlan1d().
Function cufftPlan2d().
Function cufftPlan3d().
Function cufftDestroy()
Function cufftExecute()

CUFFT Code Examples. . .
1D Complex Transforms
2D Complex Transforms
3D Complex Transforms

PG-00000-003_V03

NVIDIA

-

s
ﬂ"'.';f-,"‘f:.:

7 "~ e

-

CUFFT Library

This document describes CUFFT, the NVIDIA® cUDA™ (compute
unified device architecture) Fast Fourier Transform (FFT) library. The
FFT is a divide-and-conquer algorithm for efficiently computing
discrete Fourier transforms of complex or real-valued data sets, and it
is one of the most important and widely used numerical algorithms,
with applications that include computational physics and general
signal processing. The CUFFT library provides a simple interface for
computing parallel FFTs on an NVIDIA GPU, which allows users to
leverage the floating-point power and parallelism of the GPU without
having to develop a custom, GPU-based FFT implementation.

FFT libraries typically vary in terms of supported transform sizes and
data types. For example, some libraries only implement Radix-2 FFTs,
restricting the transform size to a power of two, while other
implementations support arbitrary transform sizes. This version of the
CUFFT library supports the following features:

o 1D, 2D, and 3D transforms of complex-valued signal data.

0 Batch execution for doing multiple 1D transforms in parallel.

0 Transform sizes (in any dimension) in the range [2, 16384].

CUFFT Types and Definitions

There are three CUFFT types, as well as transform direction
definitions:

o “Type cufftHandle” on page 2

o “Type cufftResult” on page 2

o “Type cufftComplex” on page 2

Q “CUFFT Transform Directions” on page 2

PG-00000-003_V03 1

NVIDIA

CUDA CUFFT Library

Type cufftHandle

typedef unsigned int cufftHandle;

is a handle type used to store and access CUFFT plans. For example,
the user receives a handle after creating a CUFFT plan and uses this
handle to execute the plan.

Type cufftResult

typedef unsigned int cufftResult;

is used exclusively for API function return values. The possible return
values are defined as follows:

Return Values

CUFFT_SUCCESS Any CUFFT operation is successful
CUFFT_INVALID_PLAN CUFFT is passed an invalid plan handle.
CUFFT_ALLOC_FAILED CUFFT failed to allocate GPU memory.
CUFFT_INVALID TYPE The user requests an unsupported type.
CUFFT_INVALID_VALUE The user specifies a bad memory pointer.
CUFFT_INTERNAL ERROR Used for all internal driver errors.
CUFFT_EXEC_FAILED CUFFT failed to execute an FFT on the GPU.
CUFFT_SETUP_FAILED The CUFFT library failed to initialize.
CUFFT_SHUTDOWN_FAILED The CUFFT library failed to shut down.
CUFFT_INVALID_SIZE The user specifies an unsupported FFT size.

Type cufftComplex
typedef float cufftComplex[2];

is a single-precision, floating-point complex data type that consists of
interleaved real and imaginary components.

CUFFT Transform Directions

The CUFFT library defines forward and inverse Fast Fourier
Transforms according to the sign of the complex exponential term:
#define CUFFT_ FORWARD -1
#define CUFFT_ INVERSE 1

PG-00000-003_Vv03 2
NVIDIA

CUDA

CUFFT Library

For higher-dimensional transforms (2D and 3D), CUFFT performs
FFTs in row-major or C order. For example, if the user requests a 3D
transform plan for sizes X, Y, and Z, CUFFT transforms along Z, Y,
and then X. The user can configure column-major FFIs by simply
changing the order of size parameters to the plan creation API
functions.

CUFFT API Functions

The CUFFT API is modeled after FFTW (see http://www.fftw.org),
which is one of the most popular and efficient CPU-based FFT
libraries. FFTW provides a simple configuration mechanism called a
plan that completely specifies the optimal —that is, the minimum
floating-point operation (flop) —plan of execution for a particular FFT
size and data type. The advantage of this approach is that once the
user creates a plan, the library stores whatever state is needed to
execute the plan multiple times without recalculation of the
configuration. The FFTW model works well for CUFFT because
different kinds of FFTs require different thread configurations and
GPU resources, and plans are a simple way to store and reuse
configurations.

The CUFFT library initializes internal data upon the first invocation of
an API function. Therefore, all API functions could possibly return the
CUFFT_SETUP_FAILED error code if the library fails to initialize.
CUFFT shuts down automatically when all user-created FFT plans are
destroyed.

The CUFFT functions are as follows:

0 “Function cufftPlan1d()” on page 4
“Function cufftPlan2d()” on page 4
“Function cufftPlan3d()” on page 5
“Function cufftDestroy()” on page 6

0O 0 0 DO

“Function cufftExecute()” on page 6

PG-00000-003_V03
NVIDIA

CUDA CUFFT Library

Function cufftPlan1d()

cufftResult
cufftPlanld(cufftHandle *plan, int nx, int type,

int batch);
creates a 1D FFT plan configuration for a specified signal size and data
type. The batch input parameter tells CUFFT how many 1D
transforms to configure.
Input

plan Pointer to a cuf ftHandle object

nx The transform size (e.g., 256 for a 256-point FFT)

type The transform data type (e.g,, CUFFT DATA C2C for complex)
batch Number of transforms of size nx

Output
plan Contains a CUFFT 1D plan handle value

Return Values

CUFFT_SETUP_FAILED CUFFT library failed to initialize.
CUFFT_INVALID_ SIZE The nx parameter is not a supported size
CUFFT_INVALID_TYPE The type parameter is not supported.
CUFFT_ALLOC_FAILED Allocation of GPU resources for the plan failed.
CUFFT_SUCCESS CUFFT successfully created the FFT plan.

Function cufftPlan2d()

cufftResult
cufftPlan2d(cufftHandle *plan, int nx, int ny,

int type);
creates a 2D FFT plan configuration according to specified signal sizes
and data type. This function is the same as cufftPlanld () except that
it takes a second size parameter, ny, and does not support batching.

Input

plan Pointer to a cuf ftHandle object

nx The transform size in the X dimension
ny The transform size in the Y dimension

type The transform data type (e.g., CUFFT_DATA C2C for complex)

PG-00000-003_Vv03 4
NVIDIA

CUDA

CUFFT Library

Output
plan Contains a CUFFT 2D plan handle value

Return Values

CUFFT_SETUP_FAILED CUFFT library failed to initialize.
CUFFT_INVALID_ SIZE The nx or ny parameter is not a supported size.
CUFFT_INVALID TYPE The type parameter is not supported.
CUFFT_ALLOC_FAILED Allocation of GPU resources for the plan failed.
CUFFT_SUCCESS CUFFT successfully created the FFT plan.

Function cufftPlan3d()

cufftResult

cufftPlan3d(cufftHandle *plan, int nx, int ny, int nz,
int type);

creates a 3D FFT plan configuration according to specified signal sizes

and data type. This function is the same as cuf£tPlan2d () except that

it takes a third size parameter nz. :

Input

plan Pointer to a cuf ftHandle object

nx The transform size in the X dimension
ny The transform size in the Y dimension
nz The transform size in the Z dimension

type The transform data type (e.g., CUFFT_DATA C2C for complex)

Output

plan Contains a CUFFT 3D plan handle value

Return Values

CUFFT_SETUP_FAILED CUFFT library failed to initialize.
CUFFT_INVALID_ SIZE Parameter nx, ny, or nz is not a supported size.
CUFFT_INVALID TYPE The type parameter is not supported.
CUFFT_ALLOC_FAILED Allocation of GPU resources for the plan failed.
CUFFT_SUCCESS CUFFT successfully created the FFT plan.

PG-00000-003_V03
NVIDIA

CUDA CUFFT Library

Function cufftDestroy()

cufftResult
cufftDestroy(cufftHandle plan);

frees all GPU resources associated with a CUFFT plan and destroys the
internal plan data structure. This function should be called once a plan
is no longer needed to avoid wasting GPU memory.

Input

plan The cufftHandle object of the plan to be destroyed.

Return Values
CUFFT_SETUP_FAILED CUFFT library failed to initialize.

CUFFT_SHUTDOWN_FAILED CUFFT library failed to shutdown.
CUFFT_INVALID_ PLAN

The plan parameter is not a valid handle.
CUFFT_SUCCESS CUFFT successfully destroyed the FFT plan.

Function cufftExecute()

cufftResult

cufftExecute(cufftHandle plan, void *idata, void *odata,
int sign);

executes a CUFFT transform plan. CUFFT uses as input data the GPU

memory pointed to by the idata parameter. This function stores the

Fourier coefficients in the odata array. If idata and odata are the

same, this method does an in-place transform.

Input

plan The cufftHandle object for the plan to update

idata Pointer to the input data (in GPU memory) to transform
odata Pointer to the output data (in GPU memory)

sign The transform direction: CUFFT_FORWARD or CUFFT INVERSE
Output

odata Contains the Fourier coefficients

Return Values

CUFFT_SETUP_FAILED CUFFT library failed to initialize.
CUFFT_INVALID_PLAN

The plan parameter is not a valid handle.

PG-00000-003_Vv03
NVIDIA

CUDA

CUFFT Library

Return Values (continued)

CUFFT_INVALID_VALUE The data and/or sign parameter is not valid
CUFFT_EXEC_FAILED CUFFT failed to execute the transform on GPU.
CUFFT_SUCCESS CUFFT successfully executed the FFT plan.

CUFFT Code Examples

This section provides simple examples of 1D, 2D, and 3D complex
transforms that use the CUFFT to perform forward and inverse FFTs.
In the examples, pointers are assumed to point to signal data
previously allocated on the GPU.

1D Complex Transforms

#define NX 256
#define BATCH 10

cufftComplex *data;
cudaMalloc ((void**) &data, sizeof (cufftComplex)*NX*BATCH) ;

/* Create a 1D FFT plan. */
cufftPlanld(&plan, NX, CUFFT DATA C2C, BATCH);

/* Use the CUFFT plan to transform the signal in place. */
cufftExecute (plan, data, data, CUFFT_ FORWARD) ;

/* Inverse transform the signal in place. */
cufftExecute (plan, data, data, CUFFT INVERSE) ;

/* Destroy the CUFFT plan. */
cufftDestroy(plan);
cudaFree (data) ;

PG-00000-003_V03
NVIDIA

CUDA CUFFT Library

2D Complex Transforms

#define NX 200
#define NY 100

cufftHandle plan;

cufftComplex *datal, *dataZ2;

cudaMalloc ((void**) &datal, sizeof (cufftComplex) *NX*NY) ;
cudaMalloc ((void**) &data2, sizeof (cufftComplex)*NX*NY) ;

/* Create a 2D FFT plan. */
cufftPlan2d(&plan, NX, NY, CUFFT DATA C2C);

/* Use the CUFFT plan to transform the signal out of place.
*/
cufftExecute (plan, datal, data2, CUFFT_ FORWARD) ;

/* Inverse transform the signal in place */
cufftExecute (plan, data2, data2, CUFFT_ INVERSE);

/* Destroy the CUFFT plan. */
cufftDestroy(plan);
cudaFree (datal); cudaFree(dataz);

3D Complex Transforms

#define NX 64
#define NY 80
#define NZ 128

cufftHandle plan;

cufftComplex *datal, *dataZ2;

cudaMalloc ((void**) &datal, sizeof (cufftComplex)*NX*NY*NZ) ;
cudaMalloc ((void**) &dataz2, sizeof (cufftComplex)*NX*NY*NZ) ;

PG-00000-003_Vv03 8
NVIDIA

CUDA CUFFT Library

/* Create a 3D FFT plan. */
cufftPlan3d(&plan, NX, NY, NZ, CUFFT_DATA_CZC);

/* Transform the first signal in place. */
cufftExecute (plan, datal, datal, CUFFT FORWARD) ;

/* Transform the second signal using the same plan. */
cufftExecute (plan, data2, data2, CUFFT_ FORWARD) ;

/* Destroy the CUFFT plan. */
cufftDestroy(plan);
cudaFree (datal); cudaFree(dataz);

9 PG-00000-003_V03
NVIDIA

	CUFFT Library
	Table of Contents
	CUFFT Library

