NVIDIA CUDA DEBUGGER
CUDA-GDB

User Manual

PG-00000-004_V2.3

June, 2009

CUDA-GDB PG-00000-004_V2.3

Published by
NVIDIA Corporation
2701 San Tomas Expressway
Santa Clara, CA 95050

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS,
LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING
PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR
OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED
WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR
PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no
responsibility for the consequences of use of such information or for any infringement of patents or other
rights of third parties that may result from its use. No license is granted by implication or otherwise under
ang patent or patent rights of NVIDIA Corporation. Specifications mentioned in this publication are
subject to change without notice. This publication supersedes and replaces all information previously
supplied. NVIDIA Cor]foration products are not authorized for use as critical components in life support
devices or systems without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA, the NVIDIA logo, CUDA, GeForce, Tesla, NVIDIA Quadro, and Quadro are trademarks or
registered trademarks of NVIDIA Corporation. in the United States and other countries. Other company
and product names may be trademarks of the respective companies with which they are associated.

Copyright
© 2007-2009 by NVIDIA Corporation. All rights reserved.

NVIDIA Corporation

////, \\\\\
'// -
1. INtrodUCEiON oo 1
CUDA-GDB: The NVIDIA CUDA DebUGQQEN ottt e e e e e e e e e e 1
What's New in the 2.3 Beta Version e 2
2. CUDA-GDB Features and EXtenSiONS. e 3
Debugging CUDA applications on GPU hardware inrealtime. 4
Extending the GDB debugging environment.ttt 4
Supporting an initialization file 4
Pausing CUDA execution at any function symbol or source file line number. 4
Single-stepping individual Warps. 5
Displaying device memory in the device kernel. 5
Displaying CUDA state information 5
Displaying CUDA blocks and threads 6
Switching to any CUDA block or thread 7
Breaking into running applications e 7
3. Installation and Debug Compilation 8
Installation INStrUCLIONS 8
Compiling for Debugging ot 9
4. CUDA-GDB Walkthrough e 10
A. Supported Platforms e 15
Host Platform ReqUIrEMEeNtS. oo e e e e e 15
GPU REQUITEMENTS . . . ottt e e e e e e e e e e e e 16
B. KNOWN ISSUES 17
PG-00000-004_V2.3 \Y

NVIDIA

NVIDIA CUDA Debugger

Vi

NVIDIA

CUDA-GDB

PG-00000-004_V2.3

y 7 g ——_

Y —

W CHAPTER
Introduction

CUDA-GDB, the NVIDIA® CUDA™ debugger, is introduced, and
what is new in the 2.3 Beta version is described.

CUDA-GDB: The NVIDIA CUDA Debugger

CUDA-GDB is an extension to the standard i386/AMD64 port of GDB,
the GNU Project debugger, version 6.6. It is designed to present the
user with an all-in-one debugging environment capable of debugging
native host code as well as CUDA code. Standard debugging features
are inherently supported for host code, and additional features have
been provided to support debugging CUDA code. Starting with the
2.2 Beta release, CUDA-GDB is supported on 32-bit and 64-bit Linux.

Note: All information contained within this document is subject to change.

PG-00000-004_V2.3 1
NVIDIA

NVIDIA CUDA Debugger CUDA-GDB

What’s New in the 2.3 Beta Version

In this latest CUDA-GDB version the following improvements have

been made:

0 The number of supported Linux platforms has been increased. See
“Host Platform Requirements” on page 15 for the current list.

0 Scope shadowing is supported. If a variable is introduced in an
inner scope and has the same name as a variable in an outer scope,
the inner scope variable's value can now be seen.

0 CUDA-GDB is now integrated into the toolkit installer.

PG-00000-004_V2.3
NVIDIA

S N e

CHAPTER

CUDA-GDB Features and
Extensions

Just as the CUDA programming model provides a seamless
mechanism for programming host and GPU code, CUDA-GDB
provides a model for seamlessly debugging both host and GPU code.
CUDA-GDB provides a number of features to facilitate debugging
CUDA applications:

Q

“Debugging CUDA applications on GPU hardware in real time”
on page 4

0 “Extending the GDB debugging environment” on page 4

0 “Supporting an initialization file” on page 4

0 “Pausing CUDA execution at any function symbol or source file

line number” on page 4

O “Single-stepping individual warps” on page 5

0 “Displaying device memory in the device kernel” on page 5

0 “Displaying CUDA state information” on page 5

o “Displaying CUDA blocks and threads” on page 6

0 “Switching to any CUDA block or thread” on page 7

0 “Breaking into running applications” on page 7
PG-00000-004_V2.3 3

NVIDIA

NVIDIA CUDA Debugger CUDA-GDB

Debugging CUDA applications on GPU

hardware in real time

The goal of CUDA-GDB is to provide developers a mechanism for
debugging a CUDA application on actual hardware in real time. This
enables developers to verify program correctness without the potential
variations introduced by simulation and emulation environments.

Extending the GDB debugging environment

GPU memory is treated as an extension to host memory, and GPU
threads and blocks are treated as extensions to host threads.
Furthermore, there is no difference between CUDA-GDB and GDB

when debugging host code.

Supporting an initialization file

CUDA-GDB supports an initialization file, which must reside in your
home directory (~/.cuda-gdbinit). This file accepts any CUDA-GDB
command or extension as input to be processed when the cuda-gdb
command is executed. It is just like the .gdbinit file used by standard
versions of GDB, only renamed.

Pausing CUDA execution at any function

symbol or source file line number

CUDA-GDB supports setting breakpoints at any host or device
function residing in a CUDA application by using the function symbol
name or the source file line number. This can be accomplished in the
same way for either host or device code. For example, if the kernel's
function name is mykernel_main, the break command is as follows:

(cuda-gdb) break mykernel _main

The above command sets a breakpoint at a particular device location
(the address of mykernel_main) and forces all resident GPU threads to

4 PG-00000-004_V2.3
NVIDIA

CHAPTER 2 CUDA-GDB Features and Extensions

stop at this location. There is currently no method to stop only certain
threads or warps at a given breakpoint.

Single-stepping individual warps

CUDA-GDB supports stepping GPU code at the finest granularity of a
warp. This means that typing next or step from the CUDA-GDB
command line (when in the focus of device code) advances all threads
in the same warp as the current thread of focus. In order to advance the
execution of more than one warp, a breakpoint must be set at the
desired location.

A special case is the stepping of the thread barrier call
__syncthreads(). In this case, an implicit breakpoint is set
immediately after the barrier and all threads are continued to this point.

It is important to note that it is not currently possible to step over a
device subroutine. Since all device subroutines are implicitly inlined,
CUDA-GDB always steps into a device subroutine.

Displaying device memory in the device
kernel

The GDB print command has been extended to decipher the location
of any program variable and can be used to display the contents of any
CUDA program variable including

0 allocations made via cudaMal loc()

0 data that resides in various GPU memory regions, such as shared,
local, and global memory

Q special CUDA runtime variables, such as threadldx

Displaying CUDA state information

CUDA-GDB provides a command, info cuda state, that displays
information such as the current GPU being used and memory that has
been allocated with cudaMalloc().

PG-00000-004_V2.3 5
NVIDIA

NVIDIA CUDA Debugger CUDA-GDB

Displaying CUDA blocks and threads

The CUDA-GDB command, info cuda threads, displays a summary
of all CUDA threads that are currently resident on the GPU. CUDA
threads are specified using the syntax described in “Switching to any
CUDA block or thread” on page 7 and are summarized by grouping
all contiguous threads that are stopped at the same program location.
A sample display is shown below:

<<<(0,0),(0,0,0)>>> .. <<<(0,0),(31,0,0)>>>
GPUBlackScholesCallPut() at blackscholes.cu:73

<<<(0,0),(32,0,0)>>> .. <<<(119,0),(0,0,0)>>>
GPUBlackScholesCallPut() at blackscholes.cu:72

The above example shows that 32 threads (a warp) have been
advanced to line 73 of blackscholes.cu and that the remainder of the
resident threads stopped at line 72.

Since this summary only shows thread coordinates for the start and
end range, it may be unclear how many threads or blocks are actually
within the displayed range. This can be checked by printing the
dimension values gridDim and blockDim.

CUDA-GDB also has the ability to display a full list of each individual
thread that is currently resident on the GPU by using the command
info cuda threads all.

6 PG-00000-004_V2.3
NVIDIA

CHAPTER 2

CUDA-GDB Features and Extensions

Switching to any CUDA block or thread

To support CUDA thread and block switching, CUDA-GDB provides
an extension to the GDB thread command that uses the CUDA syntax
as follows:

thread <<<(BX,BY),(TX,TY,TZ)>>>
This extension supports multiple variations.

0 Providing fewer coordinates for the CUDA thread or block than
are indicated sets the specified coordinates and clears all others
to O:

The command thread <<<(0), (1)>>> switches to the CUDA
block with X coordinate 0 and Y coordinate 0 and to the CUDA
thread with X coordinate 1 and Y and Z coordinates 0. This is
the same as the command thread <<<(0,0),(1,0,0)>>>.

0 Providing only the CUDA thread coordinates maintains the
current block of focus while switching to the specified CUDA
thread:

The command thread <<<(10)>>> maintains the current
CUDA block and switches to the CUDA thread with X
coordinate 10 and Y and Z coordinates 0. It is a shorthand
version of the previous command, thread <<<(0), (1)>>>,
and only works for specifying threads within a current block.

Breaking into running applications

CUDA-GDB provides support for debugging kernels that appear to be
hanging or looping indefinitely. The CTRL+C signal freezes the GPU
and reports back the source code location. At this point, the program
can be modified and then either resumed or terminated at the
developer's discretion.

This feature is limited to applications running within the debugger. It
is not possible to break into and debug applications that have been
previously launched.

PG-00000-004_V2.3 7

NVIDIA

-\

CHAPTER

Installation and Debug
Compilation

Included in this chapter are instructions for installing CUDA-GDB and
for using NVCC, the NVIDIA CUDA compiler driver, to compile
CUDA programs for debugging.

Installation Instructions
Follow these steps to install NVIDIA CUDA-GDB.

1.

PG-00000-004_V2.3

Visit the NVIDIA CUDA Zone download page:
http://www.nvidia.com/object/cuda_get.html.
Select the appropriate Linux operating system.

(See “Host Platform Requirements” on page 15.)
Download and install the 2.3 Beta CUDA Driver.
Download and install the 2.3 Beta CUDA Toolkit.

This installation should point the environment variable
LD_LIBRARY_PATH to /usr/local/cuda/lib and should also
include Zusr/local/cuda/bin in the environment variable PATH.

Download and install the 2.3 Beta CUDA Debugger.

NVIDIA

CHAPTER 3 Installation and Debug Compilation

Compiling for Debugging

NVCC, the NVIDIA CUDA compiler driver, provides a mechanism for
generating the debugging information necessary for CUDA-GDB to
work properly. The -g -G option pair must be passed to NVCC when
an application is compiled in order to debug with CUDA-GDB; for
example,

nvcc -g -G foo.cu -o foo
Using this line to compile the CUDA application foo.cu

0 forces -00 (mostly unoptimized) compilation, which spills all
variables to local memory

0 makes the compiler include symbolic debugging information in
the executable

Note: It is currently not possible to generate debugging information when
compiling with the —cubin option.

PG-00000-004_V2.3 9
NVIDIA

A "

CHAPTER

CUDA-GDB Walkthrough

This chapter presents a CUDA-GDB walk-through of twelve steps
based on the following source code, bitreverse.cu, which performs
a simple 8-bit bit reversal on a data set.

1 #include <stdio.h>
2 #include <stdlib.h>
3
4 // Simple 8-bit bit reversal Compute test
5
6 #define N 256
7
8 _ global__ void bitreverse(unsigned int *data)
9 {
10 unsigned int *idata = data;
11
12 unsigned int x = idata[threadldx.x];
13
14 x = ((OxFOFOFOFO & x) >> 4) | ((OXOFOFOFOF & x) << 4);
15 X = ((Oxccceceeee & x) >> 2) | ((0x33333333 & xX) << 2);
16 X = ((Oxaaaaaaaa & x) >> 1) | ((0x55555555 & x) << 1);
17
18 idata[threadldx.x] = x;
PG-00000-004_V2.3 10

NVIDIA

CHAPTER 4

CUDA-GDB Walkthrough

19 ¥
20

21 int main(void)

22 {
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43 }

unsigned int *d = NULL; int i;
unsigned int idata[N], odata[N];

for (i = 0; 1 < Nj i++)
idata[i] = (unsigned int)i;

cudaMal loc((void**)&d, sizeof(int)*N);
cudaMemcpy(d, idata, sizeof(int)*N,
cudaMemcpyHostToDevice);

bitreverse<<<l, N>>>(d);

cudaMemcpy(odata, d, sizeof(int)*N,
cudaMemcpyDeviceToHost) ;

for (i = 0; 1 < Nj i++)

printf(""%u -> %u\n', idata[i], odatal[i]);

cudaFree((void*)d);
return O;

1. Begin by compiling the bitreverse.cu CUDA application for

debugging by entering the following command at a shell prompt:

$: nvcc -g -G bitreverse.cu -0 bitreverse

This command assumes the source file name to be bitreverse.cu
and that no additional compiler flags are required for compilation.
See also “Compiling for Debugging” on page 9.

PG-00000-004_V2.3

NVIDIA

11

NVIDIA CUDA Debugger CUDA-GDB

12

2. Start the CUDA debugger by entering the following command at a

shell prompt:
$: cuda-gdb bitreverse

Set breakpoints. Set both the host (main) and GPU (bitreverse)
breakpoints here. Also, set a breakpoint at a particular line in the
device function (bitreverse.cu:18).

(cuda-gdb) break main

Breakpoint 1 at 0x8051e8c: file bitreverse.cu, line 23.
(cuda-gdb) break bitreverse

Breakpoint 2 at 0x805b4f6: file bitreverse.cu, line 10.
(cuda-gdb) break bitreverse.cu:18

Breakpoint 3 at 0x805b4fb: file bitreverse.cu, line 18.

Run the CUDA application, and it executes until it reaches the first
breakpoint (main) set in step 3.

(cuda-gdb) run
Breakpoint 1, main() at bitreverse.cu:23
unsigned int *d = NULL; int i;

At this point, commands can be entered to advance execution or to
print the program state. For this walkthrough, continue to the
device kernel.

(cuda-gdb) continue
Continuing.
[Current CUDA Thread <<<(0,0),(0,0,0)>>>]

Breakpoint 2, bitreverse() at bitreverse.cu:10
unsigned int *idata = data;

CUDA-GDB has detected that a CUDA device kernel has been
reached, so it prints the current CUDA thread of focus.

PG-00000-004_V2.3
NVIDIA

CHAPTER 4

CUDA-GDB Walkthrough

Verify the CUDA thread of focus with the thread command:

(cuda-gdb) thread
[Current Thread 2 (Thread 1584864 (LWP 9146))]
[Current CUDA Thread <<<(0,0),(0,0,0)>>>]

The above output indicates that the host thread of focus has LWP
ID 9146 and the current CUDA thread has block coordinates (0, 0)
and thread coordinates (0,0, 0).

Corroborate this information by printing the block and thread
indices:

(cuda-gdb) print blockldx
$1 = {x =0, y = 0}

(cuda-gdb) print threadldx
$2 ={x =0, y =0, z=0)

The grid and block dimensions can also be printed:

(cuda-gdb) print gridDim
$3={x=1,y =1}
(cuda-gdb) print blockDim
$4 = {x =256, y =1, z = 1)

Since thread (0,0,0) reverses the value of O, switch to a different
thread to show more interesting data:

(cuda-gdb) thread <<<170>>>

Switching to <<<(0,0),(170,0,0)>>> bitreverse () at
bitreverse.cu:10

unsigned int *idata = data;

10. Advance the execution to verify the data value that thread

(170,0,0) should be working on:

(cuda-gdb) next
[Current CUDA Thread <<<(0,0),(170,0,0)>>>]
bitreverse () at bitreverse.cu:12

unsigned int x = idata[threadldx.x];

PG-00000-004_V2.3 13

NVIDIA

NVIDIA CUDA Debugger CUDA-GDB

11.

12.

(cuda-gdb) next
[Current CUDA Thread <<<(0,0),(170,0,0)>>>]

bitreverse () at bitreverse.cu:14
x = ((OxFOFOFOFfO & x) >> 4) | ((OXOFOFOFOF &x) << 4);
(cuda-gdb) print x

$5 = 170
(cuda-gdb) print/x x
$6 = Oxaa

This verifies thread (170, 0, 0) is working on the correct data (170).

Use the last breakpoint (set at bitreverse.cu:18) to verify that
the logic is correct to reverse the original data:

(cuda-gdb) continue
Continuing.
[Current CUDA Thread <<<(0,0),(170,0,0)>>>]

Breakpoint 3, bitreverse() at bitreverse.cu:18
idata[threadldx.x] = Xx;
(cuda-gdb) print x

$7 = 85
(cuda-gdb) print/x x
$8 = 0x55

Delete the breakpoints and continue the program to completion:

(cuda-gdb) delete b

Delete all breakpoints? (y or n) y
(cuda-gdb) continue

Continuing.

Program exited normally.
(cuda-gdb)

This concludes the CUDA-GDB walkthrough.

14

PG-00000-004_V2.3
NVIDIA

S — N e

APPENDIX

Supported Platforms

The general platform and GPU requirements for running NVIDIA

CUDA-GDB are described in this section.

Host Platform Requirements

NVIDIA supports CUDA-GDB on the 32-bit and 64-bit Linux
distributions listed below:

Q

O 000 00 o

Red Hat Enterprise Linux 5.x
Red Hat Enterprise Linux 4.x
Fedora 10

Novell SLED 11

Novell SLED 10 SP2
openSUSE 11.1

Ubuntu 9.04

Ubuntu 8.10

PG-00000-004_V2.3

NVIDIA

15

NVIDIA CUDA Debugger CUDA-GDB

GPU Requirements

16

Debugging is supported on all CUDA-capable GPUs with a compute
capability of 1.1 or later. Compute capability is a device attribute that a
CUDA application can query about; for more information, see the
latest NVIDIA CUDA Programming Guide on the NVIDIA CUDA Zone
Web site: http://www.nvidia.com/object/cuda_home.html#.

These GPUs have a compute capability of 1.0 and are not supported:

GeForce 8800 GTS Quadro FX 4600
GeForce 8800 GTX Quadro FX 5600
GeForce 8800 Ultra Tesla C870

Quadro Plex 1000 Model IV Tesla D870
Quadro Plex 2100 Model S4 Tesla S870

PG-00000-004_V2.3
NVIDIA

APPENDIX

Known Issues

The following are known to be issues with the current release.

0 X11 cannot be running on the GPU that is used for debugging
because the debugger effectively makes the GPU look hung to the
X server, resulting in a deadlock or crash. Two possible debugging
setups exist:
® remotely accessing a single GPU (using VNG, ssh, etc.)

® using two GPUs, where X11 is running on only one

Note: Starting with CUDA 2.2 Beta, the CUDA driver automatically excludes
the device used by X11 from being picked by the application being
debugged. This can change the behavior of the application.

O Multi-GPU applications are not supported. CUDA-GDB can debug
only CUDA applications that use one GPU, and the CUDA driver
supports this by letting only one GPU remain visible to an
application that is being debugged.

Note: Because the CUDA driver, starting with CUDA 2.3 Beta, automatically
excludes all but one GPU when an application is being debugged, the
application’s behavior could be affected.

PG-00000-004_V2.3 17
NVIDIA

NVIDIA CUDA Debugger CUDA-GDB

18

The debugger enforces blocking kernel launches.

Device memory allocated via cudaMal loc() is not visible outside
of the kernel function.

Host memory allocated with cudaMal locHost() is not visible in
CUDA-GDB.

Not all illegal program behavior can be caught in the debugger;
examples include out-of-bounds memory accesses or divide-by-
zero situations.

It is not currently possible to step over a subroutine in device code.
Debugging using the device driver API is not supported.

PG-00000-004_V2.3
NVIDIA

	CUDA-GDB
	Table of Contents

	Introduction
	CUDA-GDB: The NVIDIA CUDA Debugger
	What’s New in the 2.3 Beta Version

	CUDA-GDB Features and Extensions
	Debugging CUDA applications on GPU hardware in real time
	Extending the GDB debugging environment
	Supporting an initialization file
	Pausing CUDA execution at any function symbol or source file line number
	Single-stepping individual warps
	Displaying device memory in the device kernel
	Displaying CUDA state information
	Displaying CUDA blocks and threads
	Switching to any CUDA block or thread
	Breaking into running applications

	Installation and Debug Compilation
	Installation Instructions
	Compiling for Debugging

	CUDA-GDB Walkthrough
	Supported Platforms
	Host Platform Requirements
	GPU Requirements

	Known Issues

