

 July 2009

Getting Started

NVIDIA CUDA Development
Tools 2.3
Installation and Verification
on Linux

Getting Started with CUDA

ii July 2009

 July 2009 iii

Table of Contents

Chapter 1. Introduction .. 1

CUDA—Supercomputing on Desktop Systems .. 1

System Requirements .. 2

About This Document .. 2

Chapter 2. Installing the CUDA Development Tools .. 3

Verify You Have a CUDA-Capable System ... 3

Verify You Have a Supported Version of Linux ... 4

Verify That gcc Is Installed ... 4

Download the NVIDIA Driver and CUDA Software .. 4

Install the NVIDIA Driver ... 5

Install the CUDA Software.. 6

Verify the Installation .. 8

Compiling the Examples ... 8

Running the Binaries .. 8

Chapter 3. Additional Considerations ... 11

Compiling for Hardware Emulation .. 11

What’s Next? ... 11

Getting Started with CUDA

iv July 2009

 July 2009 1

Chapter 1.
Introduction

CUDA—Supercomputing on
Desktop Systems

NVIDIA® CUDATM is a general purpose parallel computing architecture introduced by
NVIDIA. It includes the CUDA Instruction Set Architecture (ISA) and the parallel compute
engine in the GPU. To program to the CUDA architecture, developers can, today, use C,
one of the most widely used high-level programming languages, which can then be run at
great performance on a CUDA-capable processor.

The CUDA architecture and its associated software were developed with several design goals
in mind:

� Provide a small set of extensions to standard programming languages, like C,
that enable a straightforward implementation of parallel algorithms. With CUDA
and C for CUDA, programmers can focus on the task of parallelization of the
algorithms rather than spending time on their implementation.

� Support heterogeneous computation where applications use both the CPU and
GPU. Serial portions of applications are run on the CPU, and parallel portions
are offloaded to the GPU. As such, CUDA can be incrementally applied to
existing applications. The CPU and GPU are treated as separate devices that
have their own memory spaces. This configuration also allows simultaneous
computation on both the CPU and GPU without contention for memory
resources.

CUDA-capable GPUs have hundreds of cores that can collectively run thousands of
computing threads. Each core has shared resources, including registers and memory.
The on-chip shared memory allows parallel tasks running on these cores to share
data without sending it over the system memory bus.

This guide will show you how to install and check the correct operation of the
CUDA Development Tools.

Getting Started with CUDA

2 July 2009

System Requirements

To use CUDA on your system, you will need the following installed:

� CUDA-capable GPU

� A supported version of Linux with a gcc compiler and toolchain

� CUDA software (available at no cost from http://www.nvidia.com/cuda)

About This Document

This document is intended for readers familiar with the Linux environment and the
compilation of C programs from the command line. You do not need previous
experience with CUDA or experience with parallel computation. Note: This guide
covers installation only on systems running X Windows.

Note: Many commands in this document might require superuser privileges. On most
distributions of Linux, this will require you to log in as root. For systems that have

enabled the sudo package, use the sudo prefix for all necessary commands. We
will no longer remark on the matter of user privilege for the installation process

except where critical to correct operation.

 July 2009 3

Chapter 2.
Installing the CUDA Development Tools

The installation of CUDA development tools on a system running the appropriate
version of Linux consists of four simple steps:

� Verify the system has a CUDA-capable GPU and a supported version of Linux.

� Download the NVIDIA driver and the CUDA software.

� Install the NVIDIA driver.

� Install the CUDA software.

Test your installation by compiling and running one of the sample programs in the
CUDA software to validate that the hardware and software are running correctly
and communicating with each other.

Verify You Have a
CUDA-Capable System

Many NVIDIA products today contain CUDA-capable GPUs. These include:

� NVIDIA GeForce® 8, 9, and 200 series GPUs

� NVIDIA Tesla™ computing solutions

� Many of the NVIDIA Quadro® products

An up-to-date list of CUDA-capable GPUs can be found on the NVIDIA CUDA
Web site at http://www.nvidia.com/object/cuda_learn_products.html. The Release
Notes for the CUDA Toolkit also contain a list of supported products.

To verify which video adapter your system uses, find the model number by going to
your distribution’s equivalent of System Properties, as shown in Figure 1. Or from
the command line, enter: lspci | grep -i nVidia. If you do not see any
settings, update the PCI hardware database that Linux maintains by entering
update-pciids (generally found in /sbin) at the command line and rerun the
previous lspci command.

Note: It is possible to develop CUDA software in the absence of a CUDA-capable GPU.
You can test the software in an emulation mode described later in this document.

Naturally, performance on this platform is far less than on the CUDA-capable
processor, so the emulated hardware should not be used for release versions and

performance tuning.

Getting Started with CUDA

4 July 2009

Verify You Have a Supported Version of Linux

The CUDA Development Tools 2.3 require an x86-based distribution of Linux. To
determine which distribution and release number you’re running, type the following
at the command line:

uname –i && cat /etc/*release

You should see output similar to the following, modified for your particular system:

i386

Red Hat Enterprise Linux WS release 4 (Nahant Update 6)

The i386 line indicates you’re running on a 32-bit system. On 64-bit systems
running in 64-bit mode, this line will generally read: x86_64. The second line gives
the version number of the operating system.

As of version 2.3 of the development tools, your Linux distribution must be one of
the following versions:

� Red Hat Enterprise Linux 4.3-4.7, 5.0-5.3

� SUSE Enterprise Desktop 10-SP2 or 11

� Open SUSE 11.1

� Fedora 10

� Ubuntu 8.10 or 9.04

Subsequent updates of the development tools will support other versions of Linux,
so check the download page for the latest supported platforms.

Verify That gcc Is Installed

The gcc compiler and toolchain generally are installed as part of the Linux
installation, and in most cases the version of gcc installed with a supported version
of Linux will work correctly. Currently, CUDA development tools support gcc
version 3.4 as well as versions 4.x. To verify the version of gcc installed on your
system, type the following on the command line:

gcc --version

If an error message appears, you need to install the “development tools” from your
Linux distribution or obtain a version of gcc and its accompanying toolchain from
the Web.

Download the NVIDIA Driver

and CUDA Software

Once you have verified that you have a supported NVIDIA processor and a
supported version of Linux, you need to make sure you have a recent version of the

Installing CUDA

 July 2009 5

NVIDIA driver. The CUDA Toolkit 2.3 requires version 190 or later of the
NVIDIA driver.

On many distributions, the driver release number can be found in the graphical

interface menus under Applications→System Tools→NVIDIA X Server Settings.
Or, from the command line, run: /usr/bin/nvidia-settings. Figure 1 shows the
resulting screen (based on Red Hat Enterprise Linux 4.x).

In addition, to run CUDA programs, you will need the following CUDA software:

� The CUDA Toolkit

� The CUDA SDK

The CUDA Toolkit contains the tools needed to compile and build a CUDA
application in conjunction with the compilation driver. It includes tools, libraries,
header files, and other resources.

The CUDA SDK includes sample projects that provide source code and other
resources for constructing CUDA programs.

The NVIDIA driver and CUDA software are available at no cost from the main
CUDA download site at http://www.nvidia.com/object/cuda_get.html.

Choose the Linux distribution you are using, click Search, and download the
NVIDIA driver. Save the driver file on your local system. Likewise, download and
save the SDK and Toolkit.

Install the NVIDIA Driver

After you’ve downloaded the NVIDIA driver and software, you will need to install
the driver. If you’re in a GUI environment, exit the GUI (ctl-alt-backspace). At the
command line, turn off X Windows via /sbin/init 3. Then run the driver
package from the command line as a superuser. Restart the GUI environment
(startx or init 5, or the equivalent command on your system). In your System
Properties (or equivalent), verify that the driver is installed as shown in Figure 1.

Getting Started with CUDA

6 July 2009

Figure 1. The NVIDIA Driver Information Window

More information on installing the driver is available at
http://us.download.nvidia.com/XFree86/Linux-x86/1.0-9755/README/index.html.

Note: New versions of CUDA software can require later versions of Linux and of the

NVIDIA driver, so always verify that you are running the right release for the

version of CUDA software you are using.

Install the CUDA Software

The following section describes the installation and configuration of the CUDA
Toolkit and SDK, which you downloaded in a previous step.

Before installing the CUDA software packages, you should read the Release Notes
bundled with each, as those notes provide important details on installation and
software functionality.

Then, follow these few steps for a successful installation.

Uninstall any previous versions of the CUDA Toolkit and CUDA SDK if they have
previously been installed. Do this by deleting the files from /usr/local/cuda and
from $(HOME)/NVIDIA_CUDA_SDK/, the default installation locations. Adjust
accordingly if you placed the files elsewhere. (If you wish to keep the files so you
can compile for different versions of CUDA software, then rename the existing
directories and modify your makefile accordingly.)

Install the CUDA Toolkit by running the downloaded .run file as a superuser. The
CUDA Toolkit installation defaults to /usr/local/cuda. Several environment
variables need to be defined in the installation. The PATH variable needs to include

Installing CUDA

 July 2009 7

/usr/local/cuda/bin. In addition, LD_LIBRARY_PATH needs to contain either
/usr/local/cuda/lib or /usr/local/cuda/lib64 for 32- or 64-bit operating
systems, respectively.

The typical way to place these values in your environment is with the following
commands:

export PATH=/usr/local/cuda/bin:$PATH

export LD_LIBRARY_PATH=/usr/local/cuda/lib:$LD_LIBRARY_PATH

for 32-bit operating systems, with lib64 replacing lib for 64-bit operating systems
as mentioned above. To make such settings permanent, place them in
~/.bash_profile.

The SDK is in the second .run file. It should be installed as a regular user (to avoid
access issues by users) using the default location in the installation script, which is
$(HOME)/NVIDIA_GPU_Computing_SDK. Note that this location is different than
the default location in previous versions: $(HOME)/NVIDIA_CUDA_SDK.

Best practice for a multiuser Linux system is to also install a version as root that is
accessible to users on a read-only basis. This pristine copy can then be copied to a
user directory in the event users corrupt their copy of the source code.

Getting Started with CUDA

8 July 2009

Verify the Installation

Before proceeding, it’s important to verify that the CUDA programs can find and
communicate correctly with the CUDA-capable hardware. To do this, you will need
to compile and run some of the included sample programs.

Compiling the Examples

The version of the CUDA Toolkit can be checked by running nvcc –V in a terminal
window. nvcc is the command to run the compiler driver that compiles CUDA
programs. It calls the gcc compiler for C code and the NVIDIA PTX compiler for
the CUDA code.

NVIDIA includes sample programs in source form in the CUDA SDK. You should
compile them all by changing to NVIDIA_GPU_Computing_SDK/C in the user’s
home directory and typing make. The resulting binaries will be installed under the
home directory in NVIDIA_GPU_Computing_SDK/C/bin/linux/release.

Running the Binaries

The sample projects use libraries pointed to by LD_LIBRARY_PATH, as described
earlier, so make sure it points to the right directory.

After compilation, go to NVIDIA_GPU_Computing_SDK/C/bin/linux/release in
the user’s home directory and run deviceQuery. If the CUDA software is installed
and configured correctly, the output for deviceQuery should look similar to Figure
2. The exact appearance and the output lines might be different on your system. The
important outcomes are that a device was found (the first highlighted line), that the
device matches the one on your system (the second highlighted line), and that the
test passed (the final highlighted line).

On systems where SELinux is enabled, you might need to temporarily disable this
security feature to run deviceQuery. To do this, type:

#setenforce 0

from the command line as the superuser.

Note: On multiuser systems, access to NVIDIA devices must be enabled for remote

users. To do this, enable read-write privileges for all users on /dev/nv* devices.

Installing CUDA

 July 2009 9

Figure 2. Valid Results from the SDK deviceQuery Program

Running the bandwidthTest program ensures that the system and the CUDA-
capable device are able to communicate correctly. Its output is shown in Figure 3.

Getting Started with CUDA

10 July 2009

Figure 3. Valid Results from SDK bandwidthTest Program

Note that the measurements for your CUDA-capable device description will vary
from system to system. The important point is that you obtain measurements, and
that the second-to-last line (highlighted) confirms that all necessary tests passed.

Should the tests not pass, make sure you have a CUDA-capable NVIDIA GPU on
your system and make sure it is properly installed.

If you run into difficulties with the link step (such as libraries not being found),
consult the Linux Release Notes found in the doc folder in the SDK directory.

To compile programs for emulation (on systems that have no CUDA-capable
graphics hardware available), see the next section.

 July 2009 11

Chapter 3.
Additional Considerations

Compiling for
Hardware Emulation

The previous section explained how to compile and build the included files. To
recap, simply go to the SDK installation directory, type make, and the resulting
binaries will be installed in bin/linux/release under the SDK installation
directory.

To see the individual steps in the build process, be sure to enable the verbose option
on make.

On systems without a CUDA-capable GPU, it will be necessary to use an emulated
GPU. The SDK enables the creation of binaries for an emulated hardware
environment by using make emu=1 from the command line. The resulting binaries
will be placed in bin/linux/emurelease under the SDK installation directory.

What’s Next?

Now that you have CUDA-capable hardware and the software installed, you can
examine and enjoy the numerous included programs. To begin using CUDA to
accelerate the performance of your own applications, consult the NVIDIA
CUDA Programming Guide, located in /usr/local/cuda/doc.

For tech support on programming questions, consult and participate in the bulletin
board and mailing list at http://forums.nvidia.com/index.php?showforum=71.

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS,
LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING
PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR
OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED
WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR
PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no
responsibility for the consequences of use of such information or for any infringement of patents or other rights
of third parties that may result from its use. No license is granted by implication or otherwise under any patent
or patent rights of NVIDIA Corporation. Specifications mentioned in this publication are subject to change
without notice. This publication supersedes and replaces all information previously supplied. NVIDIA
Corporation products are not authorized for use as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA, the NVIDIA logo, CUDA, GeForce, NVIDIA Quadro, and Tesla are trademarks or registered
trademarks of NVIDIA Corporation. Other company and product names may be trademarks of the respective
companies with which they are associated.

Copyright

© 2009 NVIDIA Corporation. All rights reserved.

