
Software Development Kit for Multicore Acceleration

Version 3.0

Accelerated Library Framework

for Cell Broadband Engine

Programmer’s Guide and API Reference

SC33-8333-02

���

Software Development Kit for Multicore Acceleration

Version 3.0

Accelerated Library Framework

for Cell Broadband Engine

Programmer’s Guide and API Reference

SC33-8333-02

���

Note

Before using this information and the product it supports, read the information in “Notices” on page 153.

Edition notice

This edition applies to version 3, release 0 of the IBM Software Development Kit for Multicore Acceleration (Product

number 5724-S84) and to all subsequent releases and modifications until otherwise indicated in new editions.

This edition replaces SC33-8333-01.

© Copyright International Business Machines Corporation 2006, 2007. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

About this publication v

How to send your comments v

Part 1. ALF overview 1

Chapter 1. What is ALF? 3

Chapter 2. Overview of ALF external

components 5

Chapter 3. When to use ALF 7

Chapter 4. Basic structure of an ALF

application 9

Simple example 10

Chapter 5. Concepts 11

Computational kernel 11

Task descriptor 11

Task 12

Task finalize 13

Task dependency and task scheduling 13

Task context 14

Task events 14

Work blocks 14

Data transfer list 15

Work block scheduling 16

Data set 19

Error handling 20

Part 2. Programming with ALF . . . 21

Chapter 6. Data partitioning 23

Host data partitioning 23

Accelerator data partitioning 23

Chapter 7. Accelerator buffer

management 25

Buffer types 25

Chapter 8. When to use the overlapped

I/O buffer 29

Chapter 9. Using work blocks and

order of function calls per task

instance on the accelerator 31

Chapter 10. Modifying the work block

parameter and context buffer when

using multi-use work blocks 33

Chapter 11. Double buffering on ALF 35

Chapter 12. Performance and debug

trace 37

Trace control 37

Part 3. Programming ALF for Cell

BE 39

Chapter 13. Implementation overview 41

Chapter 14. Installing and configuring

ALF 43

Chapter 15. Building an application . . 45

Chapter 16. Running an application . . 47

Chapter 17. Linking to the correct

library 49

Chapter 18. Optimizing ALF

applications 51

Using accelerator data partitioning 51

Using multi-use work blocks 51

What to consider for data layout design 51

Chapter 19. Platform-specific

constraints for the ALF implementation

on Cell BE architecture 53

SPE accelerator memory constraints 53

Data transfer list limitations 54

Part 4. API reference 57

Chapter 20. ALF API overview 59

ALF_NULL_HANDLE 60

ALF_STRING_TOKEN_ MAX 60

Chapter 21. Host API 61

Basic framework API 62

alf_handle_t 62

alf_init 63

alf_query_system_info 64

alf_num_instances_set 66

alf_exit 67

alf_error_handler_register 68

ALF_ERR_POLICY_T 68

Compute task API 70

alf_task_handle_t 70

© Copyright IBM Corp. 2006, 2007 iii

alf_task_desc_handle_t 70

alf_task_desc_create 71

alf_task_desc_destroy 72

alf_task_desc_ctx_entry_add 73

alf_task_desc_set_int32 74

alf_task_desc_set_int64 75

alf_task_create 77

alf_task_finalize 79

alf_task_wait 80

alf_task_query 81

alf_task_destroy 82

alf_task_depends_on 83

alf_task_event_handler_register 84

Work block API 86

Data structures 86

alf_wb_create 87

alf_wb_enqueue 88

alf_wb_parm_add 89

alf_wb_dtl_begin 90

alf_wb_dtl_entry_add 91

alf_wb_dtl_end 92

Data set API 93

alf_dataset_handle_t 93

alf_dataset_create 94

alf_dataset_buffer_add 95

alf_dataset_destroy 96

alf_task_dataset_associate 97

Chapter 22. Accelerator API 99

Computational kernel function exporting macros . . 99

ALF_ACCEL_EXPORT_API 100

User-provided computational kernel APIs 101

alf_accel_comp_kernel 102

alf_accel_input_dtl_prepare 103

alf_accel_output_dtl_prepare 104

alf_accel_task_context_setup 105

alf_accel_task_context_merge 106

Runtime APIs 107

alf_accel_num_instances 108

alf_accel_instance_id 109

ALF_ACCEL_DTL_BEGIN 110

ALF_ACCEL_DTL_ENTRY_ADD 111

ALF_ACCEL_DTL_END 112

Chapter 23. Cell BE platform-specific

extension APIs 113

ALF_ACCEL_DTL_CBEA_DMA_LIST_BUFFER_GET 114

ALF_ACCEL_DTL_CBEA_DMA_LIST_BUFFER_UPDATE 115

Part 5. Appendixes 117

Appendix A. Changes to the SDK 2.1

APIs for this release 119

Appendix B. Examples 123

Basic examples 123

Matrix add - host data partitioning example . . 123

Matrix add - accelerator data partitioning

example 126

Task context examples 126

Table lookup example 126

Min-max finder example 128

Multiple vector dot products 130

Overlapped I/O buffer example 133

Task dependency example 135

Appendix C. ALF trace events 139

Appendix D. Attributes and

descriptions 143

Appendix E. Error codes and

descriptions 147

Appendix F. Related documentation 149

Appendix G. Accessibility features 151

Notices 153

Trademarks 155

Terms and conditions 155

Glossary 157

Index 161

iv ALF for Cell BE Programmer’s Guide and API Reference

About this publication

This programmer’s guide provides detailed information regarding the use of the

Accelerated Library Framework APIs. It contains an overview of the Accelerated

Library Framework, detailed reference information about the APIs, and usage

information for programming with the APIs.

This book addresses the ALF implementation for the Cell Broadband Engine™ (Cell

BE) architecture.

For information about the accessibility features of this product, see Appendix G,

“Accessibility features,” on page 151.

Who should use this book

This book is intended for use by accelerated library developers and compute

kernel developers.

What’s new in this release

ALF includes the following new functionality and changes for the Software

Development Kit for Multicore Acceleration Version 3.0 (SDK 3.0):

v The API have been expanded to cover the multiple-program-multiple-data

(MPMD) programming model.

v Heterogenous accelerators are supported in the API instead of homogeneous

accelerators.

v Task dependency has been added as the method to describe the relationship

between multiple tasks. Synchronization points have been removed as task

dependency provides a more flexible replacement.

v You can now register a handle for task event notifications.

v The ALF API now allow you to have your own routines to initialize and merge

existing task context on accelerators.

v The API now provides a set of function calls to manage a task descriptor

structure. The task descriptor structure now contains a task context description.

The alf_task_info_t structure is no longer exposed.

v Multiple kernels in a single image are supported.

v The initialization routines (alf_configure, alf_query, alf_init) have been

changed.

Related information

See Appendix F, “Related documentation,” on page 149.

How to send your comments

Your feedback is important in helping to provide the most accurate and highest

quality information. If you have any comments about this publication, send your

comments using Resource Link™ at http://www.ibm.com/servers/resourcelink.

Click Feedback on the navigation pane. Be sure to include the name of the book,

the form number of the book, and the specific location of the text you are

commenting on (for example, a page number or table number).

© Copyright IBM Corp. 2006, 2007 v

http://www.ibm.com/servers/resourcelink

vi ALF for Cell BE Programmer’s Guide and API Reference

Part 1. ALF overview

This section covers the following topics:

v A description of what is ALF is, see:

– Chapter 1, “What is ALF?,” on page 3

– Chapter 2, “Overview of ALF external components,” on page 5

– Chapter 4, “Basic structure of an ALF application,” on page 9
v What you can use ALF for, see Chapter 3, “When to use ALF,” on page 7

v ALF-specific concepts, see Chapter 5, “Concepts,” on page 11

© Copyright IBM Corp. 2006, 2007 1

2 ALF for Cell BE Programmer’s Guide and API Reference

Chapter 1. What is ALF?

The Accelerated Library Framework (ALF) provides a programming environment

for data and task parallel applications and libraries. The ALF API provides you

with a set of interfaces to simplify library development on heterogenous multi-core

systems. You can use the provided framework to offload the computationally

intensive work to the accelerators. More complex applications can be developed by

combining the several function offload libraries. You can also choose to implement

applications directly to the ALF interface.

ALF supports the multiple-program-multiple-data (MPMD) programming model

where multiple programs can be scheduled to run on multiple accelerator elements

at the same time.

The ALF functionality includes:

v Data transfer management

v Parallel task management

v Double buffering

v Dynamic load balancing for data parallel tasks

With the provided API, you can also create descriptions for multiple compute tasks

and define their execution orders by defining task dependency. Task parallelism is

accomplished by having tasks without direct or indirect dependencies between

them. The ALF runtime provides an optimal parallel scheduling scheme for the

tasks based on given dependencies.

ALF workload division

From the application or library programmer’s point of view, ALF consists of the

following two runtime components:

v A host runtime library

v An accelerator runtime library

The host runtime library provides the host APIs to the application. The accelerator

runtime library provides the APIs to the application’s accelerator code, usually the

computational kernel and helper routines. This division of labor enables

programmers to specialize in different parts of a given parallel workload.

ALF tasks

The ALF design enables a separation of work. There are three distinct types of task

within a given application:

Application

You develop programs only at the host level. You can use the provided

accelerated libraries without direct knowledge of the inner workings of the

underlying system.

Accelerated library

You use the ALF APIs to provide the library interfaces to invoke the

computational kernels on the accelerators. You divide the problem into the

control process, which runs on the host, and the computational kernel,

© Copyright IBM Corp. 2006, 2007 3

which runs on the accelerators. You then partition the input and output

into work blocks, which ALF can schedule to run on different accelerators.

Computational kernel

You write optimized accelerator code at the accelerator level. The ALF API

provides a common interface for the compute task to be invoked

automatically by the framework.

ALF runtime framework

The runtime framework handles the underlying task management, data movement,

and error handling, which means that the focus is on the kernel and the data

partitioning, and not on the direct memory access (DMA) list creation or

management of the work queue.

The ALF APIs are platform-independent and their design is based on the fact that

many applications targeted for Cell BE or multi-core computing follow the general

usage pattern of dividing a set of data into self-contained blocks, creating a list of

data blocks to be computed on the synergistic processing element (SPE), and then

managing the distribution of that data to the various SPE processes. This type of

control and compute process usage scenario, along with the corresponding work

queue definition, are the fundamental abstractions in ALF.

4 ALF for Cell BE Programmer’s Guide and API Reference

Chapter 2. Overview of ALF external components

Within the ALF framework, a computational kernel is defined as an accelerator

routine that takes a given set of input data and returns the output data based on

the given input, see Figure 1. The input data and the corresponding output data

are divided into separate portions, called work blocks. For a single task, ALF

allows these work blocks to be processed in parallel.

With the provided ALF API, you can also create descriptions for multiple compute

tasks, and define their execution orders by defining their dependencies. Task

parallelism is accomplished by having tasks without direct or indirect

dependencies between them. The ALF runtime provides an optimal parallel

scheduling scheme for the provided tasks based on the given dependencies.

Input Data Partition

Output Data Partition

Output Data

Input Data

Accelerator Node

Main Application

Acceleration
Library

ALF Runtime (Host)

ALF Runtime
(Accelerator)

Compute
Tasks

Host
API

Accelerator
API

Host

Compute
Task A

Work
Block

Compute
Task B

Figure 1. Overview of ALF

© Copyright IBM Corp. 2006, 2007 5

6 ALF for Cell BE Programmer’s Guide and API Reference

Chapter 3. When to use ALF

ALF is designed to help you to develop robust data parallel problems and task

parallel problems.

The following problem types are well suited to work on ALF:

v Computationally intensive data-parallel problems: The ALF API is designed to

support data-parallel problems with the following characteristics:

– Most of the parallel work focuses on performing operations on a large data

set. The data set is typically organized into a common data structure, for

example, an array of data elements.

– A set of accelerators work collectively on the same data set, however, each

accelerator works on a different partition of the data set. For ALF, the data set

does not have to be regularly partitioned. Any accelerator can be set to work

on any part of the data set.

– The programs on the accelerators usually perform the same task on the data

set.
v Task-parallel problems: The ALF API supports multiple tasks running on

multiple accelerators at the same time. You can divide your application into

subproblems and create one task for each subproblem. The ALF runtime can

then determine the best way to schedule the multiple tasks on the available

accelerators to get the most parallelism.

Certain problems can seem to be inherently serial at first; however, there might be

alternative approaches to divide the problem into subproblems, and one or all of

the subproblems can often be parallelized.

You need to be aware of the physical limitations on the supported platforms. For

example, for the Cell BE implementation, the SPE has the local memory size of 256

KB. If the data set of the problem cannot be divided into work blocks that fit into

local storage, then ALF cannot be used to solve that problem.

© Copyright IBM Corp. 2006, 2007 7

8 ALF for Cell BE Programmer’s Guide and API Reference

Chapter 4. Basic structure of an ALF application

The basic structure of an ALF application is shown in Figure 2. The process on the

host is as follows:

1. Initialize the ALF runtime.

2. Create a compute task.

3. After the task is created, you start to add work blocks to the work queue of the

task.

4. Wait for the task to complete and shut down the ALF runtime to release the

allocated resources.

The process on the accelerator is as follows:

1. After an instance of the task is spawned, it waits for pending work blocks to be

added to the work queue.

2. The alf_accel_comp_kernel function is called for each work block.

3. If the task has been created with a task descriptor with

ALF_TASK_DESC_PARTITION_ON_ACCEL set to 1, then the

alf_accel_input_dtl_prepare function is called before the invocation of the

compute kernel and the alf_accel_output_dtl_prepare function is called after

the compute kernel exits.

For examples of ALF applications including some source code samples, see

Appendix B, “Examples,” on page 123.

HOST

Initialization

Create task

Create
work block

Wait task

Termination and exit

ALF

Runtime

Accelerator

Prepare
input DTL

Compute
kernel

Prepare
output DTL

Set task dependency
(optional)

Figure 2. ALF application structure and process flow

© Copyright IBM Corp. 2006, 2007 9

Simple example

The following example shows a simple ALF application. The host application

initializes the ALF runtime, creates a task descriptor and a task associated with

that descriptor, adds one work block to the work queue of the task, waits for the

task to complete, and finally exits the ALF runtime.

On the accelerator side, the computational kernel prints ″Hello World″ to stdout.

Source code for the host application

#include <stdio.h>

#include <alf.h>

char* library_name = "alf_hello_world_hybrid_spu64.so";

char* spu_image_name = "alf_hello_world_spu";

char* kernel_name = "comp_kernel";

int main()

{

 alf_handle_t handle;

 alf_task_desc_handle_t task_desc_handle;

 alf_task_handle_t task_handle;

 alf_wb_handle_t wb_handle;

 /* initializes the ALF runtime */

 alf_init(NULL, &handle);

 alf_num_instances_set(handle, 1); /* this is optional, ALF default to use all available accels */

 /* creates the task descriptor */

 alf_task_desc_create(handle, 0, &task_desc_handle);

 alf_task_desc_set_int32(task_desc_handle, ALF_TASK_DESC_MAX_STACK_SIZE, 4096); /* ALF has default stack size */

 alf_task_desc_set_int64(task_desc_handle, ALF_TASK_DESC_ACCEL_IMAGE_REF_L, (unsigned long long)spu_image_name);

 alf_task_desc_set_int64(task_desc_handle, ALF_TASK_DESC_ACCEL_LIBRARY_REF_L, (unsigned long long)library_name);

 alf_task_desc_set_int64(task_desc_handle, ALF_TASK_DESC_ACCEL_KERNEL_REF_L, (unsigned long long)kernel_name);

 /* creates the task */

 alf_task_create(task_desc_handle, NULL, 1, 0, 0, &task_handle);

 /* creates a work block and enqueue it */

 alf_wb_create(task_handle, ALF_WB_SINGLE, 1, &wb_handle);

 alf_wb_enqueue(wb_handle);

 /* finalizes the task */

 alf_task_finalize(task_handle);

 /* waits for the task to finish */

 alf_task_wait(task_handle, -1);

 /* exits the ALF runtime */

 alf_exit(handle, ALF_EXIT_POLICY_FORCE, 0); /* ALF_EXIT_POLICY_WAIT would be nicer for common practices */

 return 0;

}

Source code for the accelerator side

#include <stdio.h>

#include <alf_accel.h>

int comp_kernel(void *p_task_context,

 void *p_parm_context,

 void *p_input_buffer,

 void *p_output_buffer,

 void *p_inout_buffer,

 unsigned int current_count,

 unsigned int total_count)

{

 printf("Hello World!\n");

 return 0;

}

ALF_ACCEL_EXPORT_API_LIST_BEGIN

 ALF_ACCEL_EXPORT_API("comp_kernel", comp_kernel);

 /* P93, "It is recommended to be just the same as the correspondent function identifier" */

ALF_ACCEL_EXPORT_API_LIST_END

10 ALF for Cell BE Programmer’s Guide and API Reference

Chapter 5. Concepts

The following sections explain the main concepts and terms used in ALF. It covers

the following topics:

v “Computational kernel”

v “Task” on page 12

v “Task descriptor”

v “Work blocks” on page 14

v “Data set” on page 19

v “Error handling” on page 20

Computational kernel

A computational kernel is a user-defined accelerator routine that takes a given set

of input data and returns the output data based on the given input.

You should implement the computational kernel according to the function

prototype definitions with the data in the provided buffers (see Chapter 7,

“Accelerator buffer management,” on page 25). Then the computational kernel

must be registered to the ALF runtime when the corresponding task descriptor is

created.

The computational kernel is usually accompanied by four other auxiliary functions.

The five of them forms a 5-tuple for a task as:

{

alf_accel_comp_kernel,

alf_accel_input_dtl_prepare,

alf_accel_output_dtl_prepare,

alf_accel_task_context_setup,

alf_accel_task_context_merge

}

Note: The above accelerator function names are used as conventions for this

document only. You can provide your own function name for each of these

functions and register the function name through the task descriptor service.

Based on the different application requirements, some of the elements in this

5-tuple can be NULL.

For more information about the APIs that define computational kernels, see

“User-provided computational kernel APIs” on page 101.

Task descriptor

A task descriptor contains all the relevant task descriptions. To maximize

accelerator performance, ALF employs a static memory allocation model per task

execution on the accelerator. This means that ALF requires you to provide

information about buffers, stack usage, and the number of data transfer list entries

ahead of time.

© Copyright IBM Corp. 2006, 2007 11

As well as accelerator memory usage information, the task descriptor also contains

information about the names of the different user-defined accelerator functions and

the data partition attribute.

The following information is used to define a task descriptor:

v Task context description

– Task context buffer size

– Task context entries: entry size, entry type
v Accelerator executable image that contains the computational kernel:

– The name of the accelerator computational kernel function

– Optionally, the name of the accelerator input data transfer list prepare

function

– Optionally, the name of the accelerator output data transfer list prepare

function

– Optionally, the name of the accelerator task context setup function

– Optionally, the name of the accelerator task context merge function
v Work block parameter context buffer size

v Work block input buffer size

v Work block output buffer size

v Work block overlapped buffer size

v Work block number of data transfer list entries

v Task data partition attribute:

– Partition on accelerator

– Partition on host
v Accelerator stack size

For more information about the compute task APIs, see “Compute task API” on

page 70.

Task

A task is defined as a ready-to-be-scheduled instantiation of a task description or

you use the num_instances parameter in the task creation function

(alf_task_create), to explicitly request a number of accelerators or let the ALF

runtime decide the necessary number of accelerators to run the compute task. You

can also provide the data for the context buffer associated with this particular task.

You can also register an event handler to monitor different task events, see “Task

events” on page 14.

After you have created a task, you can create work blocks and enqueue the work

blocks on to the working queue associated with the task. The ALF framework

employs an immediate runtime mode. After a work block has been enqueued, if

the task has no unresolved dependency on other tasks, the task is scheduled to

process the work blocks.

For information about work blocks, see “Work blocks” on page 14.

12 ALF for Cell BE Programmer’s Guide and API Reference

Task finalize

After you have finished adding work blocks to the work queue, you must call

alf_task_finalize function to notify ALF that there are no more work blocks for

this particular task. A task that is not ″finalized″ cannot be run to the completion

state.

Task dependency and task scheduling

In ALF programming model, task dependency is used to make sure multiple tasks

can be run in a specific order when the order is critical. Some common

dependency scenarios are listed here:

v Data dependency: where the output of one task is the input of another task

v Resource conflict: where the tasks share some common resources such as

temporary buffers

v Timing: where the tasks have to follow a predetermined order

After you have created a task, you can use the function alf_task_depends_on to

specify the task’s dependency with an existing task. The ALF runtime considers a

task’s dependency and the number of requested accelerators for scheduling.

The ALF framework does not detect circular dependency. For a task that depends

on other tasks, you must define the dependencies before any work block is added

to the task. If a circular dependency is present in the task definitions, the

application hangs.

A task that depends on other tasks cannot be processed until all the dependent

tasks finish. Tasks are created in immediate mode. After a task has been created

and its dependencies are satisfied, the task can be scheduled to run.

For an example of how to use task dependency, see “Task dependency example”

on page 135.

Task instance

A task can be scheduled to run on multiple accelerators. Each task running on an

accelerator is a task instance. If a task is created without the

ALF_TASK_ATTR_SCHED_FIXED attribute, the ALF runtime can load and unload an

instance of a task to and from an accelerator anytime.

The ALF runtime posts an event after a task instance is started on an accelerator or

unloaded from an accelerator. You can choose to register an event handler for this

event, see “Task events” on page 14.

Fixed task mapping

For task scheduling, you can explicitly require the runtime to start a fixed number

of task instances for a specific task. This is known as fixed task mapping. To do

this, you need to :

1. Provide the number of task instances at task creation time through the

alf_task_create interface

2. Set the ALF_TASK_ATTR_SCHED_FIXED task attribute

In this case, the runtime makes sure all the task instances are started before work

blocks are assigned to them.

Chapter 5. Concepts 13

Task context

Note: For more information, refer to “Buffer types” on page 25.

A task context is used to address the following usage scenarios:

Common persistent data across work blocks

A task context can be used as common persistent referenced data for all work

blocks in a task. This is especially useful for static input data, lookup tables, or any

other input data that is common to all work blocks. Because the ALF runtime loads

the task context to accelerator memory before any work block is processed, you

can be assured that the common data is always there for the work blocks to use.

Reducing partial results across work blocks

A task context can be used to incrementally update the final result of a task based

on each work block’s computation. For these applications, the computational

results of separate work blocks are the intermediate results. These intermediate

results are stored in the task context. You can update the task context in the

computational kernel as part of the work block computation. After all the work

blocks have been processed, the ALF runtime applies a reduction step to merge the

intermediate results of the task instances into a single final result using the

provided alf_accel_task_context_merge function.

For an example about how to apply the concept of task context to find the

maximum value or the minimum value of a large data set, see “Min-max finder

example” on page 128.

Task events

The ALF framework provides notifications for the following task events:

v ALF_TASK_EVENT_READY - the task is ready to be scheduled

v ALF_TASK_EVENT_FINISHED - the task has finished running

v ALF_TASK_EVENT_FINALIZED - all the work blocks for the task have been enqueued

alf_task_finalized has been called

v ALF_TASK_EVENT_INSTANCE_START - one new instance of the task starts

v ALF_TASK_EVENT_INSTANCE_END - one instance of the task ends

v ALF_TASK_EVENT_DESTROY - The task is destroyed explicitly

For information about how to set event handling, see

alf_task_event_handler_register.

Work blocks

A work block represents an invocation of a task with a specific set of related input

data, output data, and parameters. The input and output data are described by

corresponding data transfer lists. The parameters are provided through the ALF

APIs. Depending on the application, the data transfer list can either be generated

on the host (host data partition) or by the accelerators (accelerator data partition).

Before it calls the compute task, and as the ALF accelerator runtime processes a

work block it retrieves the parameters and the input data based on the input data

transfer list to the input buffer in accelerator memory. After it has invoked the

14 ALF for Cell BE Programmer’s Guide and API Reference

computational kernel, the ALF accelerator runtime puts the output result back into

the host memory. The ALF accelerator runtime manages the memory of the

accelerator to accommodate the work block’s input and output data.

Single-use work block

A single-use work block is processed only once. Using a single-use work block

gives you the option of generating input and output data transfer lists on either

the host or the accelerator.

Multi-use work block

A multi-use work block is repeatedly processed up to the specified iteration count.

Unlike using a single-use work block, using a multi-use work block does not allow

you to generate input and output data transfer lists from the host process. For

multi-use work blocks, all input and output data transfer lists must be generated

on the accelerators each time a work block is processed by the ALF runtime. For

each iteration of the multi-use work block, the ALF runtime passes the parameters,

total number of iterations, and current iteration count to the accelerator data

partition subroutines, and you can generate the corresponding data transfer lists

for each iteration based on this information. See “Accelerator data partitioning” on

page 23 for more information about single-use work blocks and multi-use work

blocks.

Data transfer list

Data transfer lists describe a work block’s input and output data. You can choose

to generate the data transfer lists for each task’s work blocks’ input and output

data on either the host or the accelerator.

For many applications, the input data for a single compute kernel cannot be stored

contiguously in the host memory. For example, in the case of a multi-dimensional

matrix, the matrix is usually partitioned into smaller sub-matrices for the

accelerators to process. For many data partitioning schemes, the data of the

sub-matrices is scattered to different host memory locations. Accelerator memory is

usually limited, and the most efficient way to store the submatrix is contiguously.

Data for each row or column of the submatrix is put together in a contiguous

buffer. For input data, they are gathered to the local memory of the accelerator

from scattered host memory locations. With output data, the above situation is

reversed, and the data in the local memory of the accelerator is scattered to

different locations in host memory.

The ALF API uses data transfer list to represent the scattered input and output

data in the host memory. A data transfer list contains entries that consist of the

data size and a pointer to the host memory location of the data. The data in the

local memory of the accelerator is always packed and is organized in the order of

the entries in the list. For input data, the data transfer list describes a data

gathering operation. For output data, the data transfer list describes a scattering

operation. See Figure 3 on page 16 for a diagram of a data transfer list.

Chapter 5. Concepts 15

To maximize accelerator performance, ALF employs a static memory allocation

model per task execution on the accelerator. This means programmers need to

explicitly specify the maximum number of entries a data transfer list in a task can

have. This can be set through the alf_task_desc_set_int32 function with the

ALF_TASK_DESC_NUM_DTL_ENTRIES function.

For information about data transfer list limitations for Cell BE implementations, see

“Data transfer list limitations” on page 54.

Work block scheduling

This section describe work block scheduling. It covers the following:

v “Default work block scheduling policy”

v “Cyclic work block distribution policy” on page 17

v “Bundled work block distribution policy” on page 18

Default work block scheduling policy

The ALF API supports multiple ways of assigning work blocks to task instances.

By default, enqueued work blocks can be assigned to any of the task instances in

any order. The ALF runtime tries to balance the load of the task instances to ensure

that the task can complete in the shortest time. This means that task instances that

start early or run faster may process more work blocks than those that start later or

run slower.

Figure 4 on page 17 shows an example of the default work block scheduling policy

where task instances process work blocks at different rates.

A

B

C

D

E

F

G

A

H

B C

D

E

F

G

H

D

C

A

G

F

B

E

H

Accelerator memory

Host memory

Data transfer list

Figure 3. Data transfer list

16 ALF for Cell BE Programmer’s Guide and API Reference

Cyclic work block distribution policy

You can enable cyclic work block distribution by setting the attributes

ALF_TASK_ATTR_WB_CYCLIC and ALF_TASK_ATTR_SCHED_FIXED when you create the

task. These attributes enable the work blocks to be assigned in a round robin order

to a fixed number of task instances.

You must provide the number of task instances in the alf_task_create function.

The work blocks are assigned to the task instances in a cyclical manner in the

order of the work blocks being enqueued through calling the function

alf_wb_enqueue. Figure 5 on page 18 shows an example of cyclic work block

distribution.

WB9WB1 WB2 WB3 WB7 WB8WB5 WB6WB4

Task
Instance 1

Task
Instance 2

Task
Instance 3

WB4

WB7

WB7

alf_wb_enqueue

wb assign
WB4

WB7

WB2

WB1

WB8

WB6

WB5

WB9

WB3

Figure 4. Default work block scheduling behavior

Chapter 5. Concepts 17

Bundled work block distribution policy

The work blocks are assigned to the task instances in a group of bundle_size at a

time in the order of the work blocks being enqueued through calling the function

alf_wb_enqueue. All work blocks in a bundle are assigned to one task instance, and

the order defined in alf_wb_enqueue is also preserved.

You use the parameter wb_dist_size to specify the bundle size when you create

the task. Bundled distribution can also be used together with the cyclic distribution

to further control the work block scheduling. Figure 6 on page 19 shows an

example of the bundled distribution policy where task instances process work

blocks at different rates.

WB9WB1 WB2 WB3 WB7 WB8WB5 WB6WB4

Task
Instance 1

Task
Instance 2

Task
Instance 3

WB7

WB7

WB9WB7

WB4

WB1

WB8

WB5

WB2

WB6

WB3

Figure 5. Cyclic work block distribution

18 ALF for Cell BE Programmer’s Guide and API Reference

Data set

An ALF data set is a logical set of data buffers. A data set informs the ALF runtime

about the set of all data to which the task’s work blocks refer. The ALF runtime

uses this information to optimize how data is moved from the host’s memory to

the accelerator’s memory and back.

You set up a data set independently of tasks or work blocks using the

alf_dataset_create, and alf_dataset_buffer_add functions. Before enqueuing the

first work block, you must associate the data set to one or more tasks using the

alf_task_dataset_associate function. As work blocks are enqueued, they are

checked against the associated data set to ensure they reside within one of the

buffers. Finally after finishing with the data set, you destroy it by using the

alf_dataset_destroy function.

A data set can have a set of data buffers associated with it. A data buffer can be

identified as read-only, write-only, or read and write. You can add as many data

buffers to the data set as needed. Different ALF implementations can choose to

limit the number of data buffers in a specific data set. Refer to the implementation

documentation for restriction information about the number of data buffers in a

data set. However, after a data set has been associated with a task, you cannot add

additional data buffers to the data set.

A task can optionally be associated with one and only one data set. Work blocks

within this task refer to data within the data set for input, output, and in-out

buffers. References to work block input and output data which is outside of the

data set result in an error. The task context buffer and work block parameter buffer

do not need to reside within the data set and are not checked against it.

Multiple tasks can share the same data set. It is your responsibility to make sure

that the data in the data set is used correctly. If two tasks with no dependency on

each other use the same data from the same data set, ALF cannot guarantee the

WB9WB1 WB2 WB3 WB7 WB8WB5 WB6WB4

Task
Instance 2

Task
Instance 1

WB4

WB7

WB6

WB5

WB4

WB3

WB2

WB1

WB10

Task
Instance 3

WB4

WB7

WB10

WB9

WB8

WB7

Work block
bundle

Figure 6. Bundled work block distribution

Chapter 5. Concepts 19

consistency of the data. For tasks with a dependency on each other and which use

the same data set, the data set gets updated in the order in which the tasks are

run.

Although for host data partitioning you may create and use data sets, it is

recommended that you do use data sets. For accelerator data partitioning you must

create and use data sets.

Error handling

ALF supports limited capability to handle runtime errors. Upon encountering an

error, the ALF runtime tries to free up resources, then exits by default. To allow the

accelerated library developers to handle errors in a more graceful manner, you can

register a callback error handler function to the ALF runtime. Depending on the

type of error, the error handler function can direct the ALF runtime to retry the

current operation, stop the current operation, or shut down. These are controlled

by the return values of the callback error handler function.

When several errors happen in a short time or at the same time, the ALF runtime

attempts to invoke the error handler in sequential order.

Possible runtime errors include the following:

v Compute task runtime errors such as bus error, undefined computing kernel

function names, invalid task execution images, memory allocation issues, dead

locks, and others

v Detectable internal data structure corruption errors, which might be caused by

improper data transfers or access boundary issues

v Application detectable/catchable errors

Standard error codes on supported platforms are used for return values when an

error occurs. For this implementation, the standard C/C++ header file, errno.h, is

used. See Appendix E, “Error codes and descriptions,” on page 147 and also the

API definitions in Chapter 20, “ALF API overview,” on page 59 for a list of

possible error codes.

20 ALF for Cell BE Programmer’s Guide and API Reference

Part 2. Programming with ALF

This section describes the following ALF programming topics:

v Chapter 6, “Data partitioning,” on page 23

v “Accelerator data partitioning” on page 23

v Chapter 8, “When to use the overlapped I/O buffer,” on page 29

v Chapter 9, “Using work blocks and order of function calls per task instance on

the accelerator,” on page 31

v Chapter 10, “Modifying the work block parameter and context buffer when

using multi-use work blocks,” on page 33

v Chapter 11, “Double buffering on ALF,” on page 35

v Chapter 12, “Performance and debug trace,” on page 37

For configuration information including how to switch compilers, see the

alf/README_alf_samples file.

© Copyright IBM Corp. 2006, 2007 21

22 ALF for Cell BE Programmer’s Guide and API Reference

Chapter 6. Data partitioning

An important part to solving data parallel problems using multiple accelerators is

to figure out how to partition data across the accelerators. The ALF API does not

automatically partition data, however, it does provide a framework so that you can

systematically partition the data.

The ALF API provides the following different data partition methods:

v “Host data partitioning”

v “Accelerator data partitioning”

These methods are described in the following sections.

Host data partitioning

You can use the provided APIs on the host to partition your applications’ data . To

do this, you build a data transfer list for the work blocks thru the

alf_wb_dtl_begin, alf_wb_dtl_entry_add, and alf_wb_dtl_end APIs.

This method is particularly useful when the data associated with the work blocks

is simple, and the host can keep up with generating the data partitioning

information for all the accelerators.

Accelerator data partitioning

When the data partition schemes are complex and require a lot of computing

resources, it can be more efficient to generate the data transfer lists on the

accelerators. This is especially useful if the host computing resources can be used

for other work or if the host does not have enough computing resources to

compute data transfer lists for all of its work blocks.

Accelerator data partition APIs

Accelerated library developers must provide the alf_accel_input_dtl_prepare

subroutine and the af_accel_output_dtl_prepare subroutine to do the data

partition for input and output and generate the corresponding data transfer list.

The alf_accel_input_dtl_prepare is the input data partitioning subroutine and the

alf_accel_output_dtl_prepare is the output data subroutine.

Host memory addresses

The host does not generate the data transfer lists when using accelerator data

partitioning, so the host addresses of input and output data buffers can be

explicitly passed to the accelerator through the work block parameter and context

buffer.

For an example, see “Matrix add - accelerator data partitioning example” on page

126

© Copyright IBM Corp. 2006, 2007 23

24 ALF for Cell BE Programmer’s Guide and API Reference

Chapter 7. Accelerator buffer management

On the accelerator, the ALF accelerator runtime manages the data of the work

blocks and the task for the compute kernel. You only need to focus on the

organization of data and the actual computational kernel. The ALF accelerator

runtime handles buffer management and data movement. However, it is still

important that you have a good understanding of how each buffer is used and its

relationship with the computational kernel.

To make the most efficient use of accelerator memory, the ALF runtime needs to

know the memory usage requirements of the task. The ALF runtime requires that

you specify the memory resources each task uses. The runtime can then allocate

the requested memory for the task.

Buffer types

The ALF accelerator runtime code provides handles to the following different

buffers for each instance of a task:

v “Task context buffer”

v “Work block parameter and context buffer” on page 26

v “Work block input data buffer” on page 26

v “Work block output data buffer” on page 27

v “Work block overlapped input and output data buffer” on page 27

Task context buffer

A task context buffer is used by applications that require common persistent data

that can be referenced and updated by all work blocks. It is also useful for merging

operations or all-reduce operations. A task is optionally associated with one task

context buffer. You can specify the size of the task context buffer through the task

descriptor creation process. If the size of the task context buffer is specified as zero

(0) in the task descriptor, there is no task context associated with the any of the

tasks created with that task descriptor.

The lifecycle of the task context is shown in Figure 7 on page 26. To create the task,

you call the task creation function alf_task_create. You provide the data for the

initial task context by passing a data buffer with the initial values. After the

compute task has been scheduled to be run on the accelerators, the ALF

framework creates private copies of the task context for the task instance that is

running.

You can provide a function to initialize the task context

(alf_accel_task_context_setup) on the accelerator. The ALF runtime invokes this

function when the running task instance is first loaded on an accelerator as shown

in Figure 7 on page 26 (a).

All work blocks that are processed by one task instance share the same private

copy of task context on that accelerator as shown in Figure 7 on page 26 (b).

When the ALF scheduler requests an accelerator to unload a task instance, you can

provide a merge function (alf_accel_task_context_merge), which is called by the

© Copyright IBM Corp. 2006, 2007 25

runtime, to merge that accelerator’s task context with an active task context on

another accelerator as shown in Figure 7 (c).

When a task is shut down and all instances of the task are destroyed, the runtime

automatically calls the merge function on the task instances to merge all of the

private copies of task context into a single task context and write the final result to

the task context on host memory provided when the task is created, as shown in

Figure 7 (d).

Work block parameter and context buffer

The work block parameter and context buffer serves two purposes:

v It passes work block-specific constants or reference-by-value parameters

v It reserves storage space for the computational kernel to save the data specific to

one work block, which can be either a single-use work block or a multi-use

work block

This buffer can be used by the following APIs:

v alf_accel_comp_kernel

v alf_accel_input_dtl_prepare

v alf_accel_output_dtl_prepare

The parameters are copied to an internal buffer associated with the work block

data structure in host memory when the alf_wb_add_parm accelerator routine is

invoked.

For more information, see Chapter 10, “Modifying the work block parameter and

context buffer when using multi-use work blocks,” on page 33.

Work block input data buffer

The work block input data buffer contains the input data for each work block (or

each iteration of a multi-use work block) for the compute kernel. For each iteration

of the ALF computational kernel, there is a single contiguous input data buffer.

However, the data for the input buffer can come from distinct sections of a large

data set in host memory. These separate data segments are gathered into the input

data buffer on the accelerators. The ALF framework minimizes performance

overhead by not duplicating input data unnecessarily. When the content of the

work block is constructed by alf_wb_dtl_entry_add, only the pointers to the input

(a) Task loading

Task
Instance

Task
Instance

Task
Instance

Set
up

Set
up

Set
up

Initial
task context

(c) Task instance unload

Task
Instance

Task
Instance

Task
Instance

Initial
task context

(b) Work block processing

Task
Instance

Task
Instance

Task
Instance

Initial
task context

(d) Task shutdown

Task
Instance

Task
Instance

Task
Instance

Final
task context

Host / Task main thread Host / Task main thread Host / Task main thread Host / Task main thread

WB

WB

WB WB WB

WB

WB WB WB WB WB WB

Merge Merge

Merge

Figure 7. Task context buffer lifecycle

26 ALF for Cell BE Programmer’s Guide and API Reference

data chunks are saved to the internal data structure of the work block. This data is

transferred to the memory of the accelerator when the work block is processed. A

pointer to the contiguous input buffer in the memory of the accelerator is passed

to the computational kernel.

For more information about data scattering and gathering, see “Data transfer list”

on page 15.

Work block output data buffer

This buffer is used to save the output of the compute kernel. It is a single

contiguous buffer in the memory of the accelerator. Output data can be transferred

to distinct memory segments within a large output buffer in host memory. After

the compute kernel returns from processing one work block, the data in this buffer

is moved to the host memory locations specified by the alf_wb_dtl_entry_add

routine when the work block is constructed.

Work block overlapped input and output data buffer

The overlapped input and output buffer (overlapped I/O buffer) contains both

input and output data. The input and output sections are dynamically designated

for each work block.

This buffer is especially useful when you want to maximize the use of accelerator

memory and the input buffer can be overwritten by the output data.

For more information about when to use this buffer, refer to Chapter 8, “When to

use the overlapped I/O buffer,” on page 29.

For an example of how to use the buffer, see “Overlapped I/O buffer example” on

page 133.

Chapter 7. Accelerator buffer management 27

28 ALF for Cell BE Programmer’s Guide and API Reference

Chapter 8. When to use the overlapped I/O buffer

An overlapped I/O buffer is designed to maximize the memory usage on

accelerators. This is particularly useful when there is limited accelerator memory

and input and output data. For each task instance, the ALF runtime provides an

optional overlapped I/O buffer. This buffer is accessible from the user-defined

computational kernel as well as the input_dtl_prepare and output_dtl_prepare

functions. For each overlapped I/O buffer, you can dynamically define three types

of buffer area for each work block:

v ALF_BUF_OVL_IN: Data in the host memory is copied to this section of the

overlapped I/O buffer before the computational kernel is called

v ALF_BUF_OVL_OUT: Data in this buffer area of the overlapped I/O buffer is written

back to the host memory after the computational kernel is called

v ALF_BUF_OVL_INOUT: Data in the host memory is copied to this buffer area before

the computational kernel is called and is written back to the same host memory

location after the computational kernel is called

For examples of how to use the overlapped I/O buffer, see “Overlapped I/O

buffer example” on page 133.

Points to consider when using the overlapped I/O buffer

When you use overlapped I/O buffer, you need to make sure that the input data

area defined by ALF_BUF_OVL_IN and ALF_BUF_OVL_INOUT do not overlap each other.

The ALF runtime does not guarantee the order in which the input data is pulled

into accelerator memory, so the input data can become corrupted if these two areas

are overlapped. Figure 8 shows a corrupted overlapped I/O buffer.

If you choose to partition data on the accelerator, you need to generate the data

transfer lists for the input buffer, the overlapped input buffer, and the overlapped

I/O buffer in the user-provided alf_accel_input_dtl_prepare function and

generate the data transfer lists for both the output buffer and the overlapped

output buffer in the user-provided alf_accel_output_dtl_prepare function.

Figure 8. Corrupted overlapped I/O buffer

© Copyright IBM Corp. 2006, 2007 29

30 ALF for Cell BE Programmer’s Guide and API Reference

Chapter 9. Using work blocks and order of function calls per

task instance on the accelerator

Based on the characteristics of an application, you can use single-use work blocks

or multi-use work blocks to efficiently implement data partitioning on the

accelerators.

For a given task that can be partitioned into N work blocks, the following

describes how the different types of work blocks can be used, and also the order of

function calls per task instance based on a single instance of a the task on a single

accelerator:

1. Task instance initialization (this is done by the ALF runtime)

2. Conditional execute: alf_accel_task_context_setup is only called if the task

has context. The runtime calls it when the initial task context data has been

loaded to the accelerator and before any work blocks are processed.

3. For each work block WB(k):

a. If there are pending context merges, go to Step 4.

b. For each iteration of a multi-use work block i < N (total number of

iteration)

1) alf_accel_input_list_prepare(WB(k), i, N): It is only called when the

task requires accelerator data partition.

2) alf_accel_comp_kernel(WB(k), i, N): The computational kernel is

always called.

3) alf_accel_output_list_prepare(WB(k), i, N): It is only called when

the task requires accelerator data partition.
4. Conditional execute: alf_accel_task_context_merge This API is only called

when the context of another unloaded task instance is to be merged to current

instance.

a. If there are pending work blocks, go to Step 3.
5. Write out task context.

6. Unload image or pending for next scheduling.

a. If a new task instance is created, go to Step 2.

For step 3, the calling order of the three function calls is defined by the following

rules:

v For a specific single-use work block WB(k), the following calling order is

guaranteed:

1. alf_accel_input_list_prepare(WB(k))

2. alf_accel_comp_kernel(WB(k))

3. alf_accel_output_list_prepare(WB(k))

v For two single-use work blocks that are assigned to the same task instance in the

order of WB(k) and WB(k+1), ALF only guarantees the following calling orders:

– alf_accel_input_list_prepare(WB(k)) is called before

alf_accel_input_list_prepare(WB(k+1))

– alf_accel_comp_kernel(WB(k)) is called before

alf_accel_comp_kernel(WB(k+1))

© Copyright IBM Corp. 2006, 2007 31

– alf_accel_output_list_prepare(WB(k)) is called before

alf_accel_output_list_prepare(WB(k+1))
v For a multi-use work block WB(k,N), it is considered as N single use work blocks

assigned to the same task instance in the order of incremental iteration index

WB(k,0), WB(k, 1), ..., WB(k, N-1). The only difference is that all these work

blocks share the same work block parameter and context buffer. Other than that,

the API calling order is still decided by the previous two rules. See Chapter 10,

“Modifying the work block parameter and context buffer when using multi-use

work blocks,” on page 33.

32 ALF for Cell BE Programmer’s Guide and API Reference

Chapter 10. Modifying the work block parameter and context

buffer when using multi-use work blocks

The work block parameter and context buffer of a multi-use work block is shared

by multiple invocations of the alf_accel_input_dtl_prepare accelerator function

and the alf_accel_output_dtl_prepare accelerator function. Take care when you

change the contents of this buffer. Because the ALF runtime does double buffering

transparently, it is possible that the current_count arguments for succeeding calls

to the alf_accel_input_dtl_prepare function, the alf_accel_comp_kernel function,

and the alf_accel_output_dtl_prepare function are not strictly incremented when

a multi-use work block is processed. Because of this, modifying the parameter and

context buffer according to the current_count in one of the subroutines can cause

unexpected effects to other subroutines when they are called with different

current_count values at a later time.

© Copyright IBM Corp. 2006, 2007 33

34 ALF for Cell BE Programmer’s Guide and API Reference

Chapter 11. Double buffering on ALF

When transferring data in parallel with the computation, double buffering can

reduce the time lost to data transfer by overlapping it with the computation time.

The ALF runtime implementation on Cell BE architecture supports three different

kinds of double buffering schemes.

 See Figure 9 for an illustration of how double buffering works inside ALF. The ALF

runtime evaluates each work block and decides which buffering scheme is most

efficient. At each decision point, if the conditions are met, that buffering scheme is

used. The ALF runtime first checks if the work block uses the overlapped I/O

buffer. If the overlapped I/O buffer is not used, the ALF runtime next checks the

conditions for the four-buffer scheme, then the conditions of the three-buffer

scheme. If the conditions for neither scheme are met, the ALF runtime does not use

double buffering. If the work block uses the overlapped I/O buffer, the ALF

runtime first checks the conditions for the overlapped I/O buffer scheme, and if

those conditions are not met, double buffering is not used.

These examples use the following assumptions:

1. All SPUs have 256 KB of local memory.

2. 16 KB of memory is used for code and runtime data including stack, the task

context buffer, and the data transfer list. This leaves 240 KB of local storage for

the work block buffers.

3. Transferring data in or out of accelerator memory takes one unit of time and

each computation takes two units of time.

4. The input buffer size of the work block is represented as in_size, the output

buffer size as out_size, and the overlapped I/O buffer size as overlap_size.

5. There are three computations to be done on three inputs, which produces three

outputs.

Buffer schemes

The conditions and decision tree are further explained in the examples below.

v Four-buffer scheme: In the four-buffer scheme, two buffers are dedicated for

input data and two buffers are dedicated for output data. This buffer use is

shown in the Four-buffer scheme section of Figure 9.

0 1 2 3 4 5 6 7 8 9

DMA In

Compute
Kernel Input

Compute
Kernel Output

DMA Out

Compute
Kernel In/Out

C3 O3

I0 C0

C0 O0

I2 C2

C2 O2

I1 C1

C1 O1

I3 C3

I0 C0

I0 C0

C1 O1 C3

O3

I3

C0 O0 I2 C2

I2 C2

C3 O3

C3

I1 C1 C2 O2

I1 C1 O1 I3

O2

Buf0

Buf1

Buf2

Buf3

Buf0

Buf1

Buf2

Buf0

Buf1

Timeline

Four-buffer
scheme

Three-buffer
scheme

Overlapped
I/O buffer
scheme

Buffer Usage Types

Figure 9. ALF double buffering

© Copyright IBM Corp. 2006, 2007 35

– Conditions satisfied: The ALF runtime chooses the four-buffer scheme if the

work block does not use the overlapped I/O buffer and the buffer sizes

satisfy the following condition: 2*(in_size + out_size) <= 240 KB.

– Conditions not satisfied: If the buffer sizes do not satisfy the four-buffer

scheme condition, the ALF runtime will check if the buffer sizes satisfy the

conditions of the three-buffer scheme.
v Three-buffer scheme: In the three-buffer scheme, the buffer is divided into three

equally sized buffers of the size max(in_size, out_size). The buffers in this

scheme are used for both input and output as shown in the Three-buffer scheme

section of Figure 9 on page 35. This scheme requires the output data movement

of the previous result to be finished before the input data movement of the next

work block starts, so the DMA operations must be done in order. The advantage

of this approach is that for a specific work block, if the input and output buffer

are almost the same size, the total effective buffer size can be 2*240/3 = 160 KB.

– Conditions satisfied: The ALF runtime chooses the three-buffer scheme if the

work block does not use the overlapped I/O buffer and the buffer sizes

satisfy the following condition: 3*max(in_size, out_size) <= 240 KB.

– Conditions not satisfied: If the conditions are not satisfied, the single-buffer

scheme is used.
v Overlapped I/O buffer scheme: In the overlapped I/O buffer scheme, two

contiguous buffers are allocated as shown in the Overlapped I/O buffer scheme

section of Figure 9 on page 35. The overlapped I/O buffer scheme requires the

output data movement of the previous result to be finished before the input data

movement of the next work block starts.

– Conditions satisfied: The ALF runtime chooses the overlapped I/O buffer

scheme if the work block uses the overlapped I/O buffer and the buffer sizes

satisfy the following condition: 2*(in_size + overlap_size + out_size) <= 240

KB.

– Conditions not satisfied: If the conditions are not satisfied, the single-buffer

scheme is used.
v Single-buffer scheme: If none of the cases outlined above can be satisfied,

double buffering is not used, but performance might not be optimal.

When creating buffers and data partitions, remember the conditions of these

buffering schemes. If your buffer sizes can meet the conditions required for double

buffering, it can result in a performance gain, but double buffering does not double

the performances in all cases. When the time periods required by data movements

and computation are significantly different, the problem becomes either I/O-bound

or computing-bound. In this case, enlarging the buffers to allow more data for a

single computation might improve the performance even with a single buffer.

36 ALF for Cell BE Programmer’s Guide and API Reference

Chapter 12. Performance and debug trace

The Performance Debugging Tool (PDT) provides trace data necessary to debug

functional and performance problems for applications using the ALF library.

Versions of the ALF libraries built with PDT trace hooks enabled are delivered

with SDK 3.0.

Installing the PDT

The libraries with the trace hooks enabled are packaged in separate ″-trace″

named packages. The trace enabled libraries install to a subdirectory named trace

in the library install directories. These packages and the PDT are included in the

SDK 3.0 package but may not be installed by default.

Refer to the PDT User’s Guide for instructions about how to install PDT, and how

to set the correct environment variables to cause trace events to be generated. ALF

ships example configuration files that list all of the ALF groups and events, and

allow you to turn selected ones off as desired. They are located in the

/usr/share/pdt/example directory.

Trace control

When a PDT-enabled application starts, PDT reads its configuration from a file.

Environment variable

PDT supports an environment variable (PDT_CONFIG_FILE) that allows you to

specify the relative or full path to a configuration file.

ALF ships an example configuration file that lists all of the ALF groups and events,

and allows the user to turn selected ones off as desired. This is shipped as

/usr/share/pdt/config/pdt_alf_config_cell.xml

.

© Copyright IBM Corp. 2006, 2007 37

38 ALF for Cell BE Programmer’s Guide and API Reference

Part 3. Programming ALF for Cell BE

This section describes information specific to programming ALF for Cell BE.

It describes the following:

v Chapter 13, “Implementation overview,” on page 41

v Chapter 14, “Installing and configuring ALF,” on page 43

v Chapter 15, “Building an application,” on page 45

v Chapter 16, “Running an application,” on page 47

v Chapter 17, “Linking to the correct library,” on page 49

v Chapter 18, “Optimizing ALF applications,” on page 51

v Chapter 19, “Platform-specific constraints for the ALF implementation on Cell BE

architecture,” on page 53

For installation information, refer to the SDK for Multicore Acceleration Version 3.0

Installation Guide.

© Copyright IBM Corp. 2006, 2007 39

40 ALF for Cell BE Programmer’s Guide and API Reference

Chapter 13. Implementation overview

ALF for Cell BE is an implementation of the ALF API specification for the Cell BE

processor. In this implementation, the PPEs serve as the hosts, the SPEs act as

accelerators. For SDK 3.0, both 32-bit and 64-bit implementations are provided for

this platform.

© Copyright IBM Corp. 2006, 2007 41

42 ALF for Cell BE Programmer’s Guide and API Reference

Chapter 14. Installing and configuring ALF

The ALF for Cell BE library should be installed as a component of the Cell BE SDK

3.0.

Refer to the SDK 3.0 Installation Guide for more information about installation and

configuration.

The following packages are provided for the ALF for Cell BE library.

 Table 1. ALF for Cell BE packages

Package Description

alf-3.0.0-*.ppc.rpm 32-bit ALF for Cell BE runtime package - contains the

optimized shared library for the host.

alf-devel-3.0.0-*.ppc.rpm 32-bit ALF for Cell BE development package - contains all

the header files for both the host and the accelerator, static

host runtime library, static accelerator runtime library, and

error-check-enabled accelerator library.

alf-trace-3.0.0-*.ppc.rpm 32-bit ALF for Cell BE trace-enabled package - contains the

optimized shared library with PDT debug and trace

enabled.

alf-trace-devel-3.0.0-*.ppc.rpm 32-bit ALF for Cell BE development package with PDT

trace - contains the static version of the host runtime library

with PDT debug and trace enabled and the static

accelerator runtime library with PDT debug and trace

enabled

alf-3.0.0-*.ppc64.rpm 64-bit ALF for Cell BE runtime package - contains the

optimized shared library for the host.

alf-devel-3.0.0-*.ppc64.rpm 64-bit ALF for Cell BE development package - contains all

the header files for both the host and the accelerator, static

host runtime library, static accelerator runtime library, and

error-check-enabled accelerator library.

alf-trace-3.0.0-*.ppc64.rpm 64-bit ALF for Cell BE trace-enabled package - contains the

optimized shared library with PDT debug and trace

enabled.

alf-trace-devel-3.0.0-*.ppc64.rpm 64-bit ALF for Cell BE development package with PDT

trace - contains the static version of the host runtime library

with PDT debug and trace enabled and the static

accelerator runtime library with PDT debug and trace

enabled.

alf-cross-devel-3.0.0-*.noarch.rpm ALF for Cell BE cross development package - contains all

the header files and libraries needed for cross-architecture

development

alf-examples-source-3.0.0-*.noarch.rpm ALF for Cell BE example sources.

alfman-3.0-*.noarch.rpm ALF for Cell BE man pages.

In addition, there are also debuginfo versions associated with most of the above

packages except alf-cross-devel, alf-examples-source, and alfman.

© Copyright IBM Corp. 2006, 2007 43

44 ALF for Cell BE Programmer’s Guide and API Reference

Chapter 15. Building an application

Three versions of the ALF for Cell BE libraries are provided with the SDK:

v Optimized: This library has minimal error checking on the SPEs and is intended

for production use.

v Error-check enabled: This version has a lot more error checking on the SPEs and

intended to be used for application development.

v Traced: These are the optimized libraries with performance and debug trace

hooks in them. These are intended for debugging functional and performance

problems associated with ALF. Refer to Chapter 12, “Performance and debug

trace,” on page 37 for more information about performance and debug options

for ALF.

Additionally, both static and shared libraries are provided for the ALF host

libraries. The ALF SPE runtime library is only provided as static libraries.

An ALF for Cell BE application must be built as two separate binaries as follows:

v The first binary is for the ALF host application, and you need to do the

following:

1. Compile the PPE host application. ALF host include files are located in

/usr/include and /usr/include/arch/cell directory.

2. Link the PPE host application with the ALF PPE host runtime library, libalf,

found in /usr/lib directory, the libspe runtime library, libspe2, and the

dynamic linking library libdl.
v The second binary is for the ALF SPE accelerator computational kernel, and you

need to do the following:

1. Compile the application’s SPE code. The ALF accelerator header files are

located in /usr/spu/include.

2. Link the application’s SPE code with the ALF SPE accelerator static runtime

library, libalf, found in /usr/spu/lib.

3. Use the ppu-embedspu utility to embed the SPU binary into a PPE ELF image.

The resulting PPE ELF object needs to be linked as a PPE shared library.

For references, Makefiles are provided for all of the samples in the package:

alf-examples-source-3.0.0-*.noarch.rpm

© Copyright IBM Corp. 2006, 2007 45

46 ALF for Cell BE Programmer’s Guide and API Reference

Chapter 16. Running an application

The following steps describe how to run an ALF application.

To run an application, do the following:

1. Build the ALF application, both the host application as an executable, my_appl,

and the accelerator computational kernel.

2. Embed the SPE accelerator computational kernel binary into a PPE shared

library, my_appl.so.

3. Copy the PPE shared library with the embedded SPE binaries to a selected

directory.

4. Set the environment variable ALF_LIBRARY_PATH to the the above selected

directory on the Cell BE. For example:

export ALF_LIBRARY_PATH=/tmp/my_directory

5. Execute the PPE host application. For example:

./my_appl

© Copyright IBM Corp. 2006, 2007 47

48 ALF for Cell BE Programmer’s Guide and API Reference

Chapter 17. Linking to the correct library

Make sure that ALF applications are linked with the correct library for the ALF

implementation intended (CBEA or Hybrid-x86).

Linking against the wrong library does not produce a link error, but can result in

the following:

v Endian problems with input or output data (wrong results).

v Address translation issues on the SPU. (Typically DMA errors from SPU initiated

DMAs. The SPU returns a fatal error and the ALF runtime exits.)

© Copyright IBM Corp. 2006, 2007 49

50 ALF for Cell BE Programmer’s Guide and API Reference

Chapter 18. Optimizing ALF applications

This section describes how to optimize your ALF applications. It covers the

following topics:

v “Using accelerator data partitioning”

v “Using multi-use work blocks”

Using accelerator data partitioning

If the application operates in an environment where the host has many accelerators

to manage and the data partition schemes are particularly complex, it is generally

more efficient for the application to partition the data and generate the data

transfer lists on the accelerators instead on the host.

For more information about how to use this feature, refer to “Accelerator data

partitioning” on page 23.

Using multi-use work blocks

If there are many instances of the task running on the accelerators and the amount

of computation per work block is small, the ALF runtime can become

overwhelmed with moving work blocks and associated data in and out of

accelerator memory. In this case, multi-use work blocks can be used in conjunction

with accelerator data partitioning to further improve performance for an ALF

application.

For an example of how to use multi-use work blocks, refer to “Implementation 2:

Making use of multi-use work blocks together with task context or work block

parameter/context buffers” on page 132.

What to consider for data layout design

Efficient data partitioning and data layout design is the key to a well-performed

ALF application. Improper data partitioning and data layout design either prevents

ALF from being applicable or results in degraded performance. Data partition and

layout is closely coupled with compute kernel design and implementation, and

they should be considered simultaneously. You should consider the following for

your data layout and partition design:

v Use the correct size for the data partitioned for each work block. Often the local

memory of the accelerator is limited. Performance can degrade if the partitioned

data cannot fit into the available memory. For example, on Cell BE architecture,

if the input buffer of a work block is larger than 128 KB, it might not be possible

to support double buffering on the SPE. This can result in up to 50%

performance loss.

v Minimize the amount of data movement. A large amount of data movement can

cause performance loss in applications. Improve performance by avoiding

unnecessary data movements.

v Simplify data movement patterns. Although the data transfer list feature of ALF

enables flexible data gathering and scattering patterns, it is better to keep the

© Copyright IBM Corp. 2006, 2007 51

data movement patterns as simple as possible. Some good examples are

sequential access and using contiguous movements instead of small discrete

movements.

v Avoid data reorganization. Data reorganization requires extra work. It is better

to organize data in a way that suits the usage pattern of the algorithm than to

write extra code to reorganize the data when it is used.

v Be aware of the address alignment limitations on Cell BE.

52 ALF for Cell BE Programmer’s Guide and API Reference

Chapter 19. Platform-specific constraints for the ALF

implementation on Cell BE architecture

This section describes constraints that apply when you program ALF for Cell BE.

SPE accelerator memory constraints

The size of local memory on the SPE accelerator is 256 KB and is shared by code

and data. Memory is not virtualized and is not protected. See Figure 10 for a

typical memory map of an SPU program. There is a runtime stack above the global

data memory section. The stack grows from the higher address to the lower

address until it reaches the global data section. Due to the limitation of

programming languages and compiler and linker tools, you cannot predict the

maximum stack usage when you develop the application and when the application

is loaded. If the stack requires more memory than what was allocated you do not

get a stack overflow exception (unless this was enabled by the compiler at build

time) you get undefined results such as bus error or illegal instruction. When there

is a stack overflow, the SPU application is shut down and a message is sent to the

PPE.

ALF allocates the work block buffers directly from the memory region above the

runtime stack, as shown in Figure 11 on page 54. This is implemented by moving

the stack pointer (or equivalently by pushing a large amount of data into the

stack). To ALF, the larger the buffer is, the better it can optimize the performance

of a task by using techniques like double buffering. It is better to let ALF allocate

as much memory as possible from the runtime stack. If the stack size is too small

at runtime, a stack overflow occurs and it causes unexpected exceptions such as

incorrect results or a bus error.

0x3FFFF

0x00000

Reserved

Runtime Stack

Data

Text

SPU ABI Reserved Usage

Global Data

Code

(a) Common Cell/B.E. Application

Figure 10. SPU local memory map of a common Cell BE application

© Copyright IBM Corp. 2006, 2007 53

Data transfer list limitations

Data transfer information is used to describe the five types data movement

operations for one work block as defined by ALF_BUF_TYPE_T. The ALF

implementation on Cell BE has the following internal constraints:

1. Data transfer information for a single work block can consist of up to eight

data transfer lists for each type of transfer as defined by ALF_BUF_TYPE_T. For

programmers the limitation is that alf_wb_dtl_begin can only be called no

more than eight times for each type of ALF_BUF_TYPE_T for each work block. An

ALF_ERR_NOBUFS is returned in this case. Due to limitation items 2, 3 and 4 in

this list, it is possible that the limitation can be reached without explicitly

calling alf_wb_dtl_begin by eight times.

2. Each data transfer list consists of up to 2048 data transfer entries. The

alf_wb_dtl_entry_add call automatically creates a new data transfer list of the

same type when this limitation is reached. Limitation item 1 in this list still

applies in this case.

3. Each entry can describe up to 16 KB of data transfer between the contiguous

area in host memory and accelerator memory. The alf_wb_dtl_entry_add call

automatically breaks an entry larger than 16 KB to multiple entries. Limitation

items 1 and 2 in this list still apply in this case.

4. All of the entries within the same data transfer list share the same high 32 bits

effective address. This means that when a data transfer entry goes across 4 GB

address boundary, it must be broken up and put into two different data

transfer lists. In addition, two succeeding entries use different high 32 bit

addresses, they need to be put into two lists. The alf_wb_dtl_entry_add call

automatically creates a new data transfer list in the above two situations.

Limitation items 1, 2 and 3 in this list still apply in this case.

5. The local store area described by each entry within the same data transfer list

must be contiguous. You can use the local buffer offset parameter

″offset_to_accel_buf″ to address with in the local buffer when

alf_wb_dtl_begin is called to create a new list.

0x3FFFF

0x00000

SPU ABI Reserved Usage

ALF’s Dynamic Managed
Buffer for Work Blocks

User Code + ALF Runtime

ALF Global Data

User Code + ALF Runtime

(b) ALF Application

Reserved

Runtime Stack

Data

Text

Work Block Data
Buffer

Figure 11. SPU local memory map of an ALF application

54 ALF for Cell BE Programmer’s Guide and API Reference

6. The transfer size and the low 32 bits of the effective address for each data

transfer entry must be 16 bytes aligned. The alf_wb_dtl_entry_add call does

NOT help you to automatically deal with alignment issues. An ALF_ERR_INVAL

error is returned if there is an unaligned address. The same limitation also

applies to the offset_to_accel_buf parameter of alf_wb_dtl_begin.

Chapter 19. Platform-specific constraints for the ALF implementation on Cell BE architecture 55

56 ALF for Cell BE Programmer’s Guide and API Reference

Part 4. API reference

This section covers the following topics:

v Chapter 20, “ALF API overview,” on page 59

v Chapter 21, “Host API,” on page 61

v Chapter 22, “Accelerator API,” on page 99

v Chapter 23, “Cell BE platform-specific extension APIs,” on page 113

© Copyright IBM Corp. 2006, 2007 57

58 ALF for Cell BE Programmer’s Guide and API Reference

Chapter 20. ALF API overview

Conventions

ALF and alf are the prefixes for the namespace for ALF. For normal function

prototypes and data structure declarations, use all lowercase characters with

underscores (_) separating the words. For macro definitions, use all uppercase

characters with underscores separating the words.

Data type assumptions

 int This data type is assumed to be signed by default on both the host

and accelerator. The size of this data type is defined by the

Application Binary Interface (ABI) of the architecture. However, the

minimum size of this data type is 32 bits. The actual size of this data

type might differ between the host and the accelerator architectures.

unsigned int This data type is assumed to be the same size as that of int.

char This data type is not assumed to be signed or unsigned. The size of

this data structure, however, must be 8 bits.

long This data type is not used in the API definitions because it might not

be uniformly defined across platforms.

void * The size of this data type is defined by the ABI of the corresponding

architecture and compiler implementation. Note that the actual size of

this data type might differ between the host and accelerator

architectures.

Platform-dependent auxiliary APIs or data structures

The basic APIs and data structures of ALF are designed with cross-platform

portability in mind. Platform-dependent implementation details are not exposed in

the core APIs.

Common data structures

The enumeration type ALF_DATA_TYPE_T defines the data types for data movement

operations between the hosts and the accelerators. The ALF runtime does byte

swapping automatically if the endianness of the host and the accelerators are

different. To disable endian swapping, you can use the data type ALF_DATA_BYTE.

 ALF_DATA_BYTE For data types that are independent of byte orders

ALF_DATA_INT16 For two bytes signed / unsigned integer types

ALF_DATA_INT32 For four bytes signed / unsigned integer types

ALF_DATA_INT64 For eight bytes signed / unsigned integer types

ALF_DATA_FLOAT For four bytes float point types

ALF_DATA_DOUBLE For eight bytes float point types

ALF_DATA_ADDR32 32-bit address

ALF_DATA_ADDR64 64-bit address

© Copyright IBM Corp. 2006, 2007 59

ALF_NULL_HANDLE

NAME

ALF_NULL_HANDLE - Used to indicate a non-initialized handle in the ALF

runtime environment.

DESCRIPTION

The constant ALF_NULL_HANDLE is used to indicate a non-initialized handle in the

ALF runtime environment. All handles should be initialized to this value to avoid

ambiguity in code semantics.

ALF_STRING_TOKEN_ MAX

NAME

ALF_STRING_TOKEN_ MAX - This constant defines the maximum allowed

length of the string tokens in unit of bytes, excluding the trailing zero.

DESCRIPTION

These string tokens are used in ALF as identifiers of function names or other

purposes. Currently, this value is defined to be 251 bytes.

60 ALF for Cell BE Programmer’s Guide and API Reference

Chapter 21. Host API

The host API includes the following:

v “Basic framework API” on page 62

v “Compute task API” on page 70

v “Work block API” on page 86

v “Data set API” on page 93

© Copyright IBM Corp. 2006, 2007 61

Basic framework API

The following API definitions are the basic framework APIs.

alf_handle_t

NAME

alf_handle_t - This data structure is used as a reference to one instance of the ALF

runtime.

DESCRIPTION

This data structure is used as a reference to one instance of the ALF runtime. The

data structure is initialized by calling the alf_init API call and is destroyed by

alf_exit.

62 ALF for Cell BE Programmer’s Guide and API Reference

alf_init

NAME

alf_init - Initializes the ALF runtime.

SYNOPSIS

int alf_init(void* p_sys_config_info, alf_handle_t* p_alf_handle);

 Parameters

p_sys_config_info [IN] A platform-dependent configuration information placeholder

so that the ALF runtime can get the necessary data for

system configuration information.

This parameter should point to sys_config_info_CBEA_t

data structure. This data structure is defined as follows:

typedef struct {

 char* library_path;

 } alf_sys_config_t_CBEA_t;

p_alf_handle [OUT] A pointer to a handle for a data structure that represents the

ALF runtime. This buffer is initialized with proper data if

the call is successful. Otherwise, the content is not modified.

DESCRIPTION

This function initializes the ALF runtime. It allocates the necessary resources and

global data for ALF as well as sets up any platform specific configurations.

RETURN VALUE

 >= 0 Successful, the result of the query

less than 0 Errors:

v ALF_ERR_INVAL: Invalid input parameter

v ALF_ERR_NODATA: Some system configuration data is not

available

v ALF_ERR_NOMEM: Out of memory or some system resources

have been used up

v ALF_ERR_GENERIC: Generic internal errors

OPTIONS

 Field value

library_path The path to all of the application’s computational kernel

shared object files. If the pointer is NULL, the

ALF_LIBRARY_PATH environment variable is checked and if it

is defined then it is used. If neither is set, the default ″.″ (the

current directory) is used.

Chapter 21. Host API 63

alf_query_system_info

NAME

alf_query_system_info - Queries basic configuration information.

SYNOPSIS

int alf_query_system_info(alf_handle_t alf_handle, ALF_QUERY_SYS_INFO_T

query_info, ALF_ACCEL_TYPE_T accel_type, unsigned int * p_query_result);

 Parameters

alf_handle [IN] Handle to the ALF runtime.

query_info [IN] A query identification that indicates the item to be queried:

v ALF_QUERY_NUM_ACCEL: Returns the number of accelerators in the system.

v ALF_QUERY_HOST_MEM_SIZE: Returns the memory size of control nodes

up to 4T bytes, in units of kilobytes (2^10 bytes). When the size of

memory is more than 4T bytes, the total reported memory size is

(ALF_QUERY_HOST_MEM_SIZE_EXT*4T + ALF_QUERY_HOST_MEM_SIZE*1K)

bytes. In case of systems where virtual memory is supported, this

should be the maximum size of one contiguous memory block that a

single user space application could allocate.

v ALF_QUERY_HOST_MEM_SIZE_EXT: Returns the memory size of control

nodes, in units of 4T bytes (2^42 bytes).

v ALF_QUERY_ACCEL_MEM_SIZE: Returns the memory size of accelerator

nodes up to 4T bytes, in units of kilo bytes (2^10 bytes) . When the size

of memory is more than 4T bytes, the total reported memory size is

(ALF_QUERY_ACCEL_MEM_SIZE_EXT*4T + ALF_QUERY_ACCL_MEM_SIZE*1K)

bytes. For systems where virtual memory is supported, this should be

the maximum size of one contiguous memory block that a single user

space application could allocate.

v ALF_QUERY_ACCEL_MEM_SIZE_EXT: Returns the memory size of accelerator

nodes, in units of 4T bytes (2^42 bytes).

v ALF_QUERY_HOST_ADDR_ALIGN: Returns the basic requirement of memory

address alignment on control node side, in exponential of 2. A zero

stands for byte aligned address. A 4 is to align by 16 byte boundaries.

v ALF_QUERY_ACCEL_ADDR_ALIGN: Returns the basic requirement of memory

address alignment on accelerator node side, in exponential of 2. A zero

stands for byte aligned address. An 8 is to align by 256 byte boundaries

v ALF_QUERY_DTL_ADDR_ALIGN: Returns the address alignment of data

transfer list entries, in exponential of 2. A zero stands for byte aligned

address. An 8 is to align by 256 byte boundaries.

v ALF_QUERY_ACCEL_ENDIAN_ORDER:

– ALF_ENDIAN_ORDER_BIG

– ALF_ENDIAN_ORDER_LITTLE

v ALF_QUERY_HOST_ENDIAN_ORDER:

– ALF_ENDIAN_ORDER_BIG

– ALF_ENDIAN_ORDER_LITTLE

accel_type [IN] Accelerator type. There is only one accelerator type defined, which is

ALF_ACCEL_TYPE_SPE

p_query_result

[OUT]

Pointer to a buffer where the return value of the query is saved. If the

query fails, the result is undefined. If a NULL pointer is provided, the

query value is not returned, but the call returns zero.

64 ALF for Cell BE Programmer’s Guide and API Reference

DESCRIPTION

This function queries basic configuration information for the specific system on

which ALF is running.

RETURN VALUE

 0 Successful, the result of query is returned by p_result if that pointer is

not NULL

less than 0 Errors occurred:

v ALF_ERR_INVAL: Unsupported query

v ALF_BADF: Invalid ALF handle

v ALF_ERR_GENERIC: Generic internal errors

Chapter 21. Host API 65

alf_num_instances_set

NAME

alf_num_instances_set - Sets the maximum total number of parallel task instances

ALF can have at one time.

SYNOPSIS

int alf_num_instances_set(alf_handle_t alf_handle, unsigned int

number_of_instances);

 Parameters

alf_handle [IN] A handle to the ALF runtime code.

number_of_instances [IN] Specifies the maximum number of task instances that the caller

wants to have. When this parameter is zero, the runtime

allocates as many task instances as requested by the application

programmer. However, the subsequent alf_ask_create call

returns an error if ALF cannot accommodate the request.

DESCRIPTION

This function sets the maximum total number of parallel task instances ALF can

have at one time. If number_of_instances is zero, there is no limit set by the

application and ALF returns an error if it cannot accommodate a particular task

creation request with a large number of instances.

Note: In SDK 3.0, this function is called once at the beginning after alf_init and

before any alf_task_create. The ability to call this function twice to reset the

number of instances is not supported. An ALF_ERR_PERM is returned in this

situation.

RETURN VALUE

 > 0 the actual number of instances provided by the ALF runtime.

less than 0 Errors occurred:

v ALF_ERR_INVAL: Invalid input argument

v ALF_ERR_BADF: Invalid ALF handle

v ALF_ERR_PERM: The API call is not permitted at the current

context

v ALF_ERR_GENERIC: Generic internal errors

66 ALF for Cell BE Programmer’s Guide and API Reference

alf_exit

NAME

alf_exit - Shuts down the ALF runtime.

SYNOPSIS

int alf_exit(alf_handle_t alf_handle, ALF_EXIT_POLICY_T policy, int timeout);

 Parameters

alf_handle [IN] The ALF handle

policy [IN] Defines the shutdown behavior:

v ALF_EXIT_POLICY_FORCE: Performs a

shutdown immediately and stops all

unfinished tasks if there are any.

v ALF_EXIT_POLICY_WAIT: Waits for all tasks

to be processed and then shuts down.

v ALF_EXIT_POLICY_TRY: Returns with a

failure if there are unfinished tasks.

time_out [IN] A timeout value that has the following

values:

v > 0 : Wait at most the specified

milliseconds before a timeout error

happens or a forced shutdown

v = 0 : Shutdown or return without wait

v less than 0 : Waits forever, only valid with

ALF_EXIT_POLICY_WAIT

DESCRIPTION

This function shuts down the ALF runtime. It frees allocated accelerator resources

and stops all running or pending work queues and tasks, depending on the policy

parameter.

RETURN VALUE

 >= 0 The shutdown succeeded. The number of unfinished work blocks is

returned.

less than 0 The shutdown failed:

v ALF_ERR_INVAL: Invalid input argument

v ALF_ERR_BADF: Invalid ALF handle

v ALF_ERR_PERM: The API call is not permitted at the current context

v ALF_ERR_NOSYS: The required policy is not supported

v ALF_ERR_TIME: Timeout

v ALF_ERR_BUSY: There are tasks still running

v ALF_ERR_GENERIC: Generic internal errors

Chapter 21. Host API 67

alf_error_handler_register

NAME

alf_error_handler_register - Registers a global error handler function to the ALF

runtime code.

SYNOPSIS

int alf_error_handler_register(alf_handle_t alf_handle, alf_error_handler_t

error_handler_function, void *p_context)

 Parameters

alf_handle [IN] A handle to the ALF runtime code.

error_handler_function

[IN]

A pointer to the user-defined error handler function. A NULL

value resets the error handler to the ALF default handler.

p_context [IN] A pointer to the user-defined context data for the error handler

function. This pointer is passed to the user-defined error

handler function when it is invoked.

DESCRIPTION

This function registers a global error handler function to the ALF runtime code. If

an error handler has already been registered, the new one replaces it.

RETURN VALUE

 0 Successful.

less than 0 Errors occurred:

v ALF_ERR_INVAL: Invalid input argument

v ALF_ERR_BADF: Invalid ALF handle

v ALF_ERR_PERM: The API call is not permitted at the current

context

v ALF_ERR_FAULT: Invalid buffer or error handler address (only

when it is possible to detect the fault)

v ALF_ERR_GENERIC: Generic internal errors

ALF_ERR_POLICY_T

NAME

ALF_ERR_POLICY_T - Callback function prototype that can be registered to the

ALF runtime for customized error handling.

SYNOPSIS

ALF_ERR_POLICY_T(*alf_error_handler_t)(void *p_context_data, int error_type,

int error_code, char *error_string)

 Parameters

p_context_data

[IN]

A pointer given to the ALF runtime when the error handler is registered.

The ALF runtime passes it to the error handler when the error handler is

invoked. The error handler can use this pointer to keep its private data.

68 ALF for Cell BE Programmer’s Guide and API Reference

error_type [IN] A system-wide definition of error type codes, including the following:

v ALF_ERR_FATAL: Cannot continue, the framework must shut down.

v ALF_ERR_EXCEPTION: You can choose to retry or skip the current

operation.

v ALF_ERR_WARNING: You can choose to continue by ignoring the error.

error_code [IN] A type-specific error code.

error_string

[IN]

A C string that holds a printable text string that provides information

about the error.

DESCRIPTION

This is a callback function prototype that can be registered to the ALF runtime for

customized error handling.

RETURN VALUE

 ALF_ERR_POLICY_RETRY Indicates that the ALF runtime should retry the operation that

caused the error. If a severe error occurs and the ALF runtime

cannot retry this operation, it will report an error and shut

down.

ALF_ERR_POLICY_SKIP Indicates that the ALF runtime should stop the operation that

caused the error and continue processing. If the error is severe

and the ALF runtime cannot continue, it will report an error

and shut down.

ALF_ERR_POLICY_ABORT Indicates that the ALF runtime must stop the operations and

shut down.

ALF_ERR_POLICY_IGNORE Indicates that the ALF runtime will ignore the error and

continue. If the error is severe and the ALF runtime cannot

continue, it will report an error and shut down.

Chapter 21. Host API 69

Compute task API

The following API definitions are the compute task APIs.

alf_task_handle_t

NAME

alf_task_handle_t - This data structure is a handle to a specific compute task

running on the accelerators.

DESCRIPTION

It is created by calling the alf_task_create function and destroyed by either

calling the alf_task_destroy function or when the alf_exit function is called. Call

the alf_task_wait function to wait for the task to finish processing all queued

work blocks. The alf_task_finalize API is also used to indicate to the ALF

runtime that no new work blocks will be added to the work queue of the

corresponding task in the future.

alf_task_desc_handle_t

NAME

alf_task_desc_handle_t - This data structure is a handle to a task descriptor.

DESCRIPTION

This data structure is used to access and setup task descriptor information. It is

created by calling alf_task_desc_create and destroyed by calling

alf_task_desc_destroy.

70 ALF for Cell BE Programmer’s Guide and API Reference

alf_task_desc_create

NAME

alf_task_desc_create - Creates a task descriptor.

SYNOPSIS

int alf_task_desc_create (alf_handle_t alf_handle, ALF_ACCEL_TYPE_T

accel_type, alf_task_desc_handle_t * p_desc_info_handle);

 Parameters

alf_handle Handle to the ALF runtime.

accel_type [IN] The type of accelerator that tasks created from this descriptor

are expected to run on.

p_task_desc_handle [OUT] Returns a handle to the created task description. The content of

the pointer is not modified if the call fails.

DESCRIPTION

This function creates a task descriptor. The data structure is returned through the

pointer to its handle. The created data structure contains all the information

relevant for a compute task.

RETURN VALUE

 0 Successful

less than 0 Errors occurred:

v ALF_ERR_INVAL: Invalid input argument

v ALF_ERR_BADF: Invalid ALF handle

v ALF_ERR_NOMEM: Out of memory or system resource

v ALF_ERR_PERM: The API call is not permitted at the current

context

v ALF_ERR_GENERIC: Generic internal errors

Chapter 21. Host API 71

alf_task_desc_destroy

NAME

alf_task_desc_destroy - Destroys the specified task descriptor and frees up the

resources associated with this task descriptor.

SYNOPSIS

int alf_task_desc_destroy (alf_task_desc_handle_t task_desc_handle);

 Parameters

task_desc_handle [IN/OUT] Handle to a task descriptor. This data structure is destroyed

when it returns from this call.

DESCRIPTION

This function destroys the specified task descriptor and frees up the resources

associated with this task descriptor. A task descriptor cannot be destroyed if it is

being used by a task. An attempt to destroy an occupied task descriptor results in

an error.

RETURN VALUE

 0 Successful

less than 0 Errors occurred:

v ALF_ERR_INVAL: Invalid input argument.

v ALF_ERR_BADF: Invalid task descriptor handle.

v ALF_ERR_BUSY: This task descriptor is being used. You must

destroy all tasks using this descriptor before you can

destroy the descriptor.

v ALF_ERR_PERM: The API call is not permitted at the current

context.

v ALF_ERR_GENERIC: Generic internal errors.

72 ALF for Cell BE Programmer’s Guide and API Reference

alf_task_desc_ctx_entry_add

NAME

alf_task_desc_ctx_entry_add - Adds a description of one entry in the task context

associated with this task descriptor.

SYNOPSIS

int alf_task_desc_ctx_entry_add (alf_task_desc_handle_t task_desc_handle,

ALF_DATA_TYPE_T data_type, unsigned int size);

 Parameters

task_desc_handle [IN] Handle to the task descriptor structure

data_type [IN] Data type of data in the entry

size [IN] Number of elements of type data_type

DESCRIPTION

This function adds a description of one entry in the task context associated with

this task descriptor.

RETURN VALUE

 0 Successful

less than 0 Errors occurred:

v ALF_ERR_INVAL: Invalid input argument

v ALF_ERR_BADF: Invalid task descriptor handle

v ALF_ERR_NOSYS: The ALF_DATA_TYPE_T provided is not

supported.

v ALF_ERR_PERM: The API call is not permitted at the current

context

v ALF_ERR_NOBUFS: The requested entry has exceeded the

maximum buffer size

v ALF_ERR_GENERIC: Generic internal errors

Chapter 21. Host API 73

alf_task_desc_set_int32

NAME

alf_task_desc_set_int32 - Sets the value for a specific integer field of the task

descriptor.

SYNOPSIS

int alf_task_desc_set_int32 (alf_task_desc_handle_t task_desc_handle,

ALF_TASK_DESC_FIELD_T field, unsigned int value);

 Parameters

task_desc_handle [IN/OUT] Handle to the task descriptor structure

field [IN] The field to be set. Possible inputs are

v ALF_TASK_DESC_WB_PARM_CTX_BUF_SIZE: size of the work block

parameter buffer

v ALF_TASK_DESC_WB_IN_BUF_SIZE: size of the work block input

buffer

v ALF_TASK_DESC_WB_OUT_BUF_SIZE: size of the work block

output buffer

v ALF_TASK_DESC_WB_INOUT_BUF_SIZE: size of the work block

overlapped input/output buffer

v ALF_TASK_DESC_NUM_DTL_ENTRIES: maximum number of

entries for the data transfer list

v ALF_TASK_DESC_TSK_CTX_SIZE: size of the task context buffer

v ALF_TASK_DESC_PARTITION_ON_ACCEL: specifies whether the

accelerator functions (alf_accel_input_dtl_prepare and

alf_accel_output_dtl_prepare) are invoked to generate data

transfer lists for input and output data.

v ALF_TASK_DESC_MAX_STACK_SIZE:

value [IN] New value of the specified field

DESCRIPTION

This function sets the value for a specific integer field of the task descriptor. The

default value of an un-set field is zero (0).

RETURN VALUE

 0 Successful

less than 0 Errors occurred:

v ALF_ERR_INVAL: Invalid input argument

v ALF_ERR_BADF: Invalid task descriptor handle

v ALF_ERR_NOSYS: The ALF_TASK_DESC_FIELD provided is not

supported.

v ALF_ERR_PERM: The API call is not permitted at the current

context

v ALF_ERR_RANGE: The specified value is out of the allowed

range

v ALF_ERR_GENERIC: Generic internal errors

74 ALF for Cell BE Programmer’s Guide and API Reference

alf_task_desc_set_int64

NAME

alf_task_desc_set_int64 - Sets the value for a specific long integer field of the task

descriptor structure.

SYNOPSIS

int alf_task_desc_set_int64(alf_task_desc_handle_t task_desc_handle,

ALF_TASK_DESC_FIELD_T field, unsigned long long value);

 Parameters

task_desc_handle [IN/OUT] Handle to the task descriptor structure

field [IN] The field to be set. Possible inputs are

v ALF_TASK_DESC_ACCEL_LIBRARY_REF_L: Specify the name of

the library that the accelerator image is contained in.

v ALF_TASK_DESC_ACCEL_IMAGE_REF_L : Specify the name of the

accelerator image that is contained in the library.

v ALF_TASK_DESC_ACCEL_KERNEL_REF_L: Specify the name of the

computational kernel function, this usually is a string

constant that the accelerator runtime could use to find the

correspondent function.

v ALF_TASK_DESC_ACCEL_INPUT_DTL_REF_L: Specify the name of

the input list prepare function, this usually is a string

constant that the accelerator runtime could use to find the

correspondent function.

v ALF_TASK_DESC_ACCEL_OUTUT_DTL_REF_L: Specify the name of

the output list prepare function, this usually is a string

constant that the accelerator runtime could use to find the

correspondent function

v ALF_TASK_DESC_ACCEL_CTX_SETUP_REF_L: Specify the name of

the context setup function, this usually is a string constant

that the accelerator runtime could use to find the

correspondent function.

v ALF_TASK_DESC_ACCEL_CTX_MERGE_REF_L: Specify the name of

the context merge function, this usually a string constant

that the accelerator runtime could use to find the

correspondent function.

value [IN] New value of the specified field

DESCRIPTION

This function sets the value for a specific long integer field of the task descriptor

structure. All string constants must have a maximum number of

ALF_STRING_TOKEN_MAX size.

RETURN VALUE

 0 Successful

Chapter 21. Host API 75

less than 0 Errors occurred:

v ALF_ERR_INVAL: Invalid input argument

v ALF_ERR_BADF: Invalid task descriptor handle

v ALF_ERR_NOSYS: The ALF_TASK_DESC_FIELD provided is not

supported.

v ALF_ERR_PERM: The API call is not permitted at the current

context

v ALF_ERR_RANGE: The specified value is out of the allowed

range

v ALF_ERR_GENERIC: Generic internal errors

76 ALF for Cell BE Programmer’s Guide and API Reference

alf_task_create

NAME

alf_task_create - Creates a task and allows you to add work blocks to the work

queue of the task.

SYNOPSIS

int alf_task_create(alf_task_desc_handle_t task_desc_handle, void*

p_task_context_data, unsigned int num_instances, unsigned int tsk_attr,

unsigned int wb_dist_size, alf_task_handle_t *p_task_handle);

 Parameters

task_desc_handle [IN] Handle to a task_desc structure.

p_task_context_data [IN] Pointer to the task context data for this task. The structure and

size for the task context have been defined through

alf_task_desc_add_task_ctx_entry. If there is no

task_context, a NULL pointer can be provided.

num_instances [IN] Number of instances of the task, only used when

ALF_TASK_ATTR_SCHED_FIXED is provided.

tsk_attr [IN] Attribute for a task. This value can be set to a bit-wise OR to

one of the following:

v ALF_TASK_ATTR_SCHED_FIXED: The task must be scheduled on

the specified number of accelerators. By default, a task can

be scheduled on any number of accelerators and the number

of accelerators can be adjusted at anytime during the

execution of the task.

v ALF_TASK_ATTR_WB_CYCLIC: the work blocks for this task are

distributed to the accelerators in a cyclic order as specified

by num_accelerators. By default, the work blocks

distribution order is determined by the ALF runtime. This

option must be used combined with

ALF_TASK_ATTR_SCHED_FIXED.

wb_dist_size [IN] The specified block distribution bundle size in number of work

blocks per distribution unit. A 0 (zero) value is treated as 1

(one). Refer to “Work block scheduling” on page 16 for more

details about work block distribution.

p_task_handle [OUT] Returns a handle to the created task. The content of the pointer

is not modified if the call returns failure.

DESCRIPTION

This function creates a task and allows you to enqueue work blocks to the task.

The task remains in a pending status until the following condition is met: All

dependencies are satisfied and either at least one work block is added or the task

is finalized by calling alf_task_finalize.

When the condition is met, the task becomes ready to run. However, when the task

actually starts to run depends on the available accelerator resources and the

scheduling of ALF runtime. Multiple independent tasks can also run concurrently

if there are enough accelerator resources. When the task starts to run, it keeps

running until at least one of the following two conditions is met:

v The task has been finalized by calling alf_task_finalize and all the enqueued

work blocks are processed and the task context has been merged and written

back;

v alf_task_destroy is called to explicitly destroy the task.

Chapter 21. Host API 77

Note: A finalized task without any work block enqueued is never actually loaded

and run. The runtime considers this task as completed immediately after the

dependencies are satisfied.

RETURN VALUE

 0 Successful

less than 0 Errors occurred:

v ALF_ERR_INVAL: Invalid input argument

v ALF_ERR_BADF: Invalid ALF handle

v ALF_ERR_NOMEM: Out of memory or system resource

v ALF_ERR_PERM: The API call is not permitted at the current

context

v ALF_ERR_NOEXEC: Invalid task image format or description

information

v ALF_ERR_2BIG: Memory requirement for the task exceeds

maximum range

v ALF_ERR_NOSYS: The required task attribute is not supported

v ALF_ERR_BADR: The requested number of accelerator

resources is not available

v ALF_ERR_GENERIC: Generic internal errors

78 ALF for Cell BE Programmer’s Guide and API Reference

alf_task_finalize

NAME

alf_task_finalize - Finalizes the work block queue of the specified task.

SYNOPSIS

int alf_task_finalize (alf_task_handle_t task_handle)

 Parameters

task_handle [IN] The task handle that is returned by the alf_create_task API

DESCRIPTION

This function finalizes the task. After the task has been finalized, future calls to

alf_wb_create and alf_task_depends_on and alf_task_event_handler_register

return errors.

Note: Task finalization is a compulsory condition for a task to run and complete

normally.

RETURN VALUE

 less than 0 Errors occurred:

v ALF_ERR_BADF: Invalid task descriptor handle.

v ALF_ERR_SRCH: Already finalized task handle.

v ALF_ERR_PERM: The API call is not permitted at the current

context. For example, some created work block handles are

not enqueued.

v ALF_ERR_GENERIC: Generic internal errors.

Chapter 21. Host API 79

alf_task_wait

NAME

alf_task_wait - Waits for the specified task to finish processing all work blocks on

all the scheduled accelerators.

SYNOPSIS

int alf_task_wait(alf_task_handle_t task_handle, int time_out);

 Parameters

task_handle

[IN]

A task handle that is returned by the alf_create_task API.

time_out [IN] A timeout input with the following options for values:

v > 0: Waits for up to the number of milliseconds specified before a

timeout error occurs.

v less than 0: Waits until all of the accelerators finish processing.

v 0: Returns immediately.

DESCRIPTION

This function waits for the specified task to finish processing all work blocks on all

the scheduled accelerators. The task must be finalized (alf_task_finalize must be

called) before this function is called. Otherwise, an ALF_ERR_PERM is returned. Data

referenced by the task’s work blocks can only be used safely after this function

returns. If the host application updates the data buffers referenced by work blocks

or the task context buffer while the task is running, the result can be

undetermined. If you need to update the buffer contents, the only safe point is

before the ALF_TASK_EVENT_READY task event is handled by the task event handler

registered by alf_task_event_handler_register.

RETURN VALUE

 0 All of the accelerators finished the job.

less than 0 Errors occurred:

v ALF_ERR_INVAL: Invalid input argument.

v ALF_ERR_BADF: Invalid task handle.

v ALF_ERR_NODATA: The task is (during wait) or was (before wait)

destroyed explicitly.

v ALF_ERR_TIME: Timeout.

v ALF_ERR_PERM: The API is not permitted at the current context. For

example, the task is not finalized.

v ALF_ERR_GENERIC: Generic internal errors.

80 ALF for Cell BE Programmer’s Guide and API Reference

alf_task_query

NAME

alf_task_query - Queries the current status of a task.

SYNOPSIS

int alf_task_query(alf_task_handle_t task_handle, unsigned int

*p_unfinished_wbs, unsigned int *p_total_wbs);

 Parameters

task_handle [IN] The task handle to be checked.

p_unfinished_wbs [OUT] A pointer to an integer buffer where the number of unfinished

work blocks of this task is returned. When a NULL pointer is

given, the return value is ignored. On error, a returned value is

not defined.

p_total_wbs [OUT] A pointer to an integer buffer where the total number of

submitted work blocks of this task is returned. When a NULL

pointer is given, the return value is ignored. On error, a

returned value is not defined.

DESCRIPTION

This function queries the current status of a task.

RETURN VALUE

 > 1 The task is pending or ready to run.

1 The task is currently running.

0 The task finished normally.

less than 0 Errors occurred:

v ALF_ERR_INVAL: Invalid input argument.

v ALF_ERR_BADF: Invalid task handle.

v ALF_ERR_NODATA: The task was explicitly destroyed.

v ALF_ERR_GENERIC: Generic internal errors.

Chapter 21. Host API 81

alf_task_destroy

NAME

alf_task_destroy - Destroys the specified task.

SYNOPSIS

int alf_task_destroy(alf_task_handle_t* p_task_handle)

 Parameters

task_handle [IN] The pointer to a task handle that is returned by the

alf_create_task API.

DESCRIPTION

This function explicitly destroys the specified task if it is in pending or running

state. If there are work blocks that are still not processed, this routine stops the

execution of those work blocks. If a task is running when this API is invoked, the

task is cancelled before the API returns. Resources associated with this task are

recycled by the runtime either synchronously or asynchronously, depending on the

runtime implementation. This API does nothing on an already completed task. If a

task is destroyed explicitly, all tasks that depend on this task directly or indirectly

are destroyed. Because ALF frees task resources automatically, it is not necessary to

call this API to free up resources after a task has been run to complete normally.

The API should only be used to explicitly end a task when you need to.

RETURN VALUE

 0 Success

less than 0 Errors occurred:

v ALF_ERR_INVAL: Invalid input argument.

v ALF_ERR_BADF: Invalid task handle.

v ALF_ERR_PERM: The API call is not permitted at current

context.

v ALF_ERR_BUSY: Resource busy.

v ALF_ERR_SRCH: Already destroyed task handle.

v ALF_ERR_GENERIC: Generic internal errors.

82 ALF for Cell BE Programmer’s Guide and API Reference

alf_task_depends_on

NAME

alf_task_depends_on - Describes a relationship between two tasks.

SYNOPSIS

int alf_task_depends_on (alf_task_handle_t task_handle_dependent,

alf_task_handle_t task_handle);

 Parameters

task_handle_dependent

[IN]

The handle to the dependent task

task_handle [IN] The handle to a task

DESCRIPTION

This function describes a relationship between two tasks. The task specified by

task_handle_dependent cannot be scheduled to run until the task specified by

task_handle has run to finish normally. When this API is called, task_handle must

not be an explicitly destroyed task. An error is reported if it is the case. If the task

associated with task_handle is destroyed before normal completion, the

task_handle_dependent is also destroyed because its dependency can no longer be

satisfied.

If task A depends on task B, a call to alf_task_wait (A_handle) effectively enforces

a wait on task B as well. A duplicate dependency is handled silently and not

treated as an error.

Refer to “Task dependency and task scheduling” on page 13 for more information

on task dependency and limitations on when the task dependencies can be set.

Note: This function can only be called before any work blocks are enqueued to the

task_handle_dependent and before the task_handle_dependent is finalized. For the

task_handle, these constraint is not applicable.

Whenever a situation occurs that is not permitted, the function returns

ALF_ERR_PERM.

RETURN VALUE

 0 Success

less than 0 Errors occurred:

v ALF_ERR_BADF: Invalid task handle.

v ALF_ERR_PERM: The API call is not permitted at the current

context. For example, the dependency cannot be set because

of the current state of the task.

v ALF_ERR_GENERIC: Generic internal errors.

Chapter 21. Host API 83

alf_task_event_handler_register

NAME

alf_task_event_handler_register - Allows you to register and unregister an event

handler for a specific task.

SYNOPSIS

int alf_task_event_handler_register (alf_task_handle_t task_handle, int

(*task_event_handler)(alf_task_handle_t task_handle,

ALF_TASK_EVENT_TYPE_T event, void* p_data), void* p_data, unsigned int

data_size, unsigned int event_mask);

 Parameters

task_handle [IN] The handle to a task.

task_event_handler [IN] Pointer of the event handler function for the specified task. A

NULL value indicates the current event handler is to be

unregistered.

p_context [IN] A pointer to a context buffer that is copied to another buffer

managed by the ALF runtime. The pointer to this buffer is

passed to the event handler. The content of the context buffer

is copied by value only. A NULL value indicates no context

buffer.

context_size [IN] The size of the context buffer in bytes. Zero indicates no

context buffer.

event_mask [IN] A bitwise OR of ALF_TASK_EVENT_TYPE_T values.

ALF_TASK_EVENT_TYPE_T is defined as follows:

v ALF_TASK_EVENT_FINALIZED: This task has been finalized. No

additional work block can be added to this task. The

registered event handler is invoked right before

alf_task_finalize returns.

v ALF_TASK_EVENT_READY: This task has been scheduled for

execution. The registered event handler is invoked as soon

as the ALF runtime determines that all dependencies have

been satisfied for this specific task and can schedule this

task for execution as soon as this event handler returns.

v ALF_TASK_EVENT_FINISHED: All work blocks in this task have

been processed. The registered event handler is invoked as

soon as the last work block has been processed and the task

context is written back to host memory.

v ALF_TASK_EVENT_INSTANCE_START: One new instance of the

task is started on an accelerator after the event handler

returns.

v ALF_TASK_EVENT_INSTANCE_END: One existing instance of the

task ends and the task context has been copied out to the

original location or has been merged to another current

instance of the same task. The event handler is called as

soon as the task instance is ended and unloaded from the

accelerator.

v ALF_TASK_EVENT_DESTROY: The task is destroyed explicitly.

DESCRIPTION

This function allows you to register an event handler for a specified task. This

function can only be called before alf_task_finalize is invoked. An error is

returned if a you try to register an event handler for a task that has been finalized.

84 ALF for Cell BE Programmer’s Guide and API Reference

If the task_event_handler function is NULL, this function unregisters the current

event handler. If there is no current event handler, nothing happens.

Note: If the event handler is registered after the task begin to run, some of the

events may not be seen.

RETURN VALUE

 0 Success

less than 0 Errors occurred:

v ALF_ERR_INVAL: Invalid input handle.

v ALF_ERR_BADF: Invalid ALF task handle.

v ALF_ERR_PERM: The API call is not permitted at the current

context.

v ALF_ERR_NOMEM: Out of memory.

v ALF_ERR_FAULT: Invalid buffer or error handler address (only

when it is possible to detect the fault).

v ALF_ERR_GENERIC: Generic internal errors.

Chapter 21. Host API 85

Work block API

The following API definitions are the work block APIs.

Data structures

alf_wb_handle_t

NAME

alf_wb_handle_t - This data structure refers to the work block being constructed

by the control node.

86 ALF for Cell BE Programmer’s Guide and API Reference

alf_wb_create

NAME

alf_wb_create - Creates a new work block for the specified compute task.

SYNOPSIS

int alf_wb_create(alf_task_handle_t task_handle, ALF_WORK_BLOCK_TYPE_T

work_block_type, unsigned int repeat_count, alf_wb_handle_t *p_wb_handle);

 Parameters

p_wb_handle

[OUT]

The pointer to a buffer where the created handle is returned. The contents

are not modified if this call fails.

task_handle

[IN]

The handle to the compute task.

work_block_type

[IN]

The type of work block to be created. Choose from the following types:

v ALF_WB_SINGLE: Creates a single-use work block

v ALF_WB_MULTI: Creates a multi-use work block. This work block type is

only supported when the task is created with the

ALF_PARTITION_ON_ACCEL attribute.

repeat_count

[IN]

Specifies the number of iterations for a multi-use work block. This

parameter is ignored when a single-use work block is created.

DESCRIPTION

This function creates a new work block for the specified computing task. The work

block is added to the work queue of the task and the runtime releases the allocated

resources once the work block is processed. The caller can only update the contents

of a work block before it is added to the work queue. After the work block is

added to the work queue, the lifespan of the data structure is left to the ALF

runtime. The ALF runtime is responsible for cleaning up any resource allocated for

the work block. This API can only be called before alf_task_finalize is invoked.

After the alf_task_finalize is called, further calls to this API return an error.

RETURN VALUE

 0 Success.

less than 0 Errors occurred:

v ALF_ERR_INVAL: Invalid input argument.

v ALF_ERR_PERM: Operation not allowed in current context. For example,

the task has already been finalized or the work block has been

enqueued.

v ALF_ERR_BADF: Invalid task handle.

v ALF_ERR_NOMEM: Out of memory.

v ALF_ERR_GENERIC: Generic internal errors.

Chapter 21. Host API 87

alf_wb_enqueue

NAME

alf_wb_enqueue - Adds the work block to the work queue of the specified task

handle.

SYNOPSIS

int alf_wb_enqueue(alf_wb_handle_t wb_handle)

 Parameters

wb_handle [IN] The handle of the work block to be put into the work queue.

DESCRIPTION

This function adds the work block to the work queue of the specified task handle.

The caller can only update the contents of a work block before it is added to the

work queue. After it is added to the work queue, you cannot access the wb_handle.

RETURN VALUE

 0 Success.

less than 0 Errors occurred:

v ALF_ERR_INVAL: Invalid input argument

v ALF_ERR_BADF: Invalid task handle or work block handle

v ALF_ERR_PERM: Operation not allowed in current context

v ALF_ERR_BUSY: An internal resource is occupied

v ALF_ERR_GENERIC: Generic internal errors

88 ALF for Cell BE Programmer’s Guide and API Reference

alf_wb_parm_add

NAME

alf_wb_parm_add - Adds the given parameter to the parameter and context buffer

of the work block in the order that this function is called.

SYNOPSIS

int alf_wb_parm_add(alf_wb_handle_t wb_handle, void *pdata, unsigned int

size_of_data, ALF_DATA_TYPE_T data_type, unsigned int address_alignment)

 Parameters

wb_handle [IN] The work block handle.

pdata [IN] A pointer to the data to be copied.

size_of_data [IN] The size of the data in units of the data type.

data_type [IN] The type of data. This value is required if data endianess

conversion is necessary when moving the data.

address_alignment [IN] Power of 2 byte alignment of 2

address_alignment. The valid range is

from 0 to 16. A zero indicates a byte-aligned address. An 8

indicates alignment on 256 byte boundaries.

DESCRIPTION

This function adds the given parameter to the parameter and context buffer of the

work block in the order that this function is called. The starting address is from

offset zero. The added data is copied to the internal parameter and context buffer

immediately. The relative address of the data can be aligned as specified. For a

specific work block, additional calls to this API return an error after the work block

is put into the work queue by calling the alf_wb_enqueue function.

RETURN VALUE

 0 Success.

less than 0 Errors occurred:

v ALF_ERR_INVAL: Invalid input argument.

v ALF_ERR_PERM: Operation not allowed in current context.

v ALF_ERR_BADF: Invalid task handle or work block handle.

v ALF_ERR_NOBUFS: Some internal resource is occupied.

v ALF_ERR_GENERIC: Generic internal errors.

Chapter 21. Host API 89

alf_wb_dtl_begin

NAME

alf_wb_dtl_begin - Marks the beginning of a data transfer list for the specified

target buffer_type.

SYNOPSIS

int alf_wb_dtl_begin (alf_wb_handle_t wb_handle, ALF_BUF_TYPE_T

buffer_type, unsigned int offset_to_accel_buf);

 Parameters

wb_handle [IN] The work block handle.

buffer_type [IN] The type of the buffer. Possible values are:

v ALF_BUF_IN: Input to the input only buffer

v ALF_BUF_OUT: Output from the output only buffer

v ALF_BUF_OVL_IN: Input to the overlapped buffer

v ALF_BUF_OVL_OUT: Output from the overlapped buffer

v ALF_BUF_OVL_INOUT: In/out to/from the overlapped buffer

offset_to_accel_buf [IN] Offset of the target buffer on the accelerator.

DESCRIPTION

This function marks the beginning of a data transfer list for the specified target

buffer_type. Further calls to function alf_wb_dtl_entry_add refers to the currently

opened data transfer list. You can create multiple data transfer lists per buffer type,

however, only one data transfer list is opened for entry at any time for a specific

work block there can be no nesting of data transfer list.

RETURN VALUE

 0 Success.

less than 0 Errors occurred:

v ALF_ERR_INVAL: Invalid input argument.

v ALF_ERR_PERM: Operation not allowed.

v ALF_ERR_BADF: Invalid work block handle.

v ALF_ERR_2BIG: The offset to the accelerator buffer is larger

than the size of the buffer.

v ALF_ERR_NOSYS: The specified I/O type feature is not

supported.

v ALF_ERR_BADR: The requested buffer is not defined in the task

context.

v ALF_ERR_GENERIC: Generic internal errors.

v ALF_ERR_NOBUFS: The internal data buffer is used up.

90 ALF for Cell BE Programmer’s Guide and API Reference

alf_wb_dtl_entry_add

NAME

alf_wb_dtl_entry_add - Adds an entry to the input or output data transfer lists of

a single use work block.

SYNOPSIS

int alf_wb_dtl_entry_add (alf_wb_handle_t wb_handle, void* host_addr,

unsigned int size, ALF_DATA_TYPE_T data_type);

 Parameters

wb_handle [IN] The work block handle

host_address [IN] The pointer (EA) to the data in remote memory

size [IN] The size of the data in units of the data type

data_type [IN] The type of data, this value is required if data endianess

conversion is necessary when doing the data movement

DESCRIPTION

This function adds an entry to the input or output data transfer lists of a single use

work block. The entry describes a single piece of data transferred from and to the

remote memory. For a specific work block, further calls to this API return errors

after the work block is put to work queue by calling alf_wb_enqueue.

For a specific work block, further calls to this API return error after the work block

is put to work queue by calling alf_wb_enqueue. If the work block’s task is

associated with a dataset, the specified buffer with host_addr and size must be

contained within the dataset. Adding a dtl entry describing a buffer that is outside

the associated dataset returns a ALF_ERR_PERM error.

This function can only be called if the task descriptor associated with the work

block’s task is created with the task descriptor attribute

ALF_TASK_DESC_PARTITION_ON_ACCEL set to false.

RETURN VALUE

 0 Success.

less than 0 Errors occurred:

v ALF_ERR_INVAL: Invalid input argument.

v ALF_ERR_PERM: Operation not allowed.

v ALF_ERR_BADF: Invalid work block handle.

v ALF_ERR_2BIG: Trying to add too many lists.

v ALF_ERR_NOBUFS: The amount of data to move exceeds the

maximum buffer size.

v ALF_ERR_FAULT: Invalid host address (if it can be detected).

v ALF_ERR_GENERIC: Generic internal errors.

Chapter 21. Host API 91

alf_wb_dtl_end

NAME

alf_wb_dtl_end - This function marks the ending of a data transfer list.

SYNOPSIS

int alf_wb_dtl_end (alf_wb_handle_t wb_handle);

 Parameters

wb_handle [IN] The work block handle

DESCRIPTION

This function marks the ending of a data transfer list.

RETURN VALUE

 0 Success.

less than 0 Errors occurred:

v ALF_ERR_PERM: Operation not allowed.

v ALF_ERR_BADF: Invalid work block handle.

92 ALF for Cell BE Programmer’s Guide and API Reference

Data set API

The following API definitions are the data set APIs.

alf_dataset_handle_t

NAME

alf_dataset_handle_t - This data structure is a handle for the data set.

Chapter 21. Host API 93

alf_dataset_create

NAME

alf_dataset_create - Creates a dataset.

SYNOPSIS

int alf_dataset_create(alf_handle_t alf_handle, alf_dataset_handle_t *

p_dataset_handle);

 Parameters

alf_handle[in] Handle to the ALF runtime

p_dataset_handle[out] Handle to the dataset

DESCRIPTION

This function creates a dataset.

RETURN VALUE

 0 Success

less than 0 Errors occurred:

v ALF_ERR_INVAL: Invalid input argument

v ALF_ERR_BADF: Invalid ALF handle

v ALF_ERR_GENERIC: Generic internal errors

94 ALF for Cell BE Programmer’s Guide and API Reference

alf_dataset_buffer_add

NAME

alf_dataset_buffer_add - Adds a data buffer to the data set.

SYNOPSIS

int alf_dataset_buffer_add(alf_dataset_handle_t dataset, void *buffer, unsigned

long long size, ALF_CACHE_DATASET_ACCESS_MODE_T access_mode);

 Parameters

buffer Address of the buffer to be added

size Size of the buffer

access mode Access mode for the buffer. A buffer can have either of the

following access modes:

v ALF_DATASET_READ_ONLY: The data set buffer is read-only.

Work blocks referencing the data in this buffer cannot

update this buffer as an output buffer.

v ALF_DATASET_WRITE_ONLY: The data set buffer is write-only.

Work blocks referencing the data in this buffer as input data

result in indeterminate behavior. If the application does not

write to this buffer during a task’s execution, the content of

the buffer is indeterminate.

v ALF_DATASET_READ_WRITE: The data set buffer allows both

read and write access. Work blocks can use this buffer as

input buffers and output buffers and/or in out buffers. If the

application does not update the this buffer content through

a task, its content is indeterminate.

DESCRIPTION

This function adds a data buffer to the data set.

RETURN VALUE

 0 Success

less than 0 Errors occurred:

v ALF_ERR_INVAL: Invalid input argument

v ALF_ERR_BADF: Invalid ALF handle

v ALF_ERR_PERM: The API call is not permitted with the current

calling context. The dataset has been associated with a task

and thus closed from further buffer additions.

v ALF_ERR_GENERIC: Generic internal errors

Chapter 21. Host API 95

alf_dataset_destroy

NAME

alf_dataset_destroy - Destroys a given data set.

SYNOPSIS

int alf_dataset_destroy(alf_dataset_handle_t dataset_handle);

 Parameters

dataset_handle Handle to the dataset

DESCRIPTION

This function destroys a given dataset. Further references to the dataset result in

indeterminate behaviors. Further references to the data within a dataset are still

valid. You cannot destroy a dataset if there are still running tasks associated with a

dataset.

RETURN VALUE

 0 Success

less than 0 Errors occurred:

v ALF_ERR_INVAL: Invalid input argument.

v ALF_ERR_BADF: Invalid ALF handle.

v ALF_ERR_PERM: The API call is not permitted with the current

calling context. The dataset has been associated with a task

and thus closed from further buffer additions.

v ALF_ERR_GENERIC: Generic internal errors.

96 ALF for Cell BE Programmer’s Guide and API Reference

alf_task_dataset_associate

NAME

alf_task_dataset_associate - Associates a given task with a dataset.

SYNOPSIS

int alf_task_dataset_associate(alf_task_handle_t task, alf_dataset_handle_t

dataset);

 Parameters

dataset_handle Handle to dataset

task_handle Handle to the task

DESCRIPTION

This function associates a given task with a dataset. This function can only be

called before any work block is enqueued for the task. After a task is associated

with a dataset, all subsequent work blocks created and enqueued for this task

cannot reference data outside the dataset.

After a task is associated with a dataset, further calls to alf_data_buffer_add

results in error.

After a task is associated with a dataset, the host application program can only use

the data after alf_task_wait is called and returned.

RETURN VALUE

 0 Success

less than 0 Errors occurred:

v ALF_ERR_INVAL: Invalid input argument

v ALF_ERR_BADF: Invalid ALF handle

v ALF_ERR_PERM: The API call is not permitted with the current

calling context. The dataset has been associated with a task

and thus closed from further buffer additions.

v ALF_ERR_SRCH: Already destroyed task handle

v ALF_ERR_GENERIC: Generic internal errors

Chapter 21. Host API 97

98 ALF for Cell BE Programmer’s Guide and API Reference

Chapter 22. Accelerator API

The following API definitions are the accelerator APIs.

Computational kernel function exporting macros

The ALF MPMD programming model supports multiple computational kernels in

a single accelerator execution image. To allow the ALF runtime to differentiate

between different functions for different kernels, you need to export these

functions to the ALF runtime. Some macros are provided to make sure the function

exporting can be performed in a platform-neutral way. In each accelerator side

execution image, there must be at least one computational kernel API exporting

definition section. However the maximum allowed number of sections is

platform-dependent.

The following example shows how these macros are used.

/* API implementations for task "foo" */

int foo_comp_kernel(...) {...}

int foo_input_prepare(...) {...}

int foo_output_prepare(...) {...}

int foo_ctx_setup(...) {...}

int foo_ctx_merge(...) {...}

/* API implementations for task "bar" */

int bar_comp_kernel(...) {...}

int bar_input_prepare(...) {...}

int bar_output_prepare(...) {...}

int bar_ctx_setup(...) {...}

int bar_ctx_merge(...) {...}

/* API exporting definition section */

ALF_ACCEL_API_LIST_BEGIN

/* for task "foo" */

ALF_ACCEL_EXPORT_API ("foo_comp_kernel", foo_comp_kernel);

ALF_ACCEL_EXPORT_API ("foo_input_prepare", foo_input_prepare);

ALF_ACCEL_EXPORT_API ("foo_output_prepare", foo_output_prepare);

ALF_ACCEL_EXPORT_API ("foo_ctx_setup", foo_ctx_setup);

ALF_ACCEL_EXPORT_API ("foo_ctx_merge", foo_ctx_merge);

/* for tas "bar" */

ALF_ACCEL_EXPORT_API ("bar_comp_kernel", bar_comp_kernel);

ALF_ACCEL_EXPORT_API ("bar_input_prepare", bar_input_prepare);

ALF_ACCEL_EXPORT_API ("bar_output_prepare", bar_output_prepare);

ALF_ACCEL_EXPORT_API ("bar_ctx_setup", bar_ctx_setup);

ALF_ACCEL_EXPORT_API ("bar_ctx_merge", bar_ctx_merge);

ALF_ACCEL_EXPORT_API_LIST_END

© Copyright IBM Corp. 2006, 2007 99

ALF_ACCEL_EXPORT_API

NAME

ALF_ACCEL_EXPORT_API - Declares one entry of the computing kernel API

exporting definition section.

SYNOPSIS

ALF_ACCEL_EXPORT_API(const char *p_api_name, int (*p_api)())

 Parameters

p_api_name[IN] The string constant that uniquely identifies the exported API. It

is recommended to be just the same as the correspondent

function identifier.

p_api[IN] The exported function entry pointer.

DESCRIPTION

This macro declares one entry of the computing kernel API exporting definition

section. The ALF runtime locates the entry address of the user-implemented

computing kernel functions based on information provided by the corresponding

entries.

ALF_ACCEL_EXPORT_API_LIST_BEGIN

NAME

ALF_ACCEL_EXPORT_API_LIST_BEGIN - This macro declares the beginning of

computational kernel API exporting definition section.

DESCRIPTION

This macro must be the first statement of the definition section.

ALF_ACCEL_EXPORT_API_LIST_END

NAME

ALF_ACCEL_EXPORT_API_LIST_END - This macro declares the ending of

computational kernel API exporting definition section.

DESCRIPTION

This macro must be the last statement of the definition section.

100 ALF for Cell BE Programmer’s Guide and API Reference

User-provided computational kernel APIs

This section lists the prototypes of accelerator APIs that you need to implement.

Some of these functions are optional functions, which you do not need to

implement if not required.

Note: For documentation purposes, names are provided for these different

prototype APIs. However, you can choose your own function names for your

implementations of these functions.

Chapter 22. Accelerator API 101

alf_accel_comp_kernel

NAME

alf_accel_comp_kernel - Computes the work blocks.

SYNOPSIS

int alf_accel_comp_kernel(void* p_task_ctx, void *p_parm_ctx_buffer, void

*p_input_buffer, void *p_output_buffer, void* p_inout_buffer, unsigned int

current_iter, unsigned int num_iter);

 Parameters

p_task_context [IN] A pointer to the local memory block where

the task context buffer is kept.

p_parm_ctx_data [IN] A pointer to the local memory block where

the parameter and context data are kept.

p_input_buffer [IN] A pointer to the local memory block where

the input data is loaded.

p_output_buffer [IN] A pointer to the local memory block where

the output data is written.

p_inout_buffer [IN] A pointer to the accelerator memory block

where the in/out buffers are located.

current_iter [IN] The current iteration count of multi-use work

blocks. This value starts at 0. For single-use

work blocks, this value is always 0.

num_iter [IN] The total number of iterations of multi-use

work blocks. For single-use work blocks, this

value is always 1.

DESCRIPTION

This is the computational kernel that does the computation of the work blocks. The

ALF runtime ensures that all input data are available before invoking this call. You

must provide an implementation for this function.

RETURN VALUE

 0 The computation finished correctly.

less than 0 An error occurred during the computation. The error code is

passed back to you to be handled.

102 ALF for Cell BE Programmer’s Guide and API Reference

alf_accel_input_dtl_prepare

NAME

alf_accel_input_dtl_prepare - Defines the data transfer lists for input data.

SYNOPSIS

int alf_accel_input_dtl_prepare (void* p_task_context, void *p_parm_context,

void *p_dtl, unsigned int current_iter, unsigned int num_iter);

 Parameters

p_task_context[IN] Pointer to the task context buffer in accelerator memory.

p_parm_ctx_buffer[IN] Pointer to the work block parameter context buffer in

accelerator memory.

p_dtl[IN] Pointer the data transfer list the generated data transfer list

should be saved.

current_iter[IN] The current iteration count of multi-use work blocks. This

value starts at 0. For single-use work blocks, this value is

always 0.

num_iter[IN] The total number of iterations of multi-use work blocks. For

single-use work blocks, this value is always 1.

DESCRIPTION

This function is called by the ALF runtime when it needs the accelerator to define

the data transfer lists for input data. One important point to consider is that

because the ALF framework may do double buffering, the function only refers to

the information provided by the p_parm_ctx_buffer. This function should generate

the data transfer lists for the input buffer (ALF_BUF_IN), the overlapped input buffer

(ALF_BUF_OVL_IN), and the overlapped I/O buffer (ALF_BUF_OVL_INOUT) when these

buffers are enabled. For the overlapped I/O buffer (ALF_BUF_OVL_INOUT), the data

transfer list generated in this function is reused by the runtime to push the data

back to host memory.

This function is an optional function. It is only called if the task descriptor sets the

ALF_TASK_DESC_PARTITION_ON_ACCEL to true. When this attribute is not set or set to

false, you can choose not to implement this API when the programming

environment supports weak link or to implement an empty function that returns

zero when weak link is not supported.

RETURN VALUE

 0 The computation finished correctly.

less than 0 An error occurred during the call. The error code is passed

back to you to be handled.

Chapter 22. Accelerator API 103

alf_accel_output_dtl_prepare

NAME

alf_accel_output_dtl_prepare - Defines the partition of output data.

SYNOPSIS

int alf_accel_output_dtl_prepare (void* p_task_context, void *p_parm_ctx_buffer,

void *p_io_container, unsigned int current_iter, unsigned int num_iter);

 Parameters

p_task_context[IN] Pointer to the task context buffer in accelerator memory.

p_parm_ctx_buffer[IN] Pointer to the work block parameter context in accelerator

memory.

p_dt_list_buffer[IN] Pointer to the buffer where the generated data transfer list

should be saved.

current_iter[IN] The current iteration count of multi-use work blocks. This

value starts at 0. For single-use work blocks, this value is

always 0.

num_iter[IN] The total number of iterations of multi-use work blocks. For

single-use work blocks, this value is always 1.

DESCRIPTION

This function is called by the ALF runtime when it needs the accelerator to define

the partition of output data. Because the ALF may be doing double buffering, the

function should only refer to the information provided by the p_parm_ctx_buffer.

This function generates the data transfer lists for the output buffer (ALF_BUF_OUT)

and the overlapped output buffer (ALF_BUF_OVL_OUT) when these buffers are

enabled.

This function is only called if the task descriptor sets the

ALF_TASK_DESC_PARTITION_ON_ACCEL to true. When this attribute is not set or set

false, you can choose not to implement this API when the programming

environment supports weak link or to implement an empty function that return

zero when weak link is not supported.

RETURN VALUE

 0 The computation finished correctly.

less than 0 An error occurred during the call. The error code is passed

back to you to be handled.

104 ALF for Cell BE Programmer’s Guide and API Reference

alf_accel_task_context_setup

NAME

alf_accel_task_context_setup - Initializes a task.

SYNOPSIS

int alf_accel_task_context_setup (void* p_task_context);

 Parameters

p_task_context [IN/OUT] Pointer to task context in accelerator memory.

DESCRIPTION

This function is called by the ALF runtime when a task starts running on an

accelerator. The runtime loads the initial task context to the local memory and calls

this function to do some task instance specific initialization.

The ALF runtime only invokes this API when the task has a task context. When

the task does not have a task context or the application does not need extra setup

of the initial context, you can choose not to implement this API when the

programming environment supports weak link or to implement an empty function

that returns zero when weak link is not supported.

RETURN VALUE

 0 The API call finished correctly.

less than 0 An error happened during the call. The error code is passed

back to you to be handled.

Chapter 22. Accelerator API 105

alf_accel_task_context_merge

NAME

alf_accel_task_context_merge - Merges the context after a task has stopped

running.

SYNOPSIS

int alf_accel_task_context_merge (void* p_task_context_to_be_merged, void*

p_task_context);

 Parameters

p_task_context_to_merge[IN] Pointer to the local memory block where the to be merged task

context buffer is kept.

p_task_context[IN/OUT] Pointer to the local memory block where the to be target task

context buffer is kept.

DESCRIPTION

This function is called by the ALF runtime when a task stops running on an

accelerator. The runtime loads the corresponding task context to the memory of an

accelerator that is running this task and calls this function to do the context merge.

The ALF runtime only invokes this API only when the task has a task context. If

the task does not have a task context or the application does not need to do

context merge, you can choose not to implement this API when the programming

environment supports weak link or to implement an empty function that returns

zero when weak link is not supported.

RETURN VALUE

 0 The API call finishes correctly.

less than 0 An error occurred during the call. The error code is passed

back to you to be handled.

106 ALF for Cell BE Programmer’s Guide and API Reference

Runtime APIs

This section lists the APIs that accelerator side ALF runtime provides.

Chapter 22. Accelerator API 107

alf_accel_num_instances

NAME

alf_accel_num_instances - Returns the number of instances that are running this

computational kernel.

SYNOPSIS

int alf_accel_num_instances (void);

 Parameters

None

DESCRIPTION

This function returns the number of instances that are currently executing this

computational kernel. This function should only be used when a task is created

with the task attribute ALF_TASK_ATTR_SCHED_FIXED. If user calls this function

without ALF_TASK_ATTR_SCHED_FIXED, the number returned might change from one

invocation to the next as the ALF runtime dynamically loads and unloads task

instances.

RETURN VALUE

 >0 number of accelerators that are executing this compute task

less than 0 Internal error

108 ALF for Cell BE Programmer’s Guide and API Reference

alf_accel_instance_id

NAME

alf_accel_instance_id - Returns the number of instances that are running this

computational kernel.

SYNOPSIS

int alf_accel_instance_id (void);

 Parameters

None

DESCRIPTION

This function returns the current instance ID of the task. This ID ranges from 0 to

alf_accel_num_instances.

RETURN VALUE

 >=0 Returns the ID of the current

accelerator. This is guaranteed

to be unique within the

reserved accelerators for ALF

runtime

less than 0 Internal error

Chapter 22. Accelerator API 109

ALF_ACCEL_DTL_BEGIN

NAME

ALF_ACCEL_DTL_BEGIN - Marks the beginning of a data transfer list for the

specified target buffer_type.

SYNOPSIS

ALF_ACCEL_DTL_BEGIN (void* p_dtl, ALF_IO_BUF_TYPE_T buf_type,

unsigned int offset);

 Parameters

p_dtl[IN/OUT] Pointer to buffer for the data transfer list data structure.

buf_type

 ALF_BUF_IN

 ALF_BUF_OUT

 ALF_OVL_IN

 ALF_OVL_OUT

 ALF_OVL_INOUT

offset[IN] Offset to the input or output buffer pointer in local memory to

which the data transfer list refers to.

DESCRIPTION

This utility marks the beginning of a data transfer list for the specified target

buffer_type. Further calls to function ALF_ACCEL_DTL_ENTRY_ADD refer to the

currently opened data transfer list. You can create multiple data transfer lists per

buffer type. However, only one data transfer list is opened for entry at any time.

Note: This API is for accelerator node side to generate the data transfer list entries.

It may be implemented as macros on some platforms.

RETURN VALUE

 None.

110 ALF for Cell BE Programmer’s Guide and API Reference

ALF_ACCEL_DTL_ENTRY_ADD

NAME

ALF_ACCEL_DTL_ENTRY_ADD - Fills the data transfer list entry.

SYNOPSIS

ALF_ACCEL_DTL_ENTRY_ADD (void *p_dtl, unsigned int data_size,

ALF_DATA_TYPE_T data_type, alf_data_addr64_t p_host_address);

 Parameters

p_dtl[IN] Pointer to buffer for the data transfer list data structure.

data_size[IN] Size of the data in unit of the data type.

data_type[IN] The type of data. This value is required if data endianess

conversion is necessary when moving the data.

host_address[IN] Address of the host memory.

DESCRIPTION

This function fills the data transfer list entry.

This API is for the accelerator node side to generate the data transfer list entries. It

can be implemented as macros on some platforms.

Note: This API is for accelerator node side to generate the data transfer list entries.

It can be implemented as macros on some platforms.

RETURN VALUE

 None.

Chapter 22. Accelerator API 111

ALF_ACCEL_DTL_END

NAME

ALF_ACCEL_DTL_END - Marks the ending of a data transfer list.

SYNOPSIS

ALF_ACCEL_DTL_END(void* p_dtl);

 Parameters

p_dtl[IN] Pointer to buffer for the data transfer list data structure.

DESCRIPTION

This utility marks the ending of a data transfer list.

RETURN VALUE

 None.

112 ALF for Cell BE Programmer’s Guide and API Reference

Chapter 23. Cell BE platform-specific extension APIs

These APIs are not part of the core ALF API. They are specific to Cell BE

architecture. The following example demonstrates how these APIs are used

int alf_accel_input_dtl_prepare (void* p_task_context, void *p_parm_context,

void *p_dtl, unsigned int current_iter, unsigned int num_iter)

{

 mfc_element_t *p_dma_list;

 unsigned int max_entry, cnt;

 ALF_ACCEL_DTL_BEGIN(p_dtl, ALF_IO_BUF_IN, 0);

 ALF_ACCEL_DTL_ENTRY_ADD(p_dtl, 16, ALF_DATA_INT32, ea_global_data_1);

 ALF_ACCEL_DTL_CBEA_DMA_LIST_BUFFER_GET(p_dtl, &p_dma_list, &max_entry);

 for(cnt=0; cnt<100 && cnt <max_entry; cnt++)

{

 p_dma_list[cnt] = ...;

 }

 ALF_ACCEL_DTL_CBEA_DMA_LIST_BUFFER_UPDATE(p_dtl, cnt);

 ALF_ACCEL_DTL_ENTRY_ADD(p_dtl, 24, ALF_DATA_INT32, ea_global_data_2);

 ALF_ACCEL_DTL_END(p_dtl);

}

© Copyright IBM Corp. 2006, 2007 113

ALF_ACCEL_DTL_CBEA_DMA_LIST_BUFFER_GET

NAME

ALF_ACCEL_DTL_CBEA_DMA_LIST_BUFFER_GET - Gets the internal DMA list

buffers.

SYNOPSIS

ALF_ACCEL_DTL_CBEA_DMA_LIST_BUFFER_GET (void *p_dtl, void

**pp_dma_list_buffer, unsigned int *p_max_entries);

 Parameters

p_dtl [IN] A pointer to the buffer for the data transfer

list data structure.

pp_dma_list_buffer [OUT] Returns a pointer to the internal DMA list

buffer.

p_max_entries [OUT] Returns the maximum allowed entries in this

buffer

DESCRIPTION

This utility gets the internal DMA list buffers so that you can directly access them.

It must be called after ALF_ACCEL_DTL_BEGIN and before

ALF_ACCEL_DTL_END After this call, ALF_ACCEL_DTL_ENTRY_ADD must not

be used before ALF_ACCEL_DTL_CBEA_DMA_LIST_BUFFER_UPDATE is called.

RETURN VALUE

 0 The computation finished correctly.

less than 0 An error occurred during the computation. The error code is

passed back to the library developer to be handled.

114 ALF for Cell BE Programmer’s Guide and API Reference

ALF_ACCEL_DTL_CBEA_DMA_LIST_BUFFER_UPDATE

NAME

ALF_ACCEL_DTL_CBEA_DMA_LIST_BUFFER_UPDATE - Updates the internal

data structure when the direct access completes.

SYNOPSIS

ALF_ACCEL_DTL_CBEA_DMA_LIST_BUFFER_UPDATE (void *p_dtl, unsigned

int num_entries);

 Parameters

p_dt_list_buffer [IN] A pointer to the buffer for the data transfer

list data structure.

num_entries [IN] The number of DMA list entries filled in

during the direct access.

DESCRIPTION

This utility updates the internal data structure when the direct access completes. It

must be called after ALF_ACCEL_DTL_CBEA_DMA_LIST_BUFFER_GET and before

ALF_ACCEL_DTL_END Any further calls to ALF_ACCEL_DTL_ENTRY_ADD can only be done

after this call.

RETURN VALUE

 Not specified

Chapter 23. Cell BE platform-specific extension APIs 115

116 ALF for Cell BE Programmer’s Guide and API Reference

Part 5. Appendixes

© Copyright IBM Corp. 2006, 2007 117

118 ALF for Cell BE Programmer’s Guide and API Reference

Appendix A. Changes to the SDK 2.1 APIs for this release

The following table describes which APIs:

v Have been updated for this release

v Are new for this release

v Have been replaced for this release

v Were available in the previous release but have been removed for this release

 Table 2. API changes

API Name

API has been

updated for

this release

Y/N

New API for

this release Changes from SDK 2.1

API

removed

for this

release

Framework APIs

alf_handle_t N

ALF_ERR_POLICY_T N

alf_init Y includes

functionality of

alf_configure

alf_query_system_info Y

alf_num_instances_set X

alf_exit N

alf_error_handler_register N

alf_configure Y

Compute APIs

alf_task_handle_t N

alf_task_desc_handle_t X

alf_task_desc_create X The task descriptor concept

replaces the task_info structure

in SDK 2.1

alf_task_desc_destroy X The task descriptor concept

replaces the task_info structure

in SDK 2.1

alf_task_desc_ctx_entry_add X The task descriptor concept

replaces the task_info structure

in SDK 2.1

alf_task_desc_set_int32 Y

alf_task_desc_set_int64 X

© Copyright IBM Corp. 2006, 2007 119

Table 2. API changes (continued)

API Name

API has been

updated for

this release

Y/N

New API for

this release Changes from SDK 2.1

API

removed

for this

release

alf_task_create X The alf_task_create function in

this new API is very different

from the alf_task_create

function in SDK 2.1. The

differences are:

v Task is created based on a task

descriptor, not task_info

v You can specify the number of

instances of a task in this

function.

v Users can specify work block

distribution

v Task context data is provided

through this function.

alf_task_finalize X

alf_task_wait Y In SDK 2.1, alf_task_wait also

signifies that you cannot add

work blocks into a task. In this

API, alf_task_wait is divided

into two separate functions,

alf_task_finalize and

alf_task_wait.

alf_task_query N

alf_task_destroy N It is no longer required to call

this API to release the resources

that a task uses.

alf_task_depends_on X

alf_task_event_handler_register X

alf_task_info_t API replaced by

alf_desc_task_handle_t

Y

alf_task_context_create alf_task_create Y

alf_task_context_add_entry alf_task_desc_ctx_entry_add Y

alf_task_context_register alf_task_create Y

Work block APIs

alf_wb_handle_t N

alf_wb_create Y

alf_wb_enqueue N

alf_wb_dtl_begin X

alf_wb_parm_add N

alf_wb_dtl_entry_add X

alf_wb_dtl_end X

alf_wb_add_io_buffer alf_wb_dtl_set_begin

alf_wb_dtl_entry_add

alf_wb_dtl_set_ end

Y

120 ALF for Cell BE Programmer’s Guide and API Reference

Table 2. API changes (continued)

API Name

API has been

updated for

this release

Y/N

New API for

this release Changes from SDK 2.1

API

removed

for this

release

alf_wb_sync Y

sync_callback_func Y

alf_wb_sync_wait Y

alf_wb_sync_handle_t Y

Data set APIs

alf_dataset_handle_t X

alf_dataset_create X

alf_dataset_buffer_add X

alf_dataset_destroy X

alf_task_dataset_associate X

Accelerator APIs

ALF_ACCEL_EXPORT_API_
LIST_BEGIN

X

ALF_ACCEL_EXPORT_API X

ALF_ACCEL_EXPORT_API_
LIST_END

X

Computational kernel APIs

alf_accel_comp_kernel X

alf_accel_input_dtl_prepare X

alf_accel_output_dtl_prepare X

alf_accel_task_context_setup X

alf_accel_task_context_merge X

Runtime APIs

alf_accel_num_instances X

alf_accel_instance_id X

ALF_ACCEL_DTL_BEGIN X

ALF_ACCEL_DTL_ENTRY_ADD X

ALF_ACCEL_DTL_END X

alf_comp_kernel alf_accel_comp_kernel

alf_prepare_input_list alf_accel_input_dtl_prepare

alf_prepare_output_list alf_accel_output_dtl_prepare

ALF_DT_LIST_CREATE ALF_ACCEL_DTL_BEGIN

ALF_ACCEL_DTL_END

Cell BE platform specific APIs

ALF_ACCEL_DTL_CBEA_
DMA_LIST_BUFFER_UPDATE

X

ALF_ACCEL_DTL_CBEA_
DMA_LIST_BUFFER_GET

X

ALF_TASK_INFO_T_CBEA Y

Appendix A. Changes to the SDK 2.1 APIs for this release 121

122 ALF for Cell BE Programmer’s Guide and API Reference

Appendix B. Examples

The following examples are described in this section:

v “Matrix add - host data partitioning example”

v “Matrix add - accelerator data partitioning example” on page 126

v “Table lookup example” on page 126

v “Min-max finder example” on page 128

v “Multiple vector dot products” on page 130

v “Overlapped I/O buffer example” on page 133

v “Task dependency example” on page 135

Basic examples

This section describes the following basic examples:

v “Matrix add - host data partitioning example.” This example includes the source

code.

v “Matrix add - accelerator data partitioning example” on page 126.

Matrix add - host data partitioning example

In this example, two large matrices are added together using ALF. The problem

can be expressed simply as:

A[m,n] + B[m,n] = C[m,n]

where m and n are the dimensions of the matrices.

This simple example demonstrates how to:

v Start the ALF runtime environment

v Use task descriptor

v Start a task on the accelerators

v Create and add a work block to a task

v Exit the ALF runtime environment correctly

You can also use this sample as a template to build a more complicated

application.

In this example, the host application:

v Initializes the ALF runtime environment

v Creates a task descriptor

v Creates a task based on that task descriptor

v Creates work blocks with the appropriate data transfer lists which start

invocations of the computational kernel on the accelerator

v Waits for the computational kernel to finish and exits

The accelerator application includes a simple computational kernel that computes

the addition of the two matrices.

© Copyright IBM Corp. 2006, 2007 123

The scalar code to add two matrices for a uni-processor machine is provided

below:

float mat_a[NUM_ROW][NUM_COL];

float mat_b[NUM_ROW][NUM_COL];

float mat_c[NUM_ROW][NUM_COL];

int main(void)

{

 int i,j;

 for (i=0; i<NUM_ROW; i++)

 for (j=0; j<NUM_COL; j++)

 mat_c[i][j] = mat_a[i][j] + mat_b[i][j];

 return 0;

}

An ALF host program can be logically divided into several sections:

v Initialization

v Task setup

v Work block set up

v Task wait and exit

Source code

The following code listings only show the relevant sections of the code. For a

complete listing, refer to the ALF samples directory

matrix_add/STEP1a_partition_scheme_A/common/host_partition

Initialization

The following code segment shows how ALF is initialized and accelerators

allocated for a specific ALF runtime.

alf_handle_t alf_handle;

unsigned int nodes;

/* initializes the runtime environment for ALF*/

alf_init(&config_parms, &alf_handle;);

/* get the number of SPE accelerators available for from the Opteron */

rc = alf_query_system_info(alf_handle, ALF_QUERY_NUM_ACCEL, ALF_ACCEL_TYPE_SPE, &nodes;);

/* set the total number of accelerator instances (in this case, SPE) */

/* the ALF runtime will have during its lifetime */

rc = alf_num_instances_set (alf_handle, nodes);

Task setup

The next section of an ALF host program contains information about the

description of a task and the creation of the task runtime. The

alf_task_desc_create function creates a task descriptor. This descriptor can be

used multiple times to create different executable tasks. The function

alf_task_create creates a task to run an SPE program with the name

spe_add_program.

/* variable declarations */

alf_task_desc_handle_t task_desc_handle;

alf_task_handle_t task_handle;

const char* spe_image_name;

const char* library_path_name;

const char* comp_kernel_name;

/* describing a task that’s executable on the SPE*/

alf_task_desc_create(alf_handle, ALF_ACCEL_TYPE_SPE, &task_desc_handle;);

alf_task_desc_set_int32(task_desc_handle, ALF_TASK_DESC_TSK_CTX_SIZE, 0);

alf_task_desc_set_int32(task_desc_handle, ALF_TASK_DESC_WB_PARM_CTX_BUF_SIZE, sizeof(add_parms_t));

alf_task_desc_set_int32(task_desc_handle, ALF_TASK_DESC_WB_IN_BUF_SIZE, H * V * 2 sizeof(float));

alf_task_desc_set_int32(task_desc_handle, ALF_TASK_DESC_WB_OUT_BUF_SIZE, H * V * sizeof(float));

alf_task_desc_set_int32(task_desc_handle, ALF_TASK_DESC_NUM_DTL_ENTRIES, 8);

alf_task_desc_set_int32(task_desc_handle, ALF_TASK_DESC_MAX_STACK_SIZE, 4096);

124 ALF for Cell BE Programmer’s Guide and API Reference

/* providing the SPE executable name */

alf_task_desc_set_int64(task_desc_handle, ALF_TASK_DESC_ACCEL_IMAGE_REF_L,(unsigned long long) spe_image_name);

alf_task_desc_set_int64(task_desc_handle, ALF_TASK_DESC_ACCEL_LIBRARY_REF_L,(unsigned long) library_path_name);

alf_task_desc_set_int64(task_desc_handle, ALF_TASK_DESC_ACCEL_KERNEL_REF_L,(unsigned long) comp_kernel_name);

Work block setup

This section shows how work blocks are created. After the program has created the

work block, it describes the input and output associated with each work block.

Each work block contains the input description for blocks in the input matrices of

size H * V starting at location matrix[row][0] with H and V representing the

horizontal and vertical dimensions of the block.

In this example, assume that the accelerator memory can contain the two input

buffers of size H * V elements and the output buffer of size H * V. The program calls

alf_wb_enqueue() to add the work block to the queue to be processed. ALF

employs an immediate runtime mode. As soon as the first work block is added to

the queue, the task starts processing the work block. The function

alf_task_finalize closes the work block queue.

alf_wb_handle_t wb_handle;

add_parms_t parm __attribute__((aligned(128)));

parm.h = H; /* horizontal size of the block */

parm.v = V; /* vertical size of the block */

/* creating work blocks and adding param & io buffer */

for (i = 0; i < NUM_ROW; i += H) {

 alf_wb_create(task_handle, ALF_WB_SINGLE, 0,&wb_handle);

 /* begins a new Data Transfer List for INPUT */

 alf_wb_dtl_set_begin(wb_handle, ALF_BUF_IN, 0);

 /* Add H*V element of mat_a as Input */

 alf_wb_dtl_set_entry_add(wb_handle, &matrix_a[i][0], H * V, ALF_DATA_FLOAT);

 /* Add H*V element of mat_b as Input */

 alf_wb_dtl_set_entry_add(wb_handle, &matrix_b[i][0], H * V, ALF_DATA_FLOAT);

 alf_wb_dtl_set_end(wb_handle);

 /* begins a new Data Transfer List OUTPUT */

 alf_wb_dtl_set_begin(wb_handle, ALF_BUF_OUT, 0);

 /* Add H*V element of mat_c as Output */

 alf_wb_dtl_set_entry_add(wb_handle, &matrix_c[i][0], H * V, ALF_DATA_FLOAT);

 alf_wb_dtl_set_end(wb_handle);

 /* pass parameters H and V to spu */

 alf_wb_parm_add(wb_handle, (void *) (&parm), sizeof(parm), ALF_DATA_BYTE, 0);

 /* enqueuing work block */

 alf_wb_enqueue(wb_handle);

}

alf_task_finalize(task_handle);

Task wait and exit

After all the work blocks are on the processing queue, the program waits for the

accelerator to finish processing the work blocks. Then alf_exit() is called to

cleanly exit the ALF runtime environment.

/* waiting for all work blocks to be done*/

alf_task_wait(task_handle, -1);

/* exit ALF runtime */

alf_exit(alf_handle, ALF_EXIT_WAIT, -1);

Accelerator side

On the accelerator side, you need to provide the actual computational kernel that

computes the addition of the two blocks of matrices. The ALF runtime on the

accelerator is responsible for getting the input buffer to the accelerator memory

Appendix B. Examples 125

before it runs the user-provided alf_accel_comp_kernel function. After

alf_accel_comp_kernel returns, the ALF runtime is responsible for getting the

output data back to host memory space. Double buffering or triple buffering is

employed as appropriate to ensure that the latency for the input buffer to get into

accelerator memory and the output buffer to get to host memory space is well

covered with computation.

int alf_accel_comp_kernel(void *p_task_context,

 void *p_parm_context,

 void *p_input_buffer,

 void *p_output_buffer,

 void *p_inout_buffer,

 unsigned int current_count,

 unsigned int total_count)

{

 unsigned int i, cnt;

 vector float *sa, *sb, *sc;

 add_parms_t *p_parm = (add_parms_t *)p_parm_context;

 cnt = p_parm->h * p_parm->v / 4;

 sa = (vector float *) p_input_buffer;

 sb = sa + cnt;

 sc = (vector float *) p_output_buffer;

 for (i = 0; i < cnt; i += 4) {

 sc[i] = spu_add(sa[i], sb[i]);

 sc[i + 1] = spu_add(sa[i + 1], sb[i + 1]);

 sc[i + 2] = spu_add(sa[i + 2], sb[i + 2]);

 sc[i + 3] = spu_add(sa[i + 3], sb[i + 3]);

 }

 return 0;

}

Matrix add - accelerator data partitioning example

In this example, the same problem as presented in “Matrix add - host data

partitioning example” on page 123 is solved, adding two large matrices using ALF.

The code remains the same on the host except for the work block creation. The

code also needs to specify that it uses accelerator data partitioning in the task

descriptor.

An implementation for the alf_accel_input_dtl_prepare and

alf_accel_output_dtl_prepare functions is also required.

For a complete listing of this sample, please refer to the ALF samples directory:

matrix_add/common/accel_partitioning

Task context examples

This section describes the following task context examples:

v “Table lookup example”

v “Min-max finder example” on page 128

v “Multiple vector dot products” on page 130

v “Overlapped I/O buffer example” on page 133

Table lookup example

This example shows how the task context buffer is used as a large lookup table to

convert the 16 bit input data to 8 bit output data.

The lookup table has 65536 entries defined:

126 ALF for Cell BE Programmer’s Guide and API Reference

For all -32768 <= in <32768

 / 0, in < -4096

Table(n)=| in/32 -4096 <=in<4096

 \ 255, in >= 4096

The following is the stripped down code list. The routines of less interest have

been removed to allow you to focus on the key features. Because the task context

buffer (the lookup table) is already initialized by the host code and the table is

used as read-only data, you do not need the context setup and context merge

functions on the accelerator side.

Data structures shared by the host and accelerator

The following code segment shows the data structures shared by both the host and

the accelerators. The my_task_context_t data structure contains the lookup table.

The my_wb_parms_t data structure represents the parameter and context data for

each work block.

/* -- */

/* data structures shared by host and accelerator */

/* -- */

typedef struct _my_task_context_t

{

 alf_data_byte_t table[65536];

} my_task_context_t;

typedef struct _my_wb_parms_t

{

 alf_data_uint32_t num_data; /* number of data in this WB */

} my_wb_parms_t;

Task descriptor setup

The following code segment shows how the task descriptor is set up for this

application. The task context-related information marked in bold in the code.

alf_task_desc_create(alf_handle, 0, &task_desc_handle;);

 /* set up the task descriptor */

 /* the computing kernel name */

 alf_task_desc_set_int64(task_desc_handle,

 ALF_TASK_DESC_ACCEL_KERNEL_REF_L, "comp_kernel");

 /* the task context buffer size */

 alf_task_desc_set_int32(task_desc_handle,

 ALF_TASK_DESC_TSK_CTX_SIZE, sizeof(my_task_context_t));

 /* the work block parm buffer size */

 alf_task_desc_set_int32(task_desc_handle,

 ALF_TASK_DESC_WB_PARM_CTX_BUF_SIZE, sizeof(my_wb_parms_t));

 /* the input buffer size */

 alf_task_desc_set_int32(task_desc_handle,

 ALF_TASK_DESC_WB_IN_BUF_SIZE,

 PART_SIZE*sizeof(alf_data_int16_t));

 /* the output buffer size */

 alf_task_desc_set_int32(task_desc_handle,

 ALF_TASK_DESC_WB_OUT_BUF_SIZE,

 PART_SIZE*sizeof(alf_data_byte_t));

 /* the task context entry */

 alf_task_desc_ctx_entry_add(task_desc_handle, ALF_DATA_BYTE,

 sizeof(my_task_context_t)/sizeof(alf_data_byte_t));

Work block setup

The following code segment shows the code for work block creation.

 /* creating wb and adding param & io buffer */

 for (i = 0; i < NUM_DATA; i += PART_SIZE)

 {

Appendix B. Examples 127

alf_wb_create(task_handle, ALF_WB_SINGLE, 0, &wb_handle);

 alf_wb_dtl_begin(wb_handle, ALF_BUF_IN, 0); /* input */

 alf_wb_dtl_entry_add(wb_handle, pcm16_in+i, PART_SIZE, ALF_DATA_INT16);

 alf_wb_dtl_end(wb_handle);

 alf_wb_dtl_begin(wb_handle, ALF_BUF_OUT, 0); /* output */

 alf_wb_dtl_entry_add(wb_handle, pcm8_out+i,PART_SIZE, ALF_DATA_BYTE);

 alf_wb_dtl_end(wb_handle);

 wb_parm.num_data = PART_SIZE;

 alf_wb_parm_add(wb_handle, (void *)&wb_parm, /* wb parm */

 sizeof(wb_parm)/sizeof(unsigned int), ALF_DATA_INT32, 0);

 alf_wb_enqueue(wb_handle);

 }

Accelerator code

The following code is the accelerator side code. The section of the code that

modifies the task context is marked in bold.

/* -- */

/* the accelerator side code */

/* -- */

/* the computation kernel function */

int comp_kernel(void *p_task_context, void *p_parm_ctx_buffer,

 void *p_input_buffer, void *p_output_buffer,

 void *p_inout_buffer, unsigned int current_count,

 unsigned int total_count)

{

 my_task_context_t *p_ctx = (my_task_context_t *) p_task_context;

 my_wb_parms_t *p_parm = (my_wb_parms_t *) p_parm_ctx_buffer;

 alf_data_int16_t *in = (alf_data_int16_t *)p_input_buffer;

 alf_data_byte_t *out = (alf_data_byte_t *)p_output_buffer;

 unsigned int size = p_parm->num_data;

 unsigned int i;

 // it is just a simple table lookup

 for(i=0;i<size;i++)

 {

 out[i] = p_ctx->table[(unsigned short)in[i]];

 }

 return 0;

}

Min-max finder example

This example shows how you can use the task context to keep the partial

computing results for each task instance and then combine these partial results into

the final result.

The example finds the minimum and maximum values in a large data set. The

sequential code is a very simple textbook style implementation, it is a linear search

across the whole data set, which compares and updates the best known values

with each step.

You can use ALF framework to convert the sequential code into a parallel

algorithm. The data set must be partitioned into smaller work blocks. These work

blocks are then assigned to the different task instances running on the accelerators.

Each invocation of a computational kernel on a task instance is to find the

maximum or minimum value in the work block assigned to it. After all the work

blocks are processed, you have multiple intermediate best values in the context of

each task instance. The ALF runtime then calls the context merge function on

accelerators to reduce the intermediate results into the final results.

128 ALF for Cell BE Programmer’s Guide and API Reference

Source code

You can find the source code in the sample directory task_context/min_max.

Computational kernel

The following code section shows the computational kernel for this application.

The computational kernel finds the maximum and minimum values in the

provided input buffer then updates the task_context with those values.

/* -- */

/* the accelerator side code */

/* -- */

/* the computation kernel function */

int comp_kernel(void *p_task_context, void *p_parm_ctx_buffer,

 void *p_input_buffer, void *p_output_buffer,

 void *p_inout_buffer, unsigned int current_count,

 unsigned int total_count)

{

 my_task_context_t *p_ctx = (my_task_context_t *) p_task_context;

 my_wb_parms_t *p_parm = (my_wb_parms_t *) p_parm_ctx_buffer;

 alf_data_int32_t *a = (alf_data_int32_t *)p_input_buffer;

 unsigned int size = p_parm->num_data;

 unsigned int i;

 /* update the best known values in context buffer */

 for(i=0;i<size;i++) {

 if(a[i]>p_ctx->max)

 p_ctx->max = a[i];

Task
Instance 1

WB

WB

Task Context 1
(Min, Max)

Task
Instance 2

WB

WB

Task Context 2
(Min, Max)

WB WB WB WBWB

Merge

(Min, Max)
1+2

Task
Instance 3

WB

WB

Task Context 3
(Min, Max)

Task
Instance 4

WB

WB

Task Context 4
(Min, Max)

Merge

(Min, Max)
3+4

Merge

(Min, Max)
1+2+3+4

Input data

Figure 12. Min-max finder example

Appendix B. Examples 129

else if(a[i]<p_ctx->min)

 p_ctx->min = a[i];

 } return 0;

}

Task context merge

The following code segment shows the context_merge function for this application.

This function is automatically invoked by the ALF runtime after all the task

instances have finished processing all the work blocks. The final minimum and

maximum values stored in the task context per task instance are merged through

this function.

/* the context merge function */

int ctx_merge(void* p_task_context_to_be_merged,

void* p_task_context)

{

 my_task_context_t *p_ctx = (my_task_context_t *) p_task_context;

 my_task_context_t *p_mgr_ctx = (my_task_context_t *)

 p_task_context_to_be_merged;

 if(p_mgr_ctx->max > p_ctx->max)

 p_ctx->max = p_mgr_ctx->max;

 if(p_mgr_ctx->min < p_ctx->min)

 p_ctx->min = p_mgr_ctx->min;

 return 0;

}

Multiple vector dot products

This example shows how to use the bundled work block distribution together with

the task context to handle situations where the work block can not hold the

partitioned data because of a local memory size limit. The example calculates the

dot product of two lists of large vectors as:

Given two lists of vectors = { , , , …, and = { , , , …, , where and

are dimension vectors;
Solve = { , , , …, , where = .

The dot product “ ” operation of two dimension vectors and is defined as =
where and are members of vector A and B.

A B

C

A A A A B B B B A B

N

c c c c c A B

N A B A B

a b

1 2 3 m 1 2 3 m i i

1 2 3 m i i i

i i

} }

} ●

● ● �
�

�
N

i

ii
ba

1

The dot product requires the element multiplication values of the vectors to be

accumulated. In the case where a single work block can hold the all the data for

vector Ai and Bi, the calculation is straight forward.

However, when the size of the vector is too big to fit into a single work block, the

straight forward approach does not work. For example, with the Cell BE processor,

there are only 256 KB of local memory on the SPE. It is impossible to store two

double precision vectors when the dimension exceeds 16384. In addition, if you

consider the extra memory needed by double buffering, code storage, and so on,

you are only be able to handle two vectors of 7500 double precision float point

elements each (7500*8[size of double]*2[two vectors] * 2[double buffer] ≈ 240 KB of

local storage). In this case, large vectors must be partitioned to multiple work

blocks and each work block can only return the partial result of a complete dot

product.

You can choose to accumulate the partial results of these work blocks on the host

to get the final result. But this is not an elegant solution and the performance is

also affected. The better solution is to do these accumulations on the accelerators

and do them in parallel.

ALF provides the following two implementations for this problem:

130 ALF for Cell BE Programmer’s Guide and API Reference

v “Implementation 1: Making use of task context and bundled work block

distribution”

v “Implementation 2: Making use of multi-use work blocks together with task

context or work block parameter/context buffers” on page 132, with the

limitation that accelerator side data partitioning is required

Source code

The source code for the two implementations is provided for you to compare with

the shipped samples in the following directories:

v task_context/dot_prod directory: Implementation 1. task context and bundled

work block distribution

v task_context/dot_prod_multi directory: Implementation 2. multi-use work

blocks together with task context or work block parameter/context buffers

Implementation 1: Making use of task context and bundled work

block distribution

For this implementation, all the work blocks of a single vector are put into a

bundle. All the work blocks in a single bundle are assigned to one task instance in

the order of enqueuing. This means it is possible to use the task context to

accumulate the intermediate results and write out the final result when the last

work block is processed.

The accumulator in task context is initialized to zero each time a new work block

bundle starts.

When the last work block in the bundle is processed, the accumulated value in the

task context is copied to the output buffer and then written back to the result area.

Appendix B. Examples 131

Implementation 2: Making use of multi-use work blocks together

with task context or work block parameter/context buffers

The second implementation is based on multi-use work blocks and work block

parameter and context buffers. A multi-use work block is similar to an iteration

operation. The accelerator side runtime repeatedly processes the work block until it

reaches the provided number of iteration. By using accelerator side data

partitioning, it is possible to access different input data during each iteration of the

work block. This means the application can be used to handle larger data which a

single work block cannot cover due to local storage limitations. Also, the

parameter and context buffer of the multi-use work block is kept through the

iterations, so you can also choose to keep the accumulator in this buffer, instead of

using the task context buffer.

Both methods, using the task context and using multi-use work block are equally

valid.

WB7

Task
Instance 1

WB7

WB3

WB2

WB1

Tsk Context 1
A1 B1

Task
Instance 2

WB7

WB9

WB8

WB7

Tsk Context 2
A3 B3

WB6

WB5

WB4

WB3

WB2

WB1

WB6

WB5

WB4 WB7

WB8

WB9

WB10

WB11

WB12

A1 B1 A2 B2 A3 B3 A4 B4

Figure 13. Making use of task context and bundled work block distribution

132 ALF for Cell BE Programmer’s Guide and API Reference

Overlapped I/O buffer example

The following two simple examples show the usage of overlapped I/O buffers.

Both examples do matrix addition.

v The first example implements C=A+B, where A, B, and C are different matrices.

There are three separate matrices on the host for matrix a, b, and c.

v The second example implements A=A+B, where matrix A is overwritten by the

result. Storage is reserved on the host for matrix a and matrix b. The result of

a+b is stored in matrix b.

Task
Instance 1

A1 B1 A2 B2 A3 B3 A4 B4

WB1 WB2 WB3 WB4

WB2

WB1

Task
Instance 2

WB3

WB 1 Ctx
A1 B1

WB 3 Ctx
A3 B3

Figure 14. Making use of multi-use work blocks together with task context or work block

parameter/context buffers

Appendix B. Examples 133

Matrix setup

Note: The code is similar to the matrix_add example, see “Matrix add - host data

partitioning example” on page 123. Here only the relevant code listing is shown.
/* -- */

/* matrix declaration for the two cases */

/* -- */

#ifdef C_A_B // C = A + B

 alf_data_int32_t mat_a[ROW_SIZE][COL_SIZE]; // the matrix a

 alf_data_int32_t mat_b[ROW_SIZE][COL_SIZE]; // the matrix b

 alf_data_int32_t mat_c[ROW_SIZE][COL_SIZE]; // the matrix c

#else // A = A + B

 alf_data_int32_t mat_a[ROW_SIZE][COL_SIZE]; // the matrix a

 alf_data_int32_t mat_b[ROW_SIZE][COL_SIZE]; // the matrix b

#endif

Work block setup

This code segment shows the work block creation process for the two cases.

for (i = 0; i < ROW_SIZE; i+=PART_SIZE){

 if(i+PART_SIZE <= ROW_SIZE)

 wb_parm.num_data = PART_SIZE;

 else

 wb_parm.num_data = ROW_SIZE - i;

 alf_wb_create(task_handle, ALF_WB_SINGLE, 0, &wb_handle);

 #ifdef C_A_B // C = A + B

 // the input data A and B

 alf_wb_dtl_begin(wb_handle, ALF_BUF_OVL_IN, 0); // offset at 0

 alf_wb_dtl_entry_add(wb_handle, &mat_a[i][0], wb_parm.num_data*COL_SIZE, ALF_DATA_INT32); // A

 alf_wb_dtl_entry_add(wb_handle, &mat_b[i][0], wb_parm.num_data*COL_SIZE, ALF_DATA_INT32); // B

 alf_wb_dtl_end(wb_handle);

 // the output data C is overlapped with input data A

 // offset at 0, this is overlapped with A

 alf_wb_dtl_begin(wb_handle, ALF_BUF_OVL_OUT, 0);

 alf_wb_dtl_entry_add(wb_handle, &mat_c[i][0], wb_parm.num_data*COL_SIZE, ALF_DATA_INT32); // C

 alf_wb_dtl_end(wb_handle);

 #else // A = A + B

 // the input and output data A

 alf_wb_dtl_begin(wb_handle, ALF_BUF_OVL_INOUT, 0); // offset 0

 alf_wb_dtl_entry_add(wb_handle, &mat_a[i][0], wb_parm.num_data*COL_SIZE, ALF_DATA_INT32); // A

 alf_wb_dtl_end(wb_handle);

OVL_IN

OVL_IN

OVL_OUTA / C

BB

A C

OVL_IN
OUT

OVL_IN

A

BB

A

Implementation 2

Implementation 1

Figure 15. The two overlapped I/O buffer samples

134 ALF for Cell BE Programmer’s Guide and API Reference

// the input data B is placed after A

 // placed after A

 alf_wb_dtl_begin(wb_handle, ALF_BUF_OVL_IN, wb_parm.num_data*COL_SIZE*sizeof(alf_data_int32_t));

 alf_wb_dtl_entry_add(wb_handle, &mat_b[i][0], wb_parm.num_data*COL_SIZE, ALF_DATA_INT32); // B

 alf_wb_dtl_end(wb_handle);

 #endif

 alf_wb_parm_add(wb_handle, (void *)&wb_parm, sizeof(wb_parm)/sizeof(unsigned int), ALF_DATA_INT32, 0);

 alf_wb_enqueue(wb_handle);

 }

Accelerator code

The accelerator code is shown here. In both cases, the output sc can be set to the

same location in accelerator memory as sa and sb.

/* -- */

/* the accelerator side code */

/* -- */

/* the computation kernel function */

int comp_kernel(void *p_task_context, void *p_parm_ctx_buffer,

 void *p_input_buffer, void *p_output_buffer,

 void *p_inout_buffer, unsigned int current_count,

 unsigned int total_count)

{

 unsigned int i, cnt;

 int *sa, *sb, *sc;

 my_wb_parms_t *p_parm = (my_wb_parms_t *) p_parm_context;

 cnt = p_parm->num_data * COL_SIZE;

 sa = (int *) p_inout_buffer;

 sb = sa + cnt;

 sc = sa;

 for (i = 0; i < cnt; i ++)

 sc[i] = sa[i] + sb[i];

 return 0;

}

Task dependency example

This example shows how task dependency is used in a two stage pipeline

application. The problem is a simple simulation.

An object P is placed in the middle of a flat surface with a bounding rectangular

box. On each simulation step, the object moves in a random distance in a random

direction. It moves back to the initial position when it hits the side walls of the

bounding box. The problem is to calculate the number of hits to the four walls in a

given time period.

Appendix B. Examples 135

A two stage pipeline is used to solve the problem so that the random number

generation and the simulation can be paralleled:

v The first stage generates random numbers using a pseudo random number

generator

v The second stage simulates the movements

Because ALF currently does not support pipeline directly, a pipeline structure is

simulated using task dependency. There are two tasks which correspond to the two

pipeline stages.

For this problem, each simulation step only needs a small amount of data just as a

motion vector. Although ALF does not have a strict limit on how small the data

can be, it is better to use larger data blocks for performance considerations.

Therefore, the data for thousands of simulation steps is grouped into a single work

block.

Stage 1 task: For the stage 1 task, a Lagged Fibonacci pseudo random number

generator (PRNG) is used for simplicity. In this example, the algorithm is as

follows:

Sn=(Sn-j^Sn-k)%232

where k > n > 0 and k = 71, j = 65

The algorithm requires a length k history buffer to save the older values. In this

implementation, the task context is used for the history buffer. Because no input

data is needed, the work block for this task only has output data.

Stage 2 task: For the stage 2 task, the task context is used to save the current status

of the simulation including the position of the object and the number of hits to the

walls. The work block in this stage only has input data, which are the PRNG

results from stage 1.

Another target of pipelining is to overlap the execution of different stages for

performance improvement. However, this requires work block level task

synchronization between stages, and this is not yet supported by ALF. The

alternative approach is to use multiple tasks whereby each task only handles a

percentage of the work blocks for the whole simulation.

So there are now two stage tasks. For each chunk of work blocks, the following

two tasks are created:

P

P

0

0 Width

Initial
location

Ding!

Figure 16. Object P randomly hits the side wall of the bounding box

136 ALF for Cell BE Programmer’s Guide and API Reference

v The stage 1 task generates the random numbers and writes out the results to a

temporary buffer

v The stage 2 task reads the random numbers from the temporary buffer to do the

simulation

A task dependency is set between the two tasks to make sure the stage 2 task can

get the correct results from stage 1 task. Because both the PRNG and the

simulation have internal states, you have to pass the states data between the

succeeding tasks of the same stage to preserve the states. The approach described

here lets the tasks for the same stage share the same task context buffer.

Dependencies are used to make sure the tasks access the shared task context in the

correct order.

Figure 17 (a) shows the task dependency as described in previous discussions. To

further reduce the use of temporary intermediate buffers, you can use double or

multi-buffering technology for the intermediate buffers. The task dependency

graph for double buffering the intermediate buffers is shown in Figure 17 (b),

where a new dependency is added between the n-2th stage 2 task and the nth

stage 1 task to make sure the stage 1 task does not overwrite the data that may

still be in use by the previous stage 2 task. This is what is implemented in the

sample code.

Source code

The complete source code can be found in the sample directory pipe_line.

S1

S2

S1

S2

C1

C2

S1

S2

S1

S2

2

C1

C2

C1

C2

1

3

S1

S2

S1

S2

C1

C2

S1

S2

S1

S2

2

C1

C2

C1

C2

1

3

S1

S2

S1

S2

000

C1

C2

S1

S2

S1

S2

2

C1

C2

C1

C2

1

3

S1

S2

S1

S2

0

C1

C2

S1

S2

S1

S2

C1

C2

C1

C2

1

1

0

1
0

0
1

S1S1S1 S2S2S2

C1C1C1 C2C2C2

0

Tasks

Tasks
Contexts

Used task
buffer

Unused task
buffer

Legend

Task dependency with an unlimited number of inter stage buffers Task dependency using double buffers

Figure 17. Task dependency examples

Appendix B. Examples 137

138 ALF for Cell BE Programmer’s Guide and API Reference

Appendix C. ALF trace events

The following shows the ALF trace events that are defined. In general, there are

two trace hooks per API:

v The first traces the input parameters

v The second traces the output values as well as the time interval of the API call

ALF API hooks

Enabled with: TRACE_ALF_DEBUG.

 Table 3. ALF debug hooks

Hook identifier Traced values

_ALF_DATASET_ASSOCIATE_ENTRY task_handle, dataset_handle

_ALF_DATASET_ASSOCIATE_EXIT_INTERVAL retcode

_ALF_DATASET_BUFFER_ADD_ENTRY dataset_handle, buffer, size, access_mode

_ALF_DATASET_BUFFER_ADD_EXIT_INTERVAL retcode

_ALF_DATASET_CREATE_ENTRY alf_handle, p_dataset_handle

_ALF_DATASET_CREATE_EXIT_INTERVAL dataset_handle, retcode

_ALF_DATASET_DESTROY_ENTRY dataset_handle

_ALF_DATASET_DESTROY_EXIT_INTERVAL retcode

_ALF_EXIT_ENTRY alf_handle, exit_policy, timeout

_ALF_EXIT_EXIT_INTERVAL retcode

_ALF_GENERIC_DEBUG long1, long2, long3, long4, long5, long6, long7,

long8, long9, long10

_ALF_INIT_ENTRY sys_config_info, alf_handle_ptr

_ALF_INIT_EXIT_INTERVAL rtn

_ALF_NUM_INSTANCES_SET_ENTRY alf_handle, number_of_instances

_ALF_NUM_INSTANCES_SET_EXIT_INTERVAL retcode

_ALF_QUERY_SYSINFO_ENTRY alf_handle, query_info, accel_type, p_query_result

_ALF_QUERY_SYSINFO_EXIT_INTERVAL query_result, retcode

_ALF_REGISTER_ERROR_HANDLER_ENTRY alf_handle, error_handler_function, p_context

_ALF_REGISTER_ERROR_HANDLER_EXIT_INTERVAL retcode

_ALF_TASK_CREATE_ENTRY task_desc_handle, p_task_context_data,

num_accelerators, tsk_attr, wb_dist_size,

p_task_handle

_ALF_TASK_CREATE_EXIT_INTERVAL task_handle, retcode

_ALF_TASK_DEPENDS_ON_ENTRY task_handle_dependent, task_handle

_ALF_TASK_DEPENDS_ON_EXIT_INTERVAL retcode

_ALF_TASK_DESC_CREATE_ENTRY alf_handle, accel_type, task_desc_handle_ptr

_ALF_TASK_DESC_CREATE_EXIT_INTERVAL desc_info_handle, retcode

_ALF_TASK_DESC_CTX_ENTRY_ADD_ENTRY task_desc_handle, data_type, size

_ALF_TASK_DESC_CTX_ENTRY_ADD_EXIT_INTERVAL retcode

© Copyright IBM Corp. 2006, 2007 139

Table 3. ALF debug hooks (continued)

Hook identifier Traced values

_ALF_TASK_DESC_DESTROY_ENTRY task_desc_handle

_ALF_TASK_DESC_DESTROY_EXIT_INTERVAL retcode

_ALF_TASK_DESC_SET_INT32_ENTRY task_desc_handle, field, value

_ALF_TASK_DESC_SET_INT32_EXIT_INTERVAL retcode

_ALF_TASK_DESC_SET_INT64_ENTRY task_desc_handle, field, value

_ALF_TASK_DESC_SET_INT64_EXIT_INTERVAL retcode

_ALF_TASK_DESTROY_ENTRY task_handle

_ALF_TASK_DESTROY_EXIT_INTERVAL retcode

_ALF_TASK_EVENT_HANDLER_REGISTER_ENTRY task_handle, task_event_handler, p_data,

data_size, event_mask

_ALF_TASK_EVENT_HANDLER_REGISTER_EXIT_INTERVAL retcode

_ALF_TASK_FINALIZE_ENTRY task_handle

_ALF_TASK_FINALIZE_EXIT_INTERVAL retcode

_ALF_TASK_QUERY_ENTRY talk_handle, p_unfinished_wbs, p_total_wbs

_ALF_TASK_QUERY_EXIT_INTERVAL unfinished_wbs, total_wbs, retcode

_ALF_TASK_WAIT_ENTRY task_handle, time_out

_ALF_TASK_WAIT_EXIT_INTERVAL retcode

_ALF_WB_CREATE_ENTRY task_handle, work_block_type, repeat_count,

p_wb_handle

_ALF_WB_CREATE_EXIT_INTERVAL wb_handle, retcode

_ALF_WB_DTL_SET_BEGIN_ENTRY wb_handle, buffer_type, offset_to_the_local_buffer

_ALF_WB_DTL_SET_BEGIN_EXIT_INTERVAL retcode

_ALF_WB_DTL_SET_END_ENTRY wb_handle

_ALF_WB_DTL_SET_END_EXIT_INTERVAL retcode

_ALF_WB_DTL_SET_ENTRY_ADD_ENTRY wb_handle, p_address, size_of_data, data_type

_ALF_WB_DTL_SET_ENTRY_ADD_EXIT_INTERVAL retcode

_ALF_WB_ENQUEUE_ENTRY wb_handle

_ALF_WB_ENQUEUE_EXIT_INTERVAL retcode

_ALF_WB_PARM_ADD_ENTRY wb_handle, pdata, size_of_data, data_type,

address_alignment

_ALF_WB_PARM_ADD_EXIT_INTERVAL retcode

ALF performance hooks

These trace hooks are enabled by LIBALF_PERF group (0x08) in the config file.

The COUNTERS and TIMERS hooks contain data that is accumulated during the

ALF calls. Currently, that data and these trace events will get reported at various

ALF exit calls.

140 ALF for Cell BE Programmer’s Guide and API Reference

Table 4. ALF performance hooks

Hook Identifier Traced values

_ALF_GENERIC_PERFORM_HOST long1, long2, long3, long4, long5, long6, long7,

long8, long9, long10

_ALF_GENERIC_PERFORM_SPU long1, long2, long3, long4, long5, long6, long7,

long8, long9, long10

_ALF_HOST_COUNTERS alf_task_creates, alf_task_waits, alf_wb_enqueues,

thread_total_count, thread_reuse_count, x

_ALF_HOST_TIMERS alf_runtime, alf_accel_utilize, x1, x2

_ALF_SPU_COUNTERS alf_input_bytes, alf_output_bytes,

alf_workblock_total, double_buffer_used, x1, x2

_ALF_SPU_TIMERS alf_lqueue_empty, alf_wait_data_dtl,

alf_prep_input_dtl, alf_prep_output_dtl,

alf_compute_kernel, alf_spu_task_run, x1, x2

_ALF_TASK_BEFORE_EXEC_INTERVAL task_flag

_ALF_TASK_CONTEXT_MERGE_INTERVAL task_flag

_ALF_TASK_CONTEXT_SWAP_INTERVAL task_flag

_ALF_TASK_EXEC_INTERVAL task_flag

_ALF_THREAD_RUN_INTERVAL task_flag

_ALF_WAIT_FIRST_WB_INTERVAL task_flag, wb_flag, packet_flag

_ALF_WB_COMPUTE_KERNEL_INTERVAL task_flag, wb_flag, wb idx

_ALF_WB_DATA_TRANSFER_WAIT_INTERVAL task_flag, wb_flag, wb idx

_ALF_WB_DTL_PREPARE_IN_INTERVAL task_flag, wb_flag, wb idx

_ALF_WB_DTL_PREPARE_OUT_INTERVAL task_flag, wb_flag, wb idx

_ALF_WB_LQUEUE_EMPTY_INTERVAL task_flag, packet_flag

ALF SPU hooks

These trace hooks are enabled by LIBALF_SPU group (0x09) in the config file.

 Table 5. ALF SPU hooks

Hook identifier Traced values

_ALF_ACCEL_COMP_KERNEL_ENTRY p_task_context, p_parm_ctx_buffer,

p_input_buffer, p_output_buffer, p_inout_buffer,

current_iter, num_iter

_ALF_ACCEL_COMP_KERNEL_EXIT retcode

_ALF_ACCEL_DTL_BEGIN_ENTRY p_dtl, buf_type, offset

_ALF_ACCEL_DTL_BEGIN_EXIT p_dtl, retcode

_ALF_ACCEL_DTL_END_ENTRY p_dtl

_ALF_ACCEL_DTL_END_EXIT _ retcode

_ALF_ACCEL_DTL_ENTRY_ADD_ENTRY p_dtl, data_size, data_type, p_host_address

_ALF_ACCEL_DTL_ENTRY_ADD_EXIT retcode

_ALF_ACCEL_INPUT_DTL_PREPARE_ENTRY p_task_context, p_parm_ctx_buffer, p_dtl,

current_iter, num_iter

_ALF_ACCEL_INPUT_DTL_PREPARE_EXIT retcode

_ALF_ACCEL_NUM_INSTANCES retcode

Appendix C. ALF trace events 141

Table 5. ALF SPU hooks (continued)

Hook identifier Traced values

_ALF_ACCEL_OUTPUT_DTL_PREPARE_ENTRY p_task_context, p_parm_ctx_buffer, p_io_container,

current_iter, num_iter

_ALF_ACCEL_OUTPUT_DTL_PREPARE_EXIT retcode

_ALF_ACCEL_TASK_CONTEXT_MERGE_ENTRY p_task_context_to_be_merged, p_task_context

_ALF_ACCEL_TASK_CONTEXT_MERGE_EXIT retcode

_ALF_ACCEL_TASK_CONTEXT_SETUP_ENTRY p_task_context

_ALF_ACCEL_TASK_CONTEXT_SETUP_EXIT retcode

_ALF_INSTANCES_ID retcode

_ALF_SPE_GENERIC_DEBUG long1, long2, long3, long4, long5, long6, long7,

long8, long9, long10

142 ALF for Cell BE Programmer’s Guide and API Reference

Appendix D. Attributes and descriptions

The following table is a list of attributes.

 Table 6. Attributes and descriptions

Attribute name Description

ALF_QUERY_NUM_ACCEL Return the number of accelerators of a particular

type accel_type in the system.

ALF_QUERY_HOST_MEM_SIZE Return the memory size of control nodes up to 4T

bytes, in units of kilo bytes (2^10 bytes).

ALF_QUERY_HOST_MEM_SIZE_EXT Return the memory size of control nodes, in units of

4T bytes (2^42 bytes)

ALF_QUERY_ACCEL_MEM_SIZE Return the memory size of accelerator nodes up to

4T bytes, in units of kilo bytes (2^10 bytes).

ALF_QUERY_ACCEL_MEM_SIZE_EXT Return the memory size of accelerator nodes, in units

of 4T bytes (2^42 bytes).

ALF_QUERY_HOST_ADDR_ALIGN Return the basic requirement of memory address

alignment on control node side, in exponential of 2.

ALF_QUERY_ACCEL_ADDR_ALIGN Return the basic requirement of memory address

alignment on accelerator node side, in exponential of

2.

ALF_QUERY_DTL_ADDR_ALIGN Return the address alignment of data transfer list

entries, in exponential of 2.

ALF_ACCEL_TYPE_SPE Accelerator type.

ALF_EXIT_POLICY_FORCE Perform a shutdown immediately and aborts all

unfinished tasks if there are any.

ALF_EXIT_POLICY_WAIT Wait for all tasks to be processed and then shuts

down.

ALF_EXIT_POLICY_TRY Return with a failure if there are unfinished tasks.

ALF_TASK_DESC_WB_PARM_CTX_BUF_SIZE Size of the work block parameter buffer.

ALF_TASK_DESC_WB_IN_BUF_SIZE Size of the work block input buffer.

ALF_TASK_DESC_WB_OUT_BUF_SIZE Size of the work block output buffer.

ALF_TASK_DESC_WB_INOUT_BUF_SIZE Size of the work block overlapped input/output

buffer.

ALF_TASK_DESC_NUM_DTL_ENTRIES Maximum number of entries for the data transfer

list.

ALF_TASK_DESC_TSK_CTX_SIZE Size of the task context buffer.

ALF_TASK_DESC_PARTITION_ON_ACCEL Specifies whether the accelerator functions are

invoked to generate data transfer lists for input and

output data.

ALF_TASK_DESC_MAX_STACK_SIZE Specify the maximum stack size.

ALF_TASK_DESC_ACCEL_LIBRARY_REF_L Specify the name of the library that the accelerator

image is contained in

ALF_TASK_DESC_ACCEL_IMAGE_REF_L Specify the name of the accelerator image that’s

contained in the library.

© Copyright IBM Corp. 2006, 2007 143

Table 6. Attributes and descriptions (continued)

Attribute name Description

ALF_TASK_DESC_ACCEL_KERNEL_REF_L Specify the name of the computational kernel

function, this usually is a string constant that the

accelerator runtime could use to find the

correspondent function.

ALF_TASK_DESC_ACCEL_INPUT_DTL_REF_L Specify the name of the input list prepare function,

this usually is a string constant that the accelerator

runtime could use to find the correspondent

function.

ALF_TASK_DESC_ACCEL_OUTPUT_DTL_REF_L Specify the name of the output list prepare function,

this usually is a string constant that the accelerator

runtime could use to find the correspondent

function.

ALF_TASK_DESC_ACCEL_CTX_SETUP_REF_L Specify the name of the context setup function, this

usually is a string constant that the accelerator

runtime could use to find the correspondent

function.

ALF_TASK_DESC_ACCEL_CTX_MERGE_REF_L Specify the name of the context merge function, this

usually a string constant that the accelerator runtime

could use to find the correspondent function.

ALF_TASK_ATTR_SCHED_FIXED The task must be scheduled on num_instances of

accelerators.

ALF_TASK_ATTR_WB_CYCLIC The work blocks for this task is distributed to the

accelerators in a cyclic order as specified by

num_accelerators.

ALF_TASK_EVENT_TYPE_T Defined as followed:

v ALF_TASK_EVENT_FINALIZED: This task has

been finalized. No additional work block can be

added to this task.

v ALF_TASK_EVENT_READY: This task has been

scheduled for execution.

v ALF_TASK_EVENT_FINISHED: All work blocks in

this task have been processed.

v ALF_TASK_EVENT_INSTANCE_START: One new

instance of the task is started on an accelerator

after the event handler returns

v ALF_TASK_EVENT_INSTANCE_END: One

existing instance of the task ends and the task

context has been copied out to the original location

or has been merged to another current instance of

the same task.

v ALF_TASK_EVENT_DESTROY: The task is

destroyed explicitly

ALF_WB_SINGLE Create a single use work block.

ALF_WB_MULTI (Level 1) Create a multi use work block. This work block type

is only supported when the task is created with

ALF_PARTITION_ON_ACCELERATOR.

ALF_BUF_IN Input to the input-only buffer.

ALF_BUF_OUT Output from the output only buffer.

ALF_BUF_OVL_IN Input to the overlapped buffer.

ALF_BUF_OVL_OUT Output from the overlapped buffer.

144 ALF for Cell BE Programmer’s Guide and API Reference

Table 6. Attributes and descriptions (continued)

Attribute name Description

ALF_BUF_OVL_INOUT In/out to/from the overlapped buffer.

ALF_DATASET_READ_ONLY The dataset is read-only. Work blocks referencing the

data in this buffer cannot update this buffer as an

output buffer.

ALF_DATASET_WRITE_ONLY The dataset is write-only. Work blocks referencing the

data in this buffer as input data results in

indeterminate behavior.

ALF_DATASET_READ_WRITE The dataset allows both read and write access. Work

blocks can use this buffer as input buffers and

output buffers and/or inout buffers.

Appendix D. Attributes and descriptions 145

146 ALF for Cell BE Programmer’s Guide and API Reference

Appendix E. Error codes and descriptions

The following table is a list of the ALF error codes.

 Table 7. Error codes and descriptions

Error Error code Description

ALF_ERR_PERM 1 No permission

ALF_ERR_SRCH 3 No such task

ALF_ERR_2BIG 7 I/O request out of scope

ALF_ERR_NOEXEC 8 Runtime error

ALF_ERR_BADF 9 Bad handle

ALF_ERR_AGAIN 11 Try again

ALF_ERR_NOMEM 12 Out of memory

ALF_ERR_FAULT 14 Invalid address

ALF_ERR_BUSY 16 Resource busy

ALF_ERR_INVAL 22 Invalid argument

ALF_ERR_RANGE 34 Numerical results or args out of valid range

ALF_ERR_NOSYS 38 Function or features not implemented

ALF_ERR_BADR 53 The resource request cannot be fulfilled

ALF_ERR_NODATA 61 No more data available

ALF_ERR_TIME 62 Timeout

ALF_ERR_COMM 70 Generic communication error

ALF_ERR_PROTO 71 Internal protocol error

ALFF_ERR_BADMSG 74 Internal protocol error

ALF_ERR_OVERFLOW 75 Value out of range when converting

ALF_ERR_NOBUFS 105 No buffer space available

ALF_ERR_GENERIC 1000 Generic ALF internal error

ALF_ERR_ACCEL 2000 Generic accelerator error

© Copyright IBM Corp. 2006, 2007 147

148 ALF for Cell BE Programmer’s Guide and API Reference

Appendix F. Related documentation

This topic helps you find related information.

Document location

Links to documentation for the SDK are provided on the developerWorks® Web

site located at:

http://www.ibm.com/developerworks/power/cell/

Click the Docs tab.

The following documents are available, organized by category:

Architecture

v Cell Broadband Engine Architecture

v Cell Broadband Engine Registers

v SPU Instruction Set Architecture

Standards

v C/C++ Language Extensions for Cell Broadband Engine Architecture

v Cell Broadband Engine Linux Reference Implementation Application Binary Interface

Specification

v SIMD Math Library Specification for Cell Broadband Engine Architecture

v SPU Application Binary Interface Specification

v SPU Assembly Language Specification

Programming

v Cell Broadband Engine Programmer’s Guide

v Cell Broadband Engine Programming Handbook

v Cell Broadband Engine Programming Tutorial

Library

v Accelerated Library Framework for Cell Programmer’s Guide and API Reference

v Accelerated Library Framework for Hybrid-x86 Programmer’s Guide and API Reference

v Basic Linear Algebra Subprograms Programmer’s Guide and API Reference

v Cell Broadband Engine Monte Carlo Library API Reference Manual

v Data Communication and Synchronization for Cell Programmer’s Guide and API

Reference

v Data Communication and Synchronization for Hybrid-x86 Programmer’s Guide and

API Reference

v Example Library API Reference

v Mathematical Acceleration Subsystem (MASS)

v SDK 3.0 SIMD Math Library API Reference

v SPE Runtime Management Library

v SPE Runtime Management Library Version 1 to Version 2 Migration Guide

v SPU Timer Library

© Copyright IBM Corp. 2006, 2007 149

http://www.ibm.com/developerworks/power/cell/

Installation

v SDK for Multicore Acceleration Version 3.0 Installation Guide

Tools

v Getting Started - XL C/C++ Advanced Edition for Linux

v Compiler Reference - XL C/C++ Advanced Edition for Linux

v Language Reference - XL C/C++ Advanced Edition for Linux

v Programming Guide - XL C/C++ Advanced Edition for Linux

v Installation Guide - XL C/C++ Advanced Edition for Linux

v Getting Started - XL Fortran Advanced Edition for Linux

v Compiler Reference - XL Fortran Advanced Edition for Linux

v Language Reference - XL Fortran Advanced Edition for Linux

v Optimization and Programming Guide - XL Fortran Advanced Edition for Linux

v Installation Guide - XL Fortran Advanced Edition for Linux

v Using the single-source compiler

v Performance Analysis with the IBM Full-System Simulator

v IBM Full-System Simulator User’s Guide

v IBM Visual Performance Analyzer User’s Guide

PowerPC® Base

v PowerPC Architecture™ Book

– Book I: PowerPC User Instruction Set Architecture

– Book II: PowerPC Virtual Environment Architecture

– Book III: PowerPC Operating Environment Architecture

v PowerPC Microprocessor Family: Vector/SIMD Multimedia Extension Technology

Programming Environments Manual

150 ALF for Cell BE Programmer’s Guide and API Reference

Appendix G. Accessibility features

Accessibility features help users who have a physical disability, such as restricted

mobility or limited vision, to use information technology products successfully.

The following list includes the major accessibility features:

v Keyboard-only operation

v Interfaces that are commonly used by screen readers

v Keys that are tactilely discernible and do not activate just by touching them

v Industry-standard devices for ports and connectors

v The attachment of alternative input and output devices

IBM® and accessibility

See the IBM Accessibility Center at http://www.ibm.com/able/ for more

information about the commitment that IBM has to accessibility.

© Copyright IBM Corp. 2006, 2007 151

http://www.ibm.com/able/

152 ALF for Cell BE Programmer’s Guide and API Reference

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not grant you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing 2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2006, 2007 153

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

IBM Corporation

Software Interoperability Coordinator, Department 49XA

3605 Highway 52 N

Rochester, MN 55901

U.S.A.

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this information and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurements may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM’s suggested retail prices, are current and are subject

to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to

change before the products described become available.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which

illustrate programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM, for the purposes of developing, using, marketing or distributing application

programs conforming to the application programming interface for the operating

154 ALF for Cell BE Programmer’s Guide and API Reference

platform for which the sample programs are written. These examples have not

been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or

imply reliability, serviceability, or function of these programs.

Each copy or any portion of these sample programs or any derivative work, must

include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.

Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights

reserved.

If you are viewing this information in softcopy, the photographs and color

illustrations may not appear.

Trademarks

The following terms are trademarks of International Business Machines

Corporation in the United States, other countries, or both:

IBM

developerWorks

PowerPC

PowerPC Architecture

Resource Link

Adobe, Acrobat, Portable Document Format (PDF), and PostScript are either

registered trademarks or trademarks of Adobe Systems Incorporated in the United

States, other countries, or both.

Cell Broadband Engine and Cell/B.E.™ are trademarks of Sony Computer

Entertainment, Inc., in the United States, other countries, or both and is used under

license therefrom.

Linux® is a trademark of Linus Torvalds in the United States, other countries, or

both.

Other company, product or service names may be trademarks or service marks of

others.

Terms and conditions

Permissions for the use of these publications is granted subject to the following

terms and conditions.

Personal Use: You may reproduce these publications for your personal,

noncommercial use provided that all proprietary notices are preserved. You may

not distribute, display or make derivative works of these publications, or any

portion thereof, without the express consent of the manufacturer.

Commercial Use: You may reproduce, distribute and display these publications

solely within your enterprise provided that all proprietary notices are preserved.

You may not make derivative works of these publications, or reproduce, distribute

or display these publications or any portion thereof outside your enterprise,

without the express consent of the manufacturer.

Notices 155

Except as expressly granted in this permission, no other permissions, licenses or

rights are granted, either express or implied, to the publications or any data,

software or other intellectual property contained therein.

The manufacturer reserves the right to withdraw the permissions granted herein

whenever, in its discretion, the use of the publications is detrimental to its interest

or, as determined by the manufacturer, the above instructions are not being

properly followed.

You may not download, export or re-export this information except in full

compliance with all applicable laws and regulations, including all United States

export laws and regulations.

THE MANUFACTURER MAKES NO GUARANTEE ABOUT THE CONTENT OF

THESE PUBLICATIONS. THESE PUBLICATIONS ARE PROVIDED ″AS-IS″ AND

WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,

INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF

MERCHANTABILITY, NON-INFRINGEMENT, AND FITNESS FOR A

PARTICULAR PURPOSE.

156 ALF for Cell BE Programmer’s Guide and API Reference

Glossary

ABI

Application Binary Interface. This is the standard

that a program follows to ensure that code

generated by different compilers (and perhaps

linking with various, third-party libraries) run

correctly on the Cell BE. The ABI defines data

types, register use, calling conventions and object

formats.

accelerator

General or special purpose processing element in

a hybrid system. An accelerator can have a

multi-level architecture with both host elements

and accelerator elements. An accelerator, as

defined here, is a hierarchy with potentially

multiple layers of hosts and accelerators. An

accelerator element is always associated with one

host. Aside from its direct host, an accelerator

cannot communicate with other processing

elements in the system. The memory subsystem

of the accelerator can be viewed as distinct and

independent from a host. This is referred to as the

subordinate in a cluster collective.

ALF

Accelerated Library Framework. This an API that

provides a set of services to help programmers

solving data parallel problems on a hybrid

system. ALF supports the multiple-program-
multiple-data (MPMD) programming style where

multiple programs can be scheduled to run on

multiple accelerator elements at the same time.

ALF offers programmers an interface to partition

data across a set of parallel processes without

requiring architecturally-dependent code.

API

Application Program Interface.

ATO

Atomic Unit. Part of an SPE’s MFC. It is used to

synchronize with other processor units.

Broadband Engine

See CBEA.

C++

C++ is an object-orientated programming

language, derived from C.

cache

High-speed memory close to a processor. A cache

usually contains recently-accessed data or

instructions, but certain cache-control instructions

can lock, evict, or otherwise modify the caching

of data or instructions.

CBEA

Cell Broadband Engine Architecture. A new

architecture that extends the 64-bit PowerPC

Architecture. The CBEA and the Cell Broadband

Engine are the result of a collaboration between

Sony, Toshiba, and IBM, known as STI, formally

started in early 2001.

Cell BE processor

The Cell BE processor is a multi-core broadband

processor based on IBM’s Power Architecture.

Cell Broadband Engine processor

See Cell BE.

cluster

A collection of nodes.

compiler

A programme that translates a high-level

programming language, such as C++, into

executable code.

computational kernel

Part of the accelerator code that does stateless

computation task on one piece of input data and

generates corresponding output results.

© Copyright IBM Corp. 2006, 2007 157

compute task

An accelerator execution image that consists of a

compute kernel linked with the accelerated

library framework accelerator runtime library.

data set

An ALF data set is a logical set of data buffers.

DMA

Direct Memory Access. A technique for using a

special-purpose controller to generate the source

and destination addresses for a memory or I/O

transfer.

DMA command

A type of MFC command that transfers or

controls the transfer of a memory location

containing data or instructions. See MFC.

DMA list

A sequence of transfer elements (or list entries)

that, together with an initiating DMA-list

command, specify a sequence of DMA transfers

between a single area of LS and discontinuous

areas in main storage. Such lists are stored in an

SPE’s LS, and the sequence of transfers is initiated

with a DMA-list command such as getl or putl.

DMA-list commands can only be issued by

programs running on an SPE, but the PPE or

other devices can create and store the lists in an

SPE’s LS. DMA lists can be used to implement

scatter-gather functions between main storage and

the LS.

DMA-list command

A type of MFC command that initiates a sequence

of DMA transfers specified by a DMA list stored

in an SPE’s LS. See DMA list.

EA

See Effective address.

effective address

An address generated or used by a program to

reference memory. A memory-management unit

translates an effective address (EA) to a virtual

address (VA), which it then translates to a real

address (RA) that accesses real (physical) memory.

The maximum size of the effective address space

is 264 bytes.

exception

An error, unusual condition, or external signal

that may alter a status bit and will cause a

corresponding interrupt, if the interrupt is

enabled. See interrupt.

FFT

Fast Fourier Transform.

GCC

GNU C compiler

handle

A handle is an abstraction of a data object;

usually a pointer to a structure.

host

A general purpose processing element in a hybrid

system. A host can have multiple accelerators

attached to it. This is often referred to as the

master node in a cluster collective.

HTTP

Hypertext Transfer Protocol. A method used to

transfer or convey information on the World Wide

Web.

Hybrid

A module comprised of two Cell BE cards

connected via an AMD Opteron processor.

IDL

Interface definition language. Not the same as

CORBA IDL

kernel

The core of an operating which provides services

for other parts of the operating system and

provides multitasking. In Linux or UNIX

operating system, the kernel can easily be rebuilt

to incorporate enhancements which then become

operating-system wide.

158 ALF for Cell BE Programmer’s Guide and API Reference

latency

The time between when a function (or

instruction) is called and when it returns.

Programmers often optimize code so that

functions return as quickly as possible; this is

referred to as the low-latency approach to

optimization. Low-latency designs often leave the

processor data-starved, and performance can

suffer.

local store

The 256-KB local store associated with each SPE.

It holds both instructions and data.

LS

See local store.

main storage

The effective-address (EA) space. It consists

physically of real memory (whatever is external to

the memory-interface controller, including both

volatile and nonvolatile memory), SPU LSs,

memory-mapped registers and arrays,

memory-mapped I/O devices (all I/O is

memory-mapped), and pages of virtual memory

that reside on disk. It does not include caches or

execution-unit register files. See also local store.

main thread

The main thread of the application. In many

cases, Cell BE architecture programs are

multi-threaded using multiple SPEs running

concurrently. A typical scenario is that the

application consists of a main thread that creates

as many SPE threads as needed and the

application organizes them.

MFC

Memory Flow Controller. Part of an SPE which

provides two main functions: it moves data via

DMA between the SPE’s local store (LS) and main

storage, and it synchronizes the SPU with the rest

of the processing units in the system.

MPMD

Multiple Program Multiple Data. Parallel

programming model with several distinct

executable programs operating on different sets of

data.

node

A node is a functional unit in the system

topology, consisting of one host together with all

the accelerators connected as children in the

topology (this includes any children of

accelerators).

PDF

Portable document format.

pipelining

A technique that breaks operations, such as

instruction processing or bus transactions, into

smaller stages so that a subsequent stage in the

pipeline can begin before the previous stage has

completed.

PPE

PowerPC Processor Element. The general-purpose

processor in the Cell.

PPE

PowerPC Processor Element. The general-purpose

processor in the Cell BE processor.

PPU

PowerPC Processor Unit. The part of the PPE that

includes the execution units, memory-
management unit, and L1 cache.

process

A process is a standard UNIX-type process with a

separate address space.

program section

See code section.

Glossary 159

SDK

Software development toolkit for Multicore

Acceleration. A complete package of tools for

application development.

section

See code section.

SIMD

Single Instruction Multiple Data. Processing in

which a single instruction operates on multiple

data elements that make up a vector data-type.

Also known as vector processing. This style of

programming implements data-level parallelism.

SPE

Synergistic Processor Element. Extends the

PowerPC 64 architecture by acting as cooperative

offload processors (synergistic processors), with

the direct memory access (DMA) and

synchronization mechanisms to communicate

with them (memory flow control), and with

enhancements for real-time management. There

are 8 SPEs on each cell processor.

SPU

Synergistic Processor Unit. The part of an SPE

that executes instructions from its local store (LS).

SPU

Synergistic Processor Unit. The part of an SPE

that executes instructions from its local store (LS).

synchronization

The order in which storage accesses are

performed.

thread

A sequence of instructions executed within the

global context (shared memory space and other

global resources) of a process that has created

(spawned) the thread. Multiple threads (including

multiple instances of the same sequence of

instructions) can run simultaneously if each

thread has its own architectural state (registers,

program counter, flags, and other program-visible

state). Each SPE can support only a single thread

at any one time. Multiple SPEs can

simultaneously support multiple threads. The PPE

supports two threads at any one time, without the

need for software to create the threads. It does

this by duplicating the architectural state. A

thread is typically created by the pthreads library.

vector

An instruction operand containing a set of data

elements packed into a one-dimensional array.

The elements can be fixed-point or floating-point

values. Most Vector/SIMD Multimedia Extension

and SPU SIMD instructions operate on vector

operands. Vectors are also called SIMD operands

or packed operands.

virtual memory

The address space created using the memory

management facilities of a processor.

virtual storage

See virtual memory.

work block

A basic unit of data to be managed by the

framework. It consists of one piece of the

partitioned data, the corresponding output buffer,

and related parameters. A work block is

associated with a task. A task can have as many

work blocks as necessary.

workload

A set of code samples in the SDK that

characterizes the performance of the architecture,

algorithms, libraries, tools, and compilers.

work queue

An internal data structure of the accelerated

library framework that holds the lists of work

blocks to be processed by the active instances of

the compute task.

x86

Generic name for Intel-based processors.

XLC

The IBM optimizing C/C++ compiler.

160 ALF for Cell BE Programmer’s Guide and API Reference

Index

A
accelerator

API 99

buffer 25

data partitioning 51

element 3

process flow 9

runtime library 3

alf_accel_ instance_id 109

alf_accel_comp_kernel 102

ALF_ACCEL_DTL_BEGIN 110

ALF_ACCEL_DTL_CBEA_DMA_ 114,

115

ALF_ACCEL_DTL_END 112

ALF_ACCEL_DTL_ENTRY_ADD 111

ALF_ACCEL_EXPORT_API 100

ALF_ACCEL_EXPORT_API_LIST_BEGIN 100

ALF_ACCEL_EXPORT_API_LIST_END 100

alf_accel_input_dtl_prepare 103

alf_accel_num_instances 108

alf_accel_output_dtl_prepare 104

alf_accel_task_context_merge 106

alf_accel_task_context_merge API 106

alf_accel_task_context_setup 105

ALF_BUF_IN 144

ALF_BUF_OUT 144

ALF_BUF_OVL_IN 144

ALF_BUF_OVL_INOUT 145

ALF_BUF_OVL_OUT 144

ALF_DATA_TYPE_T 59

alf_dataset_buffer_add 95

alf_dataset_create 94

alf_dataset_destroy 96

alf_dataset_handle_t 93

ALF_DATASET_READ_ONLY 145

ALF_DATASET_READ_WRITE 145

ALF_DATASET_WRITE_ONLY 145

ALF_ERR_POLICY_T 68

alf_error_handler_register 68

alf_exit 67

alf_handle_t 62

alf_init 63

ALF_NULL_HANDLE 60

alf_num_instances_set 66

alf_query_system_info 64

ALF_STRING_TOKEN_ MAX 60

ALF_TASK_ATTR_SCHED_FIXED 144

alf_task_create 77

alf_task_dataset_associate 97

alf_task_depends_on 83

alf_task_desc_create 71

alf_task_desc_ctx_entry_add 73

alf_task_desc_destroy 72

alf_task_desc_handle_t 70

alf_task_desc_set_int32 74

alf_task_desc_set_int64 75

alf_task_destroy 82

alf_task_event_handler_register 84

alf_task_finalize 79

alf_task_handle_t 70

alf_task_query 81

alf_task_wait 80

alf_wb_create 87

alf_wb_dtl_begin 90

alf_wb_dtl_end 92

alf_wb_dtl_entry_add 91

alf_wb_enqueue 88

alf_wb_handle_t 86

ALF_WB_MULTI (Level 1) 144

alf_wb_parm_add 89

ALF_WB_SINGLE 144

API
accelerator 99

basic framework 62

Cell BE platform-dependent 113

changes 119

computational kernel 101

compute task 70

conventions 59

data set 93

host 61

reference 59

runtime 107

work block 86

application
building 45

how to run 47

optimizing 51

attributes 143

B
basic framework API 62

buffer 25

accelerator 25

double buffering 35

layout 25

task context buffer 25

types of buffer area 29

work block input data buffer 25

work block output data buffer 25

work block overlapped I/O

buffer 25

work block parameter and context

buffer 25

bundled distribution 18

C
callback error handler 20

Cell BE
architecture platform-dependent

API 113

programming 39

computational kernel 11, 106

alf_accel_comp_kernel API 102

alf_accel_input_dtl_prepare API 103

alf_accel_output_dtl_prepare API 104

alf_accel_task_context_setup API 105

API 101

macro 99

computational kernel (continued)
sample code 129

computational kernel macro
ALF_ACCEL_EXPORT_API 100

compute task 3

API 70

configuring 43

constant
ALF_NULL_HANDLE 60

ALF_STRING_TOKEN_ MAX 60

control task 3

conventions 59

cyclic distribution policy 17

D
data partitioning 23

accelerator APIs 23

design 51

optimizing performance 51

data set 19

alf_dataset_buffer_add API 95

alf_dataset_create API 94

alf_dataset_destroy API 96

alf_dataset_handle_t 93

alf_task_dataset_associate API 97

API 93

using 7

data structure 59

ALF_ACCEL_EXPORT_API_LIST_BEGIN 100

ALF_ACCEL_EXPORT_API_LIST_END 100

ALF_DATA_TYPE_T 59

alf_handle_t 62

alf_task_desc_handle_t 70

alf_task_handle_t 70

alf_wb_handle_t 86

work block 86

data transfer list 15

limitations 54

data type 59

debugging 37

hooks 139

installing the PDT 37

trace events 139

documentation 149

double buffering 35

E
environment variable 37

error
callback error handler 20

codes 147

handling 20

error-checked enabled library 45

example
simple ALF application 10

© Copyright IBM Corp. 2006, 2007 161

F
framework API

ALF_ERR_POLICY_T 68

alf_error_handler_register 68

alf_exit 67

alf_init 63

alf_num_instances_set 66

alf_query_system_info 64

function call order 31

H
host

API 61

data partitioning 23

element 3

memory addresses 23

process flow 9

runtime library 3

I
installation packages 43

installing
packages 43

PDT 37

L
library

error-checked enabled 45

optimized 45

traced 45

limitations
data transfer list 54

local memory 53

M
macro

ALF_ACCEL_EXPORT_API_ 99

computational kernel 99

matrix add example
accelerator data partition 126

host data partition 123

memory
constraints 53

host 53

host address 23

local 53

memory constraints 25

min-max finder 128

MPMD 3

multiple vector dot products 130

O
optimized library 45

optimizing 51

overlapped I/O buffer 29, 133

accelerator code sample 135

matrix setup sample 134

work block setup sample 134

P
parallel

data 7

limitations 7

tasks 7

partitioning
host data partitioning 23

PDT 37

trace control 37

PDT_CONFIG_FILE 37

Performance Debugging Tool 37

performance hooks 140

process flow 9

accelerator 9

host 9

programming
for ALF 45

for Cell BE 39

implementation overview 43

R
runtime

ALF_ACCEL_DTL_BEGIN API 110

ALF_ACCEL_DTL_END API 112

ALF_ACCEL_DTL_ENTRY_ADD

API 111

alf_accel_instance_id API 109

alf_accel_num_instances API 108

API 107

framework 4

S
sample 123

ALF application 10

matrix add 123, 126

min-max finder 128

multiple vector dot products 130

overlapped I/O buffer 133

table lookup 126

task dependency 135

scheduling policy 16

bundled distribution 18

cyclic 17

for work blocks 16

SDK documentation 149

source code
computational kernel 129

min-max finder 128

multiple vector dot products 131

overlapped I/O buffer 133

table lookup 126

task context merge 130

task dependency 135

task setup 124

task wait and exit 125

work block setup 125

SPE
accelerator memory constraints 53

T
table lookup 126

task 12

task (continued)
accelerated library 3

alf_task_create API 77

alf_task_depends_on API 83

alf_task_desc_create API 71

alf_task_desc_ctx_entry_add API 73

alf_task_desc_destroy API 72

alf_task_desc_set_int32 API 74

alf_task_desc_set_int64 API 75

alf_task_destroy API 82

alf_task_event_handler_register

API 84

alf_task_finalize API 79

alf_task_query API 81

alf_task_wait API 80

application programming 3

computational kernel 3

managing parallel 7

running multiple 7

task context
examples 126

min-max finder 128

multiple vector dot products 130

overlapped I/O buffer 133

sample code for merge 130

table lookup 126

uses 14

task dependency 13, 135

example 135

task descriptor 12

task event 14

API 84

attributes 144

task finalize 13

task instance 13

task mapping 13

task scheduling 13

fixed task mapping 13

trace control 37

trace events 139

traced library 45

W
work block

alf_wb_create API 87

alf_wb_dtl_begin API 90

alf_wb_dtl_end API 92

alf_wb_dtl_entry_add API 91

alf_wb_enqueue API 88

alf_wb_parm_add API 89

API 86

bundled distribution 18

cyclic block distribution 17

data structure 86

input data buffer 25

modifying parameter buffer 33

multi-use 14

optimizing performance 51

output data buffer 25

overlapped I/O buffer 25

parameter and context buffer 25

scheduling 16

scheduling policy 16

single-use 14

using multi-use 31, 51

using single-use 31

162 ALF for Cell BE Programmer’s Guide and API Reference

workload
division 3

Index 163

164 ALF for Cell BE Programmer’s Guide and API Reference

����

Printed in USA

SC33-8333-02

	Contents
	About this publication
	How to send your comments

	Part 1. ALF overview
	Chapter 1. What is ALF?
	Chapter 2. Overview of ALF external components
	Chapter 3. When to use ALF
	Chapter 4. Basic structure of an ALF application
	Simple example

	Chapter 5. Concepts
	Computational kernel
	Task descriptor
	Task
	Task finalize
	Task dependency and task scheduling
	Task context
	Task events

	Work blocks
	Data transfer list
	Work block scheduling
	Default work block scheduling policy
	Cyclic work block distribution policy
	Bundled work block distribution policy

	Data set
	Error handling

	Part 2. Programming with ALF
	Chapter 6. Data partitioning
	Host data partitioning
	Accelerator data partitioning

	Chapter 7. Accelerator buffer management
	Buffer types

	Chapter 8. When to use the overlapped I/O buffer
	Chapter 9. Using work blocks and order of function calls per task instance on the accelerator
	Chapter 10. Modifying the work block parameter and context buffer when using multi-use work blocks
	Chapter 11. Double buffering on ALF
	Chapter 12. Performance and debug trace
	Trace control

	Part 3. Programming ALF for Cell BE
	Chapter 13. Implementation overview
	Chapter 14. Installing and configuring ALF
	Chapter 15. Building an application
	Chapter 16. Running an application
	Chapter 17. Linking to the correct library
	Chapter 18. Optimizing ALF applications
	Using accelerator data partitioning
	Using multi-use work blocks
	What to consider for data layout design

	Chapter 19. Platform-specific constraints for the ALF implementation on Cell BE architecture
	SPE accelerator memory constraints
	Data transfer list limitations

	Part 4. API reference
	Chapter 20. ALF API overview
	ALF_NULL_HANDLE
	ALF_STRING_TOKEN_ MAX

	Chapter 21. Host API
	Basic framework API
	alf_handle_t
	alf_init
	alf_query_system_info
	alf_num_instances_set
	alf_exit
	alf_error_handler_register
	ALF_ERR_POLICY_T

	Compute task API
	alf_task_handle_t
	alf_task_desc_handle_t
	alf_task_desc_create
	alf_task_desc_destroy
	alf_task_desc_ctx_entry_add
	alf_task_desc_set_int32
	alf_task_desc_set_int64
	alf_task_create
	alf_task_finalize
	alf_task_wait
	alf_task_query
	alf_task_destroy
	alf_task_depends_on
	alf_task_event_handler_register

	Work block API
	Data structures
	alf_wb_handle_t

	alf_wb_create
	alf_wb_enqueue
	alf_wb_parm_add
	alf_wb_dtl_begin
	alf_wb_dtl_entry_add
	alf_wb_dtl_end

	Data set API
	alf_dataset_handle_t
	alf_dataset_create
	alf_dataset_buffer_add
	alf_dataset_destroy
	alf_task_dataset_associate

	Chapter 22. Accelerator API
	Computational kernel function exporting macros
	ALF_ACCEL_EXPORT_API
	ALF_ACCEL_EXPORT_API_LIST_BEGIN
	ALF_ACCEL_EXPORT_API_LIST_END

	User-provided computational kernel APIs
	alf_accel_comp_kernel
	alf_accel_input_dtl_prepare
	alf_accel_output_dtl_prepare
	alf_accel_task_context_setup
	alf_accel_task_context_merge

	Runtime APIs
	alf_accel_num_instances
	alf_accel_instance_id
	ALF_ACCEL_DTL_BEGIN
	ALF_ACCEL_DTL_ENTRY_ADD
	ALF_ACCEL_DTL_END

	Chapter 23. Cell BE platform-specific extension APIs
	ALF_ACCEL_DTL_CBEA_DMA_LIST_BUFFER_GET
	ALF_ACCEL_DTL_CBEA_DMA_LIST_BUFFER_UPDATE

	Part 5. Appendixes
	Appendix A. Changes to the SDK 2.1 APIs for this release
	Appendix B. Examples
	Basic examples
	Matrix add - host data partitioning example
	Matrix add - accelerator data partitioning example

	Task context examples
	Table lookup example
	Min-max finder example
	Multiple vector dot products
	Overlapped I/O buffer example

	Task dependency example

	Appendix C. ALF trace events
	Appendix D. Attributes and descriptions
	Appendix E. Error codes and descriptions
	Appendix F. Related documentation
	Appendix G. Accessibility features
	Notices
	Trademarks
	Terms and conditions

	Glossary
	Index

