IBM

© Copyright International Business Machines Corporation, Sony Computer Entertainment Incorporated, Toshiba Corporation 2006 - 2007

All Rights Reserved
Printed in the United States of America November 2007

The following are trademarks of International Business Machines Corporation in the United States, or other countries, or both.

IBM PowerPC
IBM Logo PowerPC Architecture
ibm.com

Cell Broadband Engine is a trademark of Sony Computer Entertainment, Inc.

Other company, product and service names may be trademarks or service marks of others.

All information contained in this document is subject to change without notice. The products described in this document are NOT intended for use in applications such as implantation, life support, or other hazardous uses where malfunction could result in death, bodily injury or catastrophic property damage. The information contained in this document does not affect or change IBM product specifications or warranties. Nothing in this document shall operate as an express or implied license or indemnity under the intellectual property rights of IBM or third parties. All information contained in this document was obtained in specific environments, and is presented as an illustration. The results obtained in other operating environments may vary.

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED ON AN “AS IS” BASIS. In no event will IBM be liable for damages arising directly or indirectly from any use of the information contained in this document.

IBM Systems and Technology Group
2070 Route 52, Bldg. 330
Hopewell Junction, NY 12533-6351

The IBM home page can be found at ibm.com

The IBM semiconductor solutions home page can be found at ibm.com/chips

September 14, 2007
Table of Contents

List of Figures vi
List of Tables vi
About This Document vii
 Audience vii
 Version History vii
 Related Documentation vii
 Document Structure vii
 Conventions Used in This Document viii

1. Overview of the SIMD Math Library 1
 1.1. Library and Header Files 1
 1.2. Functions Overview 1
 1.3. Special Cases 6
 1.3.1. Rounding 6
 1.3.2. Special Operands 6
 1.3.3. Error Conditions 6
 1.3.4. Exceptions 6

2. SIMD Function Specifications 8
 2.1. Type Definitions 8
 divi4_t: Remainder/Quotient Struct for Vector Signed Int 8
 divu4_t: Remainder/Quotient Struct for Vector Unsigned Int 8
 lldivi2_t: Remainder/Quotient Struct for Vector Signed Long Long (SPU Only) 8
 lldivu2_t: Remainder/Quotient Struct for Vector Unsigned Long Long (SPU Only) 8
 llroundf4_t: Vector of Four Long Long (SPU Only) 8
 2.2. Function Descriptions 9
 absi4: Absolute Value of Integer 9
 acosd2: Arcosine of Double (SPU Only) 9
 acosf4: Arcosine of Float 9
 acoshd2: Hyperbolic Arcosine of Double (SPU Only) 9
 acoshf4: Hyperbolic Arcosine of Float 9
 asind2: Arcosine of Double (SPU Only) 9
 asinf4: Arcosine of Float 9
 asinhd2: Hyperbolic Arcosine of Double (SPU Only) 10
 asinhf4: Hyperbolic Arcosine of Float 10
 atan2d2: Arctangent of Double Quotient (SPU Only) 10
 atan2f4: Arctangent of Float Quotient 10
 cbrtd2: Cube Root of Double (SPU Only) 11
 cbtrf4: Cube Root of Float 11
 ceil2: Ceiling of Double (SPU Only) 11
 ceilf4: Ceiling of Float 11
 copysignd2: Copy Sign of Double (SPU Only) 11
 copysignf4: Copy Sign of Float 11
 cosd2: Cosine of Double (SPU Only) 11
 cosf4: Cosine of Float 12
 coshd2: Hyperbolic Cosine of Double (SPU Only) 12
 coshf4: Hyperbolic Cosine of Float 12
 divd2: Divide Doubles (SPU Only) 12
 divf4: Divide Floats 12
 divi4: Divide Integer 12
 divu4: Divide Unsigned Integer 13
 erfc2: Complementary Error Function Double (SPU Only) 13
erfcf4: Complementary Error Function Float
erfd2: Error Function Double (SPU Only)
erff4: Error Function Float
expd2: e Raised to the Power of Double (SPU Only)
expf4: e Raised to the Power of Float
exp2d2: 2 Raised to the Power of Double (SPU Only)
exp2f4: 2 Raised to the Power of Float
expm1d2: e Raised to the Power of Double Minus 1 (SPU Only)
expm1f4: e Raised to the Power of Float Minus 1
fabsd2: Absolute Value Double (SPU Only)
fabsf4: Absolute Value Float
fdimd2: Subtract Staying Non-Negative Double (SPU Only)
fdimf4: Subtract Staying Non-Negative Float
floord2: Floor Double (SPU Only)
floorf4: Floor Float
fmad2: Fused Multiply and Add Double (SPU Only)
fmaf4: Fused Multiply and Add Float
frexp2d2: Represent Double as Fraction and Exponent (SPU Only)
frexp4: Represent Float as Fraction and Exponent
hypotd2: Hypotenuse Double (SPU Only)
hypotf4: Hypotenuse Float
ilogbd2: Integer Exponent of Double (SPU Only)
ilogbf4: Integer Exponent of Float
irlnf4: Nearest Integer Float
iroundf4: Round Float to Nearest Integer
is0denormd2: 0 or Denormalized Double (SPU Only)
is0denormf4: 0 or Denormalized Float
isquald2: Compare Equal Double (SPU Only)
isqal4: Compare Equal Float
isfinite2: Double Is Finite (SPU Only)
isfinitef4: Float Is Finite
isgraterequald2: Greater or Equal Double (SPU Only)
isgraterequalf4: Greater or Equal Float
isgreaterd2: Greater Than Double (SPU Only)
isgreaterf4: Greater Than Float
isinf2: Double Is Infinity (SPU Only)
isinf4: Float Is Infinity
islesssd2: Double Is Less Than (SPU Only)
islesssql2d: Double Is Less Than or Equal To (SPU Only)
islessequalf4: Float Is Less Than or Equal To
islesssf4: Float Is Less Than
islesssgd2: Double Is Less Than or Greater Than (SPU Only)
islessgreaterf4: Float Is Less Than or Greater Than
isnand2: Double Is NaN (SPU Only)
isnanf4: Float Is NaN
isnormald2: Double Is Normal (SPU Only)
isnormalf4: Float Is Normal
isunordered2: Double Is Unordered (SPU Only)
isunorderedf4: Float Is Unordered
ldexp2d: Multiply Double by 2 Raised to its Power (SPU Only)
ldexpf4: Multiply Float by 2 Raised to its Power
lgammad2: Natural Log of Gamma Function of Double (SPU Only)
lgammaf4: Natural Log of Gamma Function of Float
labsi2: Absolute Value Long Long (SPU Only)
 SIMD Math Library Specification for Cell Broadband Engine Architecture, Version 1.1

lldivi2: Divide Long Long (SPU Only) 23
lldivu2: Divide Unsigned Long Long (SPU Only) 23
llrintd2: Find Nearest Long Long of Double (SPU Only) 23
llrintf4: Find Nearest Long Long of Float (SPU Only) 23
llroundd2: Round Double to Nearest Long Long (SPU Only) 24
llroundf4: Round Float to Nearest Long Long (SPU Only) 24
logd2: Natural Log of Double (SPU Only) 24
logf4: Natural Log of Float 24
log10d2: Log Base 10 of Double (SPU Only) 24
log10f4: Log Base 10 of Float 24
log1pd2: Natural Log of Double Plus 1 (SPU Only) 24
log1pf4: Natural Log of Float Plus 1 25
log2d2: Log Base 2 of Double (SPU Only) 25
log2f4: Log Base 2 of Float 25
logbd2: Represent Double as Fraction Greater Than 1 and Exponent (SPU Only) 25
logbf4: Represent Float as Fraction Greater Than 1 and Exponent 25
moddd2: Represent Double as Proper Fraction and Exponent (SPU Only) 25
moddf4: Represent Float as Proper Fraction and Exponent 25
nearbyintd2: Find Nearest Integer for Double (SPU Only) 26
nearbyintf4: Find Nearest Integer for Float 26
negated2: Negate Double (SPU Only) 26
negatef4: Negate Float 26
negatei4: Negate Signed Integer 26
negatei62: Negate Signed Long Long Integer (SPU Only) 26
nextafterd2: Find Next Integer After for Double (SPU Only) 27
nextafterf4: Find Next Integer After for Float 27
powd2: Raise Double to Double Power (SPU Only) 27
powf4: Raise Float to Float Power 27
recipd2: Reciprocal of Double (SPU Only) 27
recipf4: Reciprocal of Float 27
remainderd2: Remainder of Doubles (SPU Only) 28
remainderf4: Remainder of Floats 28
remquod2: Remainder Function of Double (SPU Only) 28
remquof4: Remainder Function of Float 28
rintd2: Round Double to the Nearest Integer (SPU Only) 28
rintf4: Round Float to the Nearest Integer 28
roundd2: Round Double (SPU Only) 28
roundf4: Round Float 29
rsqrtdd2: Reciprocal Square Root of Double (SPU Only) 29
rsqrtf4: Reciprocal Square Root of Float 29
scalblnd2: Scale Double by Long Long Integer (SPU Only) 29
scalbnf4: Scale Float by Integer 29
signbitd2: Sign Bit of Double (SPU Only) 29
signbitf4: Sign Bit of Float 30
sincosd2: Sine and Cosine of Double (SPU Only) 30
sincosf4: Sine and Cosine of Float 30
sind2: Sine of Double (SPU Only) 30
sinf4: Sine of Float 30
sinhd2: Hyperbolic Sine of Double (SPU Only) 30
sinhf4: Hyperbolic Sine of Float 30
sqrtdd2: Square Root of Double (SPU Only) 31
sqrtf4: Square Root of Float 31
tand2: Tangent of Double (SPU Only) 31
tand4: Tangent of Float 31
tanhd2: Hyperbolic Tangent of Double (SPU Only) 31
tanhf4: Hyperbolic Tangent of Float 31
tgammad2: Gamma of Double (SPU Only) 32
tgammaf4: Gamma of Float 32
truncd2: Truncate Double (SPU Only) 32
truncf4: Truncate Float 32
List of Figures

Figure 1: Big-Endian Byte/Element Ordering for Vector Types viii

List of Tables

Table 1: SIMD Math Functions 1
About This Document

This document contains specifications for a math library that takes advantage of the single instruction, multiple data (SIMD) instructions provided by the PowerPC® Processor Unit (PPU) and the Synergistic Processor Unit (SPU) hardware of the Cell Broadband Engine™. By computing multiple results at one time, SIMD math functions allow programmers to obtain much higher performance from their PPU and SPU programs than would be possible from a corresponding traditional scalar math library.

Audience

This document is intended for system and application programmers who are interested in writing high-performance programs for the Cell Broadband Engine.

Version History

This section describes significant changes made to each version of this document.

<table>
<thead>
<tr>
<th>Version Number & Date</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>v. 1.1 September 14, 2007</td>
<td>Corrected chapter numbering and other minor errors (TWG_RFC00093-0: CORRECTION NOTICE), TWG_RFC00116-0: CORRECTION NOTICE). Made miscellaneous editorial changes. Specified the behavior of atanhf4() when it is given an argument that has a value of -1 (TWG_RFC00120-1). Changed the way that several functions are described and classified (TWG_RFC00122-0: CORRECTION NOTICE). Made miscellaneous editorial changes.</td>
</tr>
<tr>
<td>v. 1.0 November 6, 2006</td>
<td>Created the initial document.</td>
</tr>
</tbody>
</table>

Related Documentation

The following table provides a list of references and supporting materials for this document:

<table>
<thead>
<tr>
<th>Document Title</th>
<th>Version</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>C/C++ Language Extensions for the Cell Broadband Engine Architecture</td>
<td>2.5</td>
<td>September 2007</td>
</tr>
<tr>
<td>ISO/IEC Standard 9899:1999 (C Standard)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IEC Standard 60559:1989 (Standard for Binary Floating-Point Arithmetic)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Synergistic Processor Unit Instruction Set Architecture</td>
<td>1.2</td>
<td>January 2007</td>
</tr>
<tr>
<td>PowerPC Architecture Book</td>
<td>2.02</td>
<td>November 2005</td>
</tr>
</tbody>
</table>

Document Structure

This document contains two chapters. The first is a SIMD math library overview, and the second is a specification describing the particular math functions in this library.
Conventions Used in This Document

Bit Notation
Standard bit notation is used throughout this document. Bits and bytes are numbered in ascending order from left to right. Thus, for a 4-byte word, bit 0 is the most significant bit and bit 31 is the least significant bit, as shown in the following figure:

```
MSB
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
```

MSB = Most significant bit
LSB = Least significant bit

Notation for bit encoding is as follows:
- Hexadecimal values are preceded by $0x$. For example: $0xA00$.
- Binary values in sentences appear in single quotation marks. For example: ‘1010’.

Byte Ordering and Element Numbering
Byte ordering and element/slot numbering are always displayed in big-endian order, as shown in Figure 1.

Figure 1: Big-Endian Byte/Element Ordering for Vector Types

<table>
<thead>
<tr>
<th>Byte 0 (MSB)</th>
<th>Byte 1</th>
<th>Byte 2</th>
<th>Byte 3</th>
<th>Byte 4</th>
<th>Byte 5</th>
<th>Byte 6</th>
<th>Byte 7</th>
<th>Byte 8</th>
<th>Byte 9</th>
<th>Byte 10</th>
<th>Byte 11</th>
<th>Byte 12</th>
<th>Byte 13</th>
<th>Byte 14</th>
<th>Byte 15 (LSB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>doubleword 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>word 0</td>
<td>word 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>word 2</td>
<td>word 3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>halfword 0</td>
<td>halfword 1</td>
<td>halfword 2</td>
<td>halfword 3</td>
<td>halfword 4</td>
<td>halfword 5</td>
<td>halfword 6</td>
<td>halfword 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>char 0</td>
<td>char 1</td>
<td>char 2</td>
<td>char 3</td>
<td>char 4</td>
<td>char 5</td>
<td>char 6</td>
<td>char 7</td>
<td>char 8</td>
<td>char 9</td>
<td>char 10</td>
<td>char 11</td>
<td>char 12</td>
<td>char 13</td>
<td>char 14</td>
</tr>
</tbody>
</table>

Other Conventions
The following typographic conventions are used throughout this document:

<table>
<thead>
<tr>
<th>Convention</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>courier</td>
<td>Indicates programming code and literals, such as processing instructions,</td>
</tr>
<tr>
<td></td>
<td>register names, data types, events, and file names. Also indicates</td>
</tr>
<tr>
<td></td>
<td>function and macro names. This convention is used only where it</td>
</tr>
<tr>
<td></td>
<td>facilitates comprehension, especially in narrative descriptions.</td>
</tr>
<tr>
<td>courier + italics</td>
<td>Indicates arguments, parameters, and variables. This convention is used</td>
</tr>
<tr>
<td></td>
<td>only where it facilitates comprehension, especially in narrative</td>
</tr>
<tr>
<td></td>
<td>descriptions.</td>
</tr>
<tr>
<td>italics (without</td>
<td>Indicates emphasis. Except when hyperlinked, book references are in</td>
</tr>
<tr>
<td>courier)</td>
<td>italics. When a term is first defined, it is often in italics.</td>
</tr>
<tr>
<td>Convention</td>
<td>Meaning</td>
</tr>
<tr>
<td>------------</td>
<td>---------</td>
</tr>
<tr>
<td>blue</td>
<td>Indicates a hyperlink (color printers or online only).</td>
</tr>
</tbody>
</table>
1. Overview of the SIMD Math Library

The PPU and SPU instruction sets include single instruction, multiple data (SIMD) instructions that are similar to normal instructions but operate on more than one input simultaneously. Traditional math functions operate on a single input and are unable to take advantage of the speed and power of SIMD instructions. The SIMD Math Library contains SIMD versions of the scalar math functions described in the C99 standard, or ISO/IEC Standard 9899:1999 (C Standard). This chapter provides specifications for these special PPU and SPU SIMD libraries.

1.1. Library and Header Files

The name of the SIMD library will contain the string `simdmath`. For example, on GNU/Linux the library will be called `libsimdmath.a`, or `libsimdmath.so` (for the shared library version). The `simdmath.h` system header file will contain type declarations and prototypes for the SIMD math functions.

1.2. Functions Overview

The functions that comprise the PPU and SPU SIMD math libraries are listed in Table 1. The functions that are listed as “non-standard” have no C99 counterpart.

Names of the SIMD math functions are differentiated from their scalar counterparts by a vector type suffix appended to the standard scalar function name. For example, the SIMD version of `fabsf()`, which acts on a vector float, is called `fabsf4()`. Similarly, a SIMD version of a standard scalar function that acts on a vector double will have `d2` appended to the name.

Table 1: SIMD Math Functions

<table>
<thead>
<tr>
<th>Function Name</th>
<th>C99 Name</th>
<th>Function Category</th>
<th>Precision</th>
<th>SPU/PPU</th>
</tr>
</thead>
<tbody>
<tr>
<td>abs4</td>
<td>abs</td>
<td>integer</td>
<td>word</td>
<td>Both</td>
</tr>
<tr>
<td>acosd2</td>
<td>acos</td>
<td>trig</td>
<td>double</td>
<td>SPU</td>
</tr>
<tr>
<td>acosf4</td>
<td>acosf</td>
<td>trig</td>
<td>single</td>
<td>Both</td>
</tr>
<tr>
<td>acoshd2</td>
<td>acosh</td>
<td>hyperbolic</td>
<td>double</td>
<td>SPU</td>
</tr>
<tr>
<td>acoshf4</td>
<td>acoshf</td>
<td>hyperbolic</td>
<td>single</td>
<td>Both</td>
</tr>
<tr>
<td>asind2</td>
<td>asin</td>
<td>trig</td>
<td>double</td>
<td>SPU</td>
</tr>
<tr>
<td>asinf4</td>
<td>asinf</td>
<td>trig</td>
<td>single</td>
<td>Both</td>
</tr>
<tr>
<td>asinhd2</td>
<td>asinh</td>
<td>hyperbolic</td>
<td>double</td>
<td>SPU</td>
</tr>
<tr>
<td>asinhf4</td>
<td>asinhf</td>
<td>hyperbolic</td>
<td>single</td>
<td>Both</td>
</tr>
<tr>
<td>atan2d2</td>
<td>atan2</td>
<td>trig</td>
<td>double</td>
<td>SPU</td>
</tr>
<tr>
<td>atan2f4</td>
<td>atan2f</td>
<td>trig</td>
<td>single</td>
<td>Both</td>
</tr>
<tr>
<td>atand2</td>
<td>atan</td>
<td>trig</td>
<td>double</td>
<td>SPU</td>
</tr>
<tr>
<td>atanf4</td>
<td>atanf</td>
<td>trig</td>
<td>single</td>
<td>Both</td>
</tr>
<tr>
<td>atanhd2</td>
<td>atanh</td>
<td>hyperbolic</td>
<td>double</td>
<td>SPU</td>
</tr>
<tr>
<td>atanhf4</td>
<td>atanhf</td>
<td>hyperbolic</td>
<td>single</td>
<td>Both</td>
</tr>
<tr>
<td>cbroid2</td>
<td>cbtf</td>
<td>power</td>
<td>double</td>
<td>SPU</td>
</tr>
<tr>
<td>cbrtf4</td>
<td>cbtf</td>
<td>power</td>
<td>single</td>
<td>Both</td>
</tr>
<tr>
<td>ceil2</td>
<td>ceil</td>
<td>rounding</td>
<td>double</td>
<td>SPU</td>
</tr>
<tr>
<td>ceilf4</td>
<td>ceilf</td>
<td>rounding</td>
<td>single</td>
<td>Both</td>
</tr>
<tr>
<td>copysignd2</td>
<td>copysign</td>
<td>other</td>
<td>double</td>
<td>SPU</td>
</tr>
<tr>
<td>copysignf4</td>
<td>copysignf</td>
<td>other</td>
<td>single</td>
<td>Both</td>
</tr>
<tr>
<td>Function Name</td>
<td>C99 Name</td>
<td>Category</td>
<td>Precision</td>
<td>SPU/PPU</td>
</tr>
<tr>
<td>---------------</td>
<td>----------</td>
<td>----------------</td>
<td>-----------</td>
<td>---------</td>
</tr>
<tr>
<td>cosd2</td>
<td>cos</td>
<td>trig</td>
<td>double</td>
<td>SPU</td>
</tr>
<tr>
<td>cosf4</td>
<td>cosf</td>
<td>trig</td>
<td>single</td>
<td>Both</td>
</tr>
<tr>
<td>coshd2</td>
<td>cosh</td>
<td>hyperbolic</td>
<td>double</td>
<td>SPU</td>
</tr>
<tr>
<td>coshf4</td>
<td>coshf</td>
<td>hyperbolic</td>
<td>single</td>
<td>Both</td>
</tr>
<tr>
<td>divd2</td>
<td>non-standard</td>
<td>divide</td>
<td>double</td>
<td>SPU</td>
</tr>
<tr>
<td>divf4</td>
<td>non-standard</td>
<td>divide</td>
<td>single</td>
<td>Both</td>
</tr>
<tr>
<td>div4</td>
<td>div</td>
<td>integer</td>
<td>word</td>
<td>Both</td>
</tr>
<tr>
<td>divu4</td>
<td>non-standard</td>
<td>integer</td>
<td>word</td>
<td>Both</td>
</tr>
<tr>
<td>erfcd2</td>
<td>erfc</td>
<td>error function</td>
<td>double</td>
<td>SPU</td>
</tr>
<tr>
<td>erfcf4</td>
<td>erfcf</td>
<td>error function</td>
<td>single</td>
<td>Both</td>
</tr>
<tr>
<td>erfd2</td>
<td>erf</td>
<td>error function</td>
<td>double</td>
<td>SPU</td>
</tr>
<tr>
<td>erff4</td>
<td>erff</td>
<td>error function</td>
<td>single</td>
<td>Both</td>
</tr>
<tr>
<td>exp2d2</td>
<td>exp2</td>
<td>exp</td>
<td>double</td>
<td>SPU</td>
</tr>
<tr>
<td>exp2f4</td>
<td>exp2f</td>
<td>exp</td>
<td>single</td>
<td>Both</td>
</tr>
<tr>
<td>expd2</td>
<td>exp</td>
<td>exp</td>
<td>double</td>
<td>SPU</td>
</tr>
<tr>
<td>expf4</td>
<td>expf</td>
<td>exp</td>
<td>single</td>
<td>Both</td>
</tr>
<tr>
<td>expm1d2</td>
<td>expm1</td>
<td>exp</td>
<td>double</td>
<td>SPU</td>
</tr>
<tr>
<td>expm1f4</td>
<td>expm1f</td>
<td>exp</td>
<td>single</td>
<td>Both</td>
</tr>
<tr>
<td>fabsd2</td>
<td>fabs</td>
<td>abs</td>
<td>double</td>
<td>SPU</td>
</tr>
<tr>
<td>fabsf4</td>
<td>fabsf</td>
<td>abs</td>
<td>single</td>
<td>Both</td>
</tr>
<tr>
<td>fdimd2</td>
<td>fdim</td>
<td>other</td>
<td>double</td>
<td>SPU</td>
</tr>
<tr>
<td>fdimf4</td>
<td>fdimf</td>
<td>other</td>
<td>single</td>
<td>Both</td>
</tr>
<tr>
<td>floor2</td>
<td>floor</td>
<td>rounding</td>
<td>double</td>
<td>SPU</td>
</tr>
<tr>
<td>floorf4</td>
<td>floorf</td>
<td>rounding</td>
<td>single</td>
<td>Both</td>
</tr>
<tr>
<td>fmad2</td>
<td>fma</td>
<td>other</td>
<td>double</td>
<td>SPU</td>
</tr>
<tr>
<td>fmaf4</td>
<td>fmaf</td>
<td>other</td>
<td>single</td>
<td>Both</td>
</tr>
<tr>
<td>fmaxd2</td>
<td>fmax</td>
<td>minmax</td>
<td>double</td>
<td>SPU</td>
</tr>
<tr>
<td>fmaxf4</td>
<td>fmaxf</td>
<td>minmax</td>
<td>single</td>
<td>Both</td>
</tr>
<tr>
<td>fmin2</td>
<td>fmin</td>
<td>minmax</td>
<td>double</td>
<td>SPU</td>
</tr>
<tr>
<td>fminf4</td>
<td>fminf</td>
<td>minmax</td>
<td>single</td>
<td>Both</td>
</tr>
<tr>
<td>fmodd2</td>
<td>fmod</td>
<td>modrem</td>
<td>double</td>
<td>SPU</td>
</tr>
<tr>
<td>fmodf4</td>
<td>fmodf</td>
<td>modrem</td>
<td>single</td>
<td>Both</td>
</tr>
<tr>
<td>fpclassifyd2</td>
<td>fpclassify</td>
<td>comparison</td>
<td>double</td>
<td>SPU</td>
</tr>
<tr>
<td>fpclassifyf4</td>
<td>fpclassify</td>
<td>comparison</td>
<td>single</td>
<td>Both</td>
</tr>
<tr>
<td>frexp2</td>
<td>frexp</td>
<td>other</td>
<td>double</td>
<td>SPU</td>
</tr>
<tr>
<td>frexpf4</td>
<td>frexpf</td>
<td>other</td>
<td>single</td>
<td>Both</td>
</tr>
<tr>
<td>hypotd2</td>
<td>hypot</td>
<td>other</td>
<td>double</td>
<td>SPU</td>
</tr>
<tr>
<td>hypotf4</td>
<td>hypotf</td>
<td>other</td>
<td>single</td>
<td>Both</td>
</tr>
<tr>
<td>ilogbd2</td>
<td>ilogb</td>
<td>log</td>
<td>double</td>
<td>SPU</td>
</tr>
<tr>
<td>ilogbf4</td>
<td>ilogbf</td>
<td>log</td>
<td>single</td>
<td>Both</td>
</tr>
<tr>
<td>irintf4</td>
<td>non-standard</td>
<td>other</td>
<td>single</td>
<td>Both</td>
</tr>
<tr>
<td>iroundf4</td>
<td>non-standard</td>
<td>rounding</td>
<td>single</td>
<td>Both</td>
</tr>
<tr>
<td>is0denormf4</td>
<td>non-standard</td>
<td>comparison</td>
<td>single</td>
<td>Both</td>
</tr>
<tr>
<td>Function Name</td>
<td>C99 Name</td>
<td>Function Category</td>
<td>Precision</td>
<td>SPU/PPU</td>
</tr>
<tr>
<td>--------------------</td>
<td>------------</td>
<td>-------------------</td>
<td>-----------</td>
<td>---------</td>
</tr>
<tr>
<td>is0denormd2</td>
<td>non-standard</td>
<td>comparison</td>
<td>double</td>
<td>SPU</td>
</tr>
<tr>
<td>iequald2</td>
<td>non-standard</td>
<td>comparison</td>
<td>double</td>
<td>SPU</td>
</tr>
<tr>
<td>isequalf4</td>
<td>non-standard</td>
<td>comparison</td>
<td>single</td>
<td>Both</td>
</tr>
<tr>
<td>isfinited2</td>
<td>isfinite</td>
<td>comparison</td>
<td>double</td>
<td>SPU</td>
</tr>
<tr>
<td>isnfinitef4</td>
<td>isfinite</td>
<td>comparison</td>
<td>single</td>
<td>Both</td>
</tr>
<tr>
<td>isgreateq2</td>
<td>isgreater</td>
<td>comparison</td>
<td>double</td>
<td>SPU</td>
</tr>
<tr>
<td>isgreateqf4</td>
<td>isgreater</td>
<td>comparison</td>
<td>single</td>
<td>Both</td>
</tr>
<tr>
<td>islesseq2</td>
<td>islesseq</td>
<td>comparison</td>
<td>double</td>
<td>SPU</td>
</tr>
<tr>
<td>islesseqf4</td>
<td>islesseq</td>
<td>comparison</td>
<td>single</td>
<td>Both</td>
</tr>
<tr>
<td>islessgeq2</td>
<td>islessgeq</td>
<td>comparison</td>
<td>double</td>
<td>SPU</td>
</tr>
<tr>
<td>islessgeqf4</td>
<td>islessgeq</td>
<td>comparison</td>
<td>single</td>
<td>Both</td>
</tr>
<tr>
<td>isunorderedd2</td>
<td>isunordered</td>
<td>comparison</td>
<td>double</td>
<td>SPU</td>
</tr>
<tr>
<td>isunorderedf4</td>
<td>isunordered</td>
<td>comparison</td>
<td>single</td>
<td>Both</td>
</tr>
<tr>
<td>isnfd2</td>
<td>isinf</td>
<td>comparison</td>
<td>double</td>
<td>SPU</td>
</tr>
<tr>
<td>isnnf4</td>
<td>isinf</td>
<td>comparison</td>
<td>single</td>
<td>Both</td>
</tr>
<tr>
<td>isnand2</td>
<td>isnan</td>
<td>comparison</td>
<td>double</td>
<td>SPU</td>
</tr>
<tr>
<td>isnanf4</td>
<td>isnan</td>
<td>comparison</td>
<td>single</td>
<td>Both</td>
</tr>
<tr>
<td>isnormald2</td>
<td>isnormal</td>
<td>comparison</td>
<td>double</td>
<td>SPU</td>
</tr>
<tr>
<td>isnormalf4</td>
<td>isnormal</td>
<td>comparison</td>
<td>single</td>
<td>Both</td>
</tr>
<tr>
<td>ldexpd2</td>
<td>ldexp</td>
<td>other</td>
<td>double</td>
<td>SPU</td>
</tr>
<tr>
<td>ldexpf4</td>
<td>ldexpf</td>
<td>other</td>
<td>single</td>
<td>Both</td>
</tr>
<tr>
<td>lgammad2</td>
<td>lgamma</td>
<td>gamma</td>
<td>double</td>
<td>SPU</td>
</tr>
<tr>
<td>lgammaf4</td>
<td>lgammaf</td>
<td>gamma</td>
<td>single</td>
<td>Both</td>
</tr>
<tr>
<td>llabs2</td>
<td>llabs</td>
<td>integer</td>
<td>doubleword</td>
<td>SPU</td>
</tr>
<tr>
<td>lldiv2</td>
<td>lldiv</td>
<td>integer</td>
<td>doubleword</td>
<td>SPU</td>
</tr>
<tr>
<td>lldivu2</td>
<td>non-standard</td>
<td>integer</td>
<td>doubleword</td>
<td>SPU</td>
</tr>
<tr>
<td>llrintd2</td>
<td>llrint</td>
<td>rounding</td>
<td>double</td>
<td>SPU</td>
</tr>
<tr>
<td>llrintf4</td>
<td>llrintf</td>
<td>rounding</td>
<td>single</td>
<td>SPU</td>
</tr>
<tr>
<td>llroundd2</td>
<td>llround</td>
<td>rounding</td>
<td>double</td>
<td>SPU</td>
</tr>
<tr>
<td>llroundf4</td>
<td>llroundf</td>
<td>rounding</td>
<td>single</td>
<td>SPU</td>
</tr>
<tr>
<td>log10d2</td>
<td>log10</td>
<td>log</td>
<td>double</td>
<td>SPU</td>
</tr>
<tr>
<td>log10f4</td>
<td>log10f</td>
<td>log</td>
<td>single</td>
<td>Both</td>
</tr>
<tr>
<td>log1pd2</td>
<td>log1p</td>
<td>log</td>
<td>double</td>
<td>SPU</td>
</tr>
<tr>
<td>log1pf4</td>
<td>log1pf</td>
<td>log</td>
<td>single</td>
<td>Both</td>
</tr>
<tr>
<td>log2d2</td>
<td>log2</td>
<td>log</td>
<td>double</td>
<td>SPU</td>
</tr>
<tr>
<td>log2f4</td>
<td>log2f</td>
<td>log</td>
<td>single</td>
<td>Both</td>
</tr>
<tr>
<td>logbd2</td>
<td>logb</td>
<td>log</td>
<td>double</td>
<td>SPU</td>
</tr>
<tr>
<td>logbf4</td>
<td>logbf</td>
<td>log</td>
<td>single</td>
<td>Both</td>
</tr>
<tr>
<td>logd2</td>
<td>log</td>
<td>log</td>
<td>double</td>
<td>SPU</td>
</tr>
<tr>
<td>Function Name</td>
<td>C99 Name</td>
<td>Function Category</td>
<td>Precision</td>
<td>SPU/PPU</td>
</tr>
<tr>
<td>---------------</td>
<td>----------</td>
<td>-------------------</td>
<td>-----------</td>
<td>---------</td>
</tr>
<tr>
<td>logf4</td>
<td>logf</td>
<td>log</td>
<td>single</td>
<td>Both</td>
</tr>
<tr>
<td>modfd2</td>
<td>modf</td>
<td>modrem</td>
<td>double</td>
<td>SPU</td>
</tr>
<tr>
<td>modff4</td>
<td>modff</td>
<td>modrem</td>
<td>single</td>
<td>Both</td>
</tr>
<tr>
<td>nearbyintd2</td>
<td>nearbyint</td>
<td>rounding</td>
<td>double</td>
<td>SPU</td>
</tr>
<tr>
<td>nearbyintf4</td>
<td>nearbyintf</td>
<td>rounding</td>
<td>single</td>
<td>Both</td>
</tr>
<tr>
<td>negated2</td>
<td>non-standard</td>
<td>other</td>
<td>double</td>
<td>SPU</td>
</tr>
<tr>
<td>negatef4</td>
<td>non-standard</td>
<td>other</td>
<td>single</td>
<td>Both</td>
</tr>
<tr>
<td>negatei4</td>
<td>non-standard</td>
<td>integer</td>
<td>word</td>
<td>Both</td>
</tr>
<tr>
<td>negatell2</td>
<td>non-standard</td>
<td>integer</td>
<td>doubleword</td>
<td>SPU</td>
</tr>
<tr>
<td>nextafterd2</td>
<td>nextafter</td>
<td>rounding</td>
<td>double</td>
<td>SPU</td>
</tr>
<tr>
<td>nextafterf4</td>
<td>nextafterf</td>
<td>rounding</td>
<td>single</td>
<td>Both</td>
</tr>
<tr>
<td>powd2</td>
<td>pow</td>
<td>power</td>
<td>double</td>
<td>SPU</td>
</tr>
<tr>
<td>powf4</td>
<td>powf</td>
<td>power</td>
<td>single</td>
<td>Both</td>
</tr>
<tr>
<td>recipd2</td>
<td>non-standard</td>
<td>recip</td>
<td>double</td>
<td>SPU</td>
</tr>
<tr>
<td>recipf4</td>
<td>non-standard</td>
<td>recip</td>
<td>single</td>
<td>Both</td>
</tr>
<tr>
<td>remainderd2</td>
<td>remainder</td>
<td>modrem</td>
<td>double</td>
<td>SPU</td>
</tr>
<tr>
<td>remainderf4</td>
<td>remainderf</td>
<td>modrem</td>
<td>single</td>
<td>Both</td>
</tr>
<tr>
<td>remquod2</td>
<td>remquo</td>
<td>modrem</td>
<td>double</td>
<td>SPU</td>
</tr>
<tr>
<td>remquof4</td>
<td>remquof</td>
<td>modrem</td>
<td>single</td>
<td>Both</td>
</tr>
<tr>
<td>rintd2</td>
<td>rint</td>
<td>rounding</td>
<td>double</td>
<td>SPU</td>
</tr>
<tr>
<td>rintf4</td>
<td>rintf</td>
<td>rounding</td>
<td>single</td>
<td>Both</td>
</tr>
<tr>
<td>roundd2</td>
<td>round</td>
<td>rounding</td>
<td>double</td>
<td>SPU</td>
</tr>
<tr>
<td>roundf4</td>
<td>roundf</td>
<td>rounding</td>
<td>single</td>
<td>Both</td>
</tr>
<tr>
<td>rsqrd2</td>
<td>non-standard</td>
<td>sqrt</td>
<td>double</td>
<td>SPU</td>
</tr>
<tr>
<td>rsqrtf4</td>
<td>non-standard</td>
<td>sqrt</td>
<td>single</td>
<td>Both</td>
</tr>
<tr>
<td>scalblnd2</td>
<td>non-standard</td>
<td>other</td>
<td>double</td>
<td>SPU</td>
</tr>
<tr>
<td>scalbnf4</td>
<td>scalbnf</td>
<td>other</td>
<td>single</td>
<td>Both</td>
</tr>
<tr>
<td>signbitf4</td>
<td>signbit</td>
<td>comparison</td>
<td>single</td>
<td>Both</td>
</tr>
<tr>
<td>signbitd2</td>
<td>signbit</td>
<td>comparison</td>
<td>double</td>
<td>SPU</td>
</tr>
<tr>
<td>sincosd2</td>
<td>non-standard</td>
<td>trig</td>
<td>double</td>
<td>SPU</td>
</tr>
<tr>
<td>sincosf4</td>
<td>non-standard</td>
<td>trig</td>
<td>single</td>
<td>Both</td>
</tr>
<tr>
<td>sind2</td>
<td>sin</td>
<td>trig</td>
<td>double</td>
<td>SPU</td>
</tr>
<tr>
<td>sinf4</td>
<td>sinf</td>
<td>trig</td>
<td>single</td>
<td>Both</td>
</tr>
<tr>
<td>sinhd2</td>
<td>sinh</td>
<td>hyperbolic</td>
<td>double</td>
<td>SPU</td>
</tr>
<tr>
<td>sinhf4</td>
<td>sinhf</td>
<td>hyperbolic</td>
<td>single</td>
<td>Both</td>
</tr>
<tr>
<td>sqrtld2</td>
<td>sqrt</td>
<td>sqrt</td>
<td>double</td>
<td>SPU</td>
</tr>
<tr>
<td>sqrtf4</td>
<td>sqrtf</td>
<td>sqrt</td>
<td>single</td>
<td>Both</td>
</tr>
<tr>
<td>tand2</td>
<td>tan</td>
<td>trig</td>
<td>double</td>
<td>SPU</td>
</tr>
<tr>
<td>tanf4</td>
<td>tanf</td>
<td>trig</td>
<td>single</td>
<td>Both</td>
</tr>
<tr>
<td>tanhd2</td>
<td>tanh</td>
<td>hyperbolic</td>
<td>double</td>
<td>SPU</td>
</tr>
<tr>
<td>tanhf4</td>
<td>tanhf</td>
<td>hyperbolic</td>
<td>single</td>
<td>Both</td>
</tr>
<tr>
<td>tgammad2</td>
<td>tgamma</td>
<td>gamma</td>
<td>double</td>
<td>SPU</td>
</tr>
<tr>
<td>tgammaf4</td>
<td>tgammaf</td>
<td>gamma</td>
<td>single</td>
<td>Both</td>
</tr>
<tr>
<td>Function Name</td>
<td>C99 Name</td>
<td>Function Category</td>
<td>Precision</td>
<td>SPU/PPU</td>
</tr>
<tr>
<td>---------------</td>
<td>----------</td>
<td>-------------------</td>
<td>-----------</td>
<td>---------</td>
</tr>
<tr>
<td>truncd2</td>
<td>trunc</td>
<td>rounding</td>
<td>double</td>
<td>SPU</td>
</tr>
<tr>
<td>truncf4</td>
<td>truncf</td>
<td>rounding</td>
<td>single</td>
<td>Both</td>
</tr>
</tbody>
</table>
1.3. Special Cases

Unless otherwise specified, each element of a SIMD result will adhere to either the C99 standard or the IEC 60559:1989 standard.

1.3.1. Rounding

On the SPU, the full range of IEEE rounding modes is supported for double precision, but only round-toward-zero is supported for single precision. On the PPU, SIMD operations always use IEEE round-to-nearest mode.

The mathematical accuracy of the SIMD functions assumes the default rounding mode. Accuracy may be compromised if the functions are called in another rounding mode.

1.3.2. Special Operands

On the PPU, NaN (not-a-number) and Inf (infinity) are recognized as special operands.

On the SPU, all values passed to single-precision functions are treated as ordinary operands. NaN and Inf are not recognized as special single-precision operands; however, they are recognized as special double-precision operands, and SIMD functions check for them, as described in C99, IEC 60559:1989 and the SIMD function specifications. See Synergistic Processor Unit Instruction Set Architecture for details.

On both the PPU and the SPU, single-precision floating-point denormal inputs are coerced to zero unless otherwise noted.

1.3.3. Error Conditions

A domain error occurs if an input argument is outside the domain over which the mathematical function is defined. The description of each function lists any required domain errors. The resulting vector element is undefined for all corresponding element input arguments that contain a domain error, and no exception or error is reported.

A range error occurs when the mathematical result cannot be represented in an object of the specified type. When a range error occurs, the resulting vector element is either HUGE_VAL (for double-precision results) or HUGE_VALF (for single-precision results). Integer arithmetic function results are undefined when they cannot be represented.

1.3.4. Exceptions

The SIMD library functions have an undefined effect on the exception flags in the SPU floating-point status and control register (FPSCR). SPU functions with double-precision arguments set exception bits in the FPSCR that can be tested by calling the routine fegetexcept(), as documented in fenv.h.

The SPU does not raise hardware traps for single-precision floating-point exceptions; PPU SIMD operations do have hardware support for a subset of the C99 floating-point exceptions.
2. SIMD Function Specifications

This chapter contains descriptions of the SIMD math functions, their arguments, and their return values. Where necessary, information about accuracy is provided to clarify expected specific behavior. Unless otherwise noted, all functions are available on both the PPU and SPU.

2.1. Type Definitions

The following type definitions are used for function return values.

divi4_t: Remainder/Quotient Struct for Vector Signed Int

typedef struct divi4_s {
 vector signed int quot;
 vector signed int rem;
} divi4_t;

Structures of this type are used to hold the return value of divi4(). The member quot contains the quotient, and the member rem contains the remainder of the division.

divu4_t: Remainder/Quotient Struct for Vector Unsigned Int

typedef struct divu4_s {
 vector unsigned int quot;
 vector unsigned int rem;
} divu4_t;

Structures of this type are used to hold the return value of divu4(). The member quot contains the quotient, and the member rem contains the remainder of the division.

lldivi2_t: Remainder/Quotient Struct for Vector Signed Long Long (SPU Only)

typedef struct lldivi2_s {
 vector signed long long quot;
 vector signed long long rem;
} lldivi2_t;

Structures of this type are used to hold the return value of lldivi2(). The member quot contains the quotient, and the member rem contains the remainder of the division.

lldivu2_t: Remainder/Quotient Struct for Vector Unsigned Long Long (SPU Only)

typedef struct lldivu2_s {
 vector unsigned long long quot;
 vector unsigned long long rem;
} lldivu2_t;

Structures of this type are used to hold the return value of lldivu2(). The member quot contains the quotient, and the member rem contains the remainder of the division.

llroundf4_t: Vector of Four Long Long (SPU Only)

typedef struct llroundf4_s {
 vector signed long long vll[2];
} llroundf4_t;

Structures of this type are used to hold signed long long data corresponding to a vector of four elements.
2.2. Function Descriptions

In the function descriptions that follow, a subscript is used to indicate a vector element. For example, element i of vector x is shown as x_i.

absi4: Absolute Value of Integer

Function Definition:

\[
\text{absi4} : (\text{vector signed int}) \rightarrow \text{vector signed int}
\]

\[(\text{vector signed int}) \text{ absi4} (\text{vector signed int } x)\]

A vector signed int is returned that contains the absolute value of each corresponding element of vector signed int x.

If the absolute value of x_i cannot be represented, the corresponding result is undefined and no error is reported.

acosd2: Arccosine of Double (SPU Only)

Function Definition:

\[
\text{acosd2} : (\text{vector double}) \rightarrow \text{vector double}
\]

\[(\text{vector double}) \text{ acosd2} (\text{vector double } x)\]

A vector double is returned that contains the angles whose cosines correspond to the respective elements in vector double x. Each element in the result is in the range $[0, \pi]$ radians.

If the absolute value of x_i is greater than 1, the corresponding result is undefined and no error is reported.

acosf4: Arccosine of Float

Function Definition:

\[
\text{acosf4} : (\text{vector float}) \rightarrow \text{vector float}
\]

\[(\text{vector float}) \text{ acosf4} (\text{vector float } x)\]

A vector float is returned that contains the angles whose cosines correspond to the respective elements in vector float x. Each element in the result is in the range $[0, \pi]$ radians.

If the absolute value of x_i is greater than 1, the corresponding result is undefined and no error is reported.

acoshd2: Hyperbolic Arccosine of Double (SPU Only)

Function Definition:

\[
\text{acoshd2} : (\text{vector double}) \rightarrow \text{vector double}
\]

\[(\text{vector double}) \text{ acoshd2} (\text{vector double } x)\]

A vector double is returned that contains the non-negative hyperbolic arccosines of the corresponding elements of vector double x.

If the value of x_i is less than 1, the corresponding result is undefined and no error is reported.

acoshf4: Hyperbolic Arccosine of Float

Function Definition:

\[
\text{acoshf4} : (\text{vector float}) \rightarrow \text{vector float}
\]

\[(\text{vector float}) \text{ acoshf4} (\text{vector float } x)\]

A vector float is returned that contains the non-negative hyperbolic arccosines of the corresponding elements of vector float x.

If the value of x_i is less than 1, the corresponding result is undefined and no error is reported.

asind2: Arcsine of Double (SPU Only)

Function Definition:

\[
\text{asind2} : (\text{vector double}) \rightarrow \text{vector double}
\]

\[(\text{vector double}) \text{ asind2} (\text{vector double } x)\]

A vector double is returned that contains the angles whose sines correspond to the respective elements in vector double x. Each element in the result is in the range $[-\pi/2, +\pi/2]$ radians.

If the absolute value of x_i is greater than 1, the corresponding result is undefined and no error is reported.

asinf4: Arcsine of Float

Function Definition:

\[
\text{asinf4} : (\text{vector float}) \rightarrow \text{vector float}
\]

\[(\text{vector float}) \text{ asinf4} (\text{vector float } x)\]

A vector float is returned that contains the angles whose sines correspond to the respective elements in vector float x. Each element in the result is in the range $[-\pi/2, +\pi/2]$ radians.
If the absolute value of x_i is greater than 1, the corresponding result is undefined and no error is reported.

asinh2: Hyperbolic Arcsine of Double (SPU Only)

\[(\text{vector double}) \text{ asinh2 (vector double } x)\]

A vector double is returned that contains the hyperbolic arcsines of the corresponding elements of vector double x.

asinhf4: Hyperbolic Arcsine of Float

\[(\text{vector float}) \text{ asinhf4 (vector float } x)\]

A vector float is returned that contains the hyperbolic arcsines of the corresponding elements of vector float x.

atand2: Tangent of Double (SPU Only)

\[(\text{vector double}) \text{ atand2 (vector double } x)\]

A vector double is returned that contains the angles whose tangents correspond to the respective elements of vector double x. Each element in the result is in the range $[-\pi/2, +\pi/2]$ radians.

atanf4: Tangent of Float

\[(\text{vector float}) \text{ atanf4 (vector float } x)\]

A vector float is returned that contains the angles whose tangents correspond to the respective elements of vector float x. Each element in the result is in the range $[-\pi/2, +\pi/2]$ radians.

atanhd2: Hyperbolic Arctangent of Double (SPU Only)

\[(\text{vector double}) \text{ atanhd2 (vector double } x)\]

A vector double is returned that contains the hyperbolic arctangents of the corresponding elements of vector double x.

If the absolute value of x_i is greater than 1, the corresponding result is undefined and no error is reported.

atanhf4: Hyperbolic Arctangent of Float

\[(\text{vector float}) \text{ atanhf4 (vector float } x)\]

A vector float is returned that contains the hyperbolic arctangents of the corresponding elements of vector float x.

If the absolute value of x_i is greater than 1, the corresponding result is undefined and no error is reported.

On the SPU, if x_i is equal to 1, the corresponding element of the result will be returned as \text{HUGE_VALF}, and if x_i is equal to -1, the corresponding element of the result will be returned as $-\text{HUGE_VALF}$. In either case, no error is reported.

atan2d2: Arctangent of Double Quotient (SPU Only)

\[(\text{vector double}) \text{ atan2d2 (vector double } y, \text{ vector double } x)\]

A vector double is returned that contains the angles whose tangents are y_i/x_i for the corresponding elements of vector double y and vector double x. Each element in the result is within the range $[-\pi, +\pi]$ radians.

If x_i and y_i are both 0, the corresponding element of the result is undefined and no error is reported.

atan2f4: Arctangent of Float Quotient

\[(\text{vector float}) \text{ atan2f4 (vector float } y, \text{ vector float } x)\]

A vector float is returned that contains the angles whose tangents are y_i/x_i for the corresponding elements of vector float y and vector float x. Each element in the result is within the range $[-\pi, +\pi]$ radians.
If \(x_i \) and \(y_i \) are both 0, the corresponding element of the result is undefined, and no error is reported.

cbrtd2: Cube Root of Double (SPU Only)

```c
(vector double) cbrtd2 (vector double x)
```

A vector double is returned that contains the real cube roots, \(x_i^{1/3} \), of the corresponding elements of vector double \(x \).

cbrtf4: Cube Root of Float

```c
(vector float) cbrtf4 (vector float x)
```

A vector float is returned that contains the real cube roots, \(x_i^{1/3} \), of the corresponding elements of vector float \(x \).

ceild2: Ceiling of Double (SPU Only)

```c
(vector double) ceild2 (vector double x)
```

A vector double is returned that contains the smallest integer values, expressed as floating-point numbers, that are not less than the corresponding elements of vector double \(x \).

ceilf4: Ceiling of Float

```c
(vector float) ceilf4 (vector float x)
```

A vector float is returned that contains the smallest integer values, expressed as floating-point numbers, that are not less than the corresponding elements of vector float \(x \).

copysignd2: Copy Sign of Double (SPU Only)

```c
(vector double) copysignd2 (vector double x, vector double y)
```

A vector double is returned that contains the magnitude of the corresponding element of vector double \(x \) and the sign of the corresponding element of vector double \(y \).

copysignf4: Copy Sign of Float

```c
(vector float) copysignf4 (vector float x, vector float y)
```

A vector float is returned that contains the magnitude of the corresponding element of vector float \(x \) and the sign of the corresponding element of vector float \(y \).

cosd2: Cosine of Double (SPU Only)

```c
(vector double) cosd2 (vector double x)
```

A vector double is returned that contains the cosines of the corresponding elements of vector double \(x \).

The results of `cosd2()` may not be accurate for very large values of \(x \), but no error is reported. Implementations should document the point at which accuracy is lost.
cosf4: Cosine of Float

(vector float) cosf4 (vector float x)

A vector float is returned that contains the cosines of the corresponding elements of vector float x.

The results of cosf4() may not be accurate for very large values of x, but no error is reported. Implementations should document the point at which accuracy is lost.

coshd2: Hyperbolic Cosine of Double (SPU Only)

(vector double) coshd2 (vector double x)

A vector double is returned that contains the hyperbolic cosines of the corresponding elements of vector double x.

coshf4: Hyperbolic Cosine of Float

(vector float) coshf4 (vector float x)

A vector float is returned that contains the hyperbolic cosines of the corresponding elements of vector float x.

On the SPU, element values of the result that are greater than HUGE_VALF are returned as HUGE_VALF, and no error is reported.

divd2: Divide Doubles (SPU Only)

(vector double) divd2 (vector double x, vector double y)

A vector double is returned that contains the quotients \(x_i/y_i \) for the corresponding elements of vector double x and vector double y. This function handles special cases as follows:

- If either input is NaN, the result is NaN.
- For Inf/Inf or 0/0, the result is NaN.
- For finite/0, the result is Inf with sign = sign(x)/sign(y).
- For finite/±Inf, the result is 0 with sign = sign(x)/sign(y).

On the SPU, if \(y_i \) is 0, the result is HUGE_VALF with sign = sign(x)/sign(y).

divf4: Divide Floats

(vector float) divf4 (vector float x, vector float y)

A vector float is returned that contains the quotients \(x_i/y_i \) for the corresponding elements of vector float x and vector float y. This function handles special cases as follows:

- If either input is NaN, the result is NaN.
- For Inf/Inf or 0/0, the result is NaN.
- For finite/0, the result is Inf with sign = sign(x)/sign(y).
- For finite/±Inf, the result is 0 with sign = sign(x)/sign(y).

On the SPU, if \(y_i \) is 0, the result is HUGE_VALF with sign = sign(x)/sign(y).

divi4: Divide Integer

(divi4 t) divi4 (vector signed int x, vector signed int y)

Each element of vector signed int x is divided by the corresponding element of vector signed int y, and the result is returned in a structure of type divi4 t that contains a vector of corresponding quotients and a vector of corresponding remainders.

Each element in the structure member quot is the algebraic quotient truncated towards zero. Each element in the structure member rem is the corresponding remainder, such that \(x_i = quot * y_i + rem \).

If \(y_i \) is 0, the corresponding element of the resulting quotient is 0.
divu4: Divide Unsigned Integer

(divu4_t) divu4 (vector unsigned int x, vector unsigned int y)

Each element of vector unsigned int x is divided by the corresponding element of vector unsigned int y, and the result is returned in a structure of type divu4_t that contains a vector of corresponding quotients and a vector of corresponding remainders.

Each element in the structure member quot is the algebraic quotient truncated towards zero. Each element in the structure member rem is the corresponding remainder, such that \(x_i = quot_i \times y_i + rem_i \).

If \(y_i \) is 0, the corresponding element of the resulting quotient is 0.

erfcd2: Complementary Error Function Double (SPU Only)

(vector double) erfcd2 (vector double x)

A vector double is returned that contains the complementary error functions of the corresponding elements of vector double x.

erfcf4: Complementary Error Function Float

(vector float) erfcf4 (vector float x)

A vector float is returned that contains the complementary error functions of the corresponding elements of vector float x.

erfd2: Error Function Double (SPU Only)

(vector double) erfd2 (vector double x)

A vector double is returned that contains the error functions of the corresponding elements of vector double x.

erff4: Error Function Float

(vector float) erff4 (vector float x)

A vector float is returned that contains the error functions of the corresponding elements of vector float x.

expd2: \(e \) Raised to the Power of Double (SPU Only)

(vector double) expd2 (vector double x)

A vector double is returned that contains the corresponding exponentials \(e^{x_i} \) for each element of vector double x.

expf4: \(e \) Raised to the Power of Float

(vector float) expf4 (vector float x)

A vector float is returned that contains the corresponding exponentials \(e^{x_i} \) for each element of vector float x.

On the SPU, element values of the result that are greater than HUGE_VALF are returned as HUGE_VALF, and no error is reported.

exp2d2: 2 Raised to the Power of Double (SPU Only)

(vector double) exp2d2 (vector double x)

A vector double is returned that contains the corresponding exponentials \(2^{x_i} \) for each element of vector double x.

exp2f4: 2 Raised to the Power of Float

(vector float) exp2f4 (vector float x)

A vector float is returned that contains the corresponding exponentials \(2^{x_i} \) for each element of vector float x.
On the SPU, element values of the result that are greater than \texttt{HUGE VALF} are returned as \texttt{HUGE VALF}, and no error is reported.

expm1d2: e Raised to the Power of Double Minus 1 (SPU Only)

\[(\text{vector double}) \ \text{expm1d2} \ (\text{vector double} \ x)\]

A vector double is returned that contains the exponential minus 1, \(e^x - 1\), for the corresponding elements of vector double \(x\).

This function returns mathematically accurate values even when \(x_i\) is near zero or when \(\exp (x_i) - 1.0\) would return bad values due to floating-point cancellation errors.

expm1f4: e Raised to the Power of Float Minus 1

\[(\text{vector float}) \ \text{expm1f4} \ (\text{vector float} \ x)\]

A vector float is returned that contains the exponential minus 1, \(e^x - 1\), for the corresponding elements of vector float \(x\).

This function returns mathematically accurate values even when \(x_i\) is near zero or when \(\expf (x_i) - 1.0f\) would return bad values due to floating-point cancellation errors.

fabsd2: Absolute Value Double (SPU Only)

\[(\text{vector double}) \ \text{fabsd2} \ (\text{vector double} \ x)\]

A vector double is returned that contains the absolute values, \(|x_i|\), for the corresponding elements of vector double \(x\).

fabsf4: Absolute Value Float

\[(\text{vector float}) \ \text{fabsf4} \ (\text{vector float} \ x)\]

A vector float is returned that contains the absolute values, \(|x_i|\), for the corresponding elements of vector float \(x\).

fdimd2: Subtract Staying Non-Negative Double (SPU Only)

\[(\text{vector double}) \ \text{fdimd2} \ (\text{vector double} \ x, \ \text{vector double} \ y)\]

A vector double is returned that contains the larger of \((x_i - y_i)\) and zero, for the corresponding elements of vector double \(x\) and vector double \(y\).

fdimf4: Subtract Staying Non-Negative Float

\[(\text{vector float}) \ \text{fdimf4} \ (\text{vector float} \ x, \ \text{vector float} \ y)\]

A vector float is returned that contains the larger of \((x_i - y_i)\) and zero, for the corresponding elements of vector float \(x\) and vector float \(y\).

floord2: Floor Double (SPU Only)

\[(\text{vector double}) \ \text{floord2} \ (\text{vector double} \ x)\]

A vector double is returned that contains the largest integer values, expressed as floating-point numbers, that are not greater than the corresponding elements of vector double \(x\).

floorf4: Floor Float

\[(\text{vector float}) \ \text{floorf4} \ (\text{vector float} \ x)\]

A vector float is returned that contains the largest integer values, expressed as floating-point numbers, that are not greater than the corresponding elements of vector float \(x\).
fmad2: Fused Multiply and Add Double (SPU Only)
(vector double) fmad2 (vector double x, vector double y, vector double z)
A vector double is returned that contains the results of the calculation of \((x_i \cdot y_i + z_i)\) for the corresponding elements of vector double \(x\), vector double \(y\), and vector double \(z\). Intermediate results are of arbitrary precision.

fmaf4: Fused Multiply and Add Float
(vector float) fmaf4 (vector float x, vector float y, vector float z)
A vector float is returned that contains the results of the calculation of \((x_i \cdot y_i + z_i)\) for the corresponding elements of vector float \(x\), vector float \(y\), and vector float \(z\). Intermediate results are of arbitrary precision.

fmaxd2: Maximum Double (SPU Only)
(vector double) fmaxd2 (vector double x, vector double y)
A vector double is returned that contains the larger (more positive) of \(x_i\) and \(y_i\), for the corresponding elements of vector double \(x\) and vector double \(y\).

fmaxf4: Maximum Float
(vector float) fmaxf4 (vector float x, vector float y)
A vector float is returned that contains the larger (more positive) of \(x_i\) and \(y_i\), for the corresponding elements of vector float \(x\) and vector float \(y\).

On the SPU, this function does not coerce denormals to zero. Instead, it compares them as normal values even though the SPU’s floating-point instructions do not.

fminf4: Minimum Float
(vector float) fminf4 (vector float x, vector float y)
A vector float is returned that contains the smaller (more negative) of \(x_i\) and \(y_i\), for the corresponding elements of vector float \(x\) and vector float \(y\).

On the SPU, this function does not coerce denormals to zero. Instead, it compares them as normal values even though the SPU’s floating-point instructions do not.

fmodd2: Modulus Double (SPU Only)
(vector double) fmodd2 (vector double x, vector double y)
A vector double is returned where each element contains the remainder of \(x_i / y_i\), for the corresponding elements of vector double \(x\) and vector double \(y\), as defined below:
- If \(y_i\) is 0, the result is 0.
- Otherwise, the function determines the unique signed integer value \(z\) such that the returned element is \(x_i - z \cdot y_i\), with the same sign as \(x_i\) and a magnitude less than \(|y_i|\).
fmodf4: Modulus Float

(vector float) fmodf4 (vector float x, vector float y)

A vector float is returned where each element contains the remainder of \(x_i/y_i \), for the corresponding elements of vector float \(x \) and vector float \(y \), as defined below:

- If \(y_i \) is 0, the result is 0.
- Otherwise, the function determines the unique signed integer value \(z \) such that the returned element is \(x_i - z \times y_i \) with the same sign as \(x_i \) and a magnitude less than \(|y_i|\).

fpclassifyd2: Classify Double (SPU Only)

(vector signed long long) fpclassifyd2 (vector double x)

A vector signed long long is returned that contains the floating-point classifications for the corresponding elements of vector double \(x \). The classifications, which are defined in math.h, are FP_NAN, FP_INFINITE, FP_NORMAL, FP_SUBNORMAL, and FP_ZERO.

fpclassifyf4: Classify Float

(vector signed int) fpclassifyf4 (vector float x)

A vector signed int is returned that contains the floating-point classifications for the corresponding elements of vector float \(x \). The classifications, which are defined in math.h, are FP_NAN, FP_INFINITE, FP_NORMAL, FP_SUBNORMAL, and FP_ZERO.

On the SPU, the resulting vector will never contain FP_NAN or FP_INFINITE.

frexpd2: Represent Double as Fraction and Exponent (SPU Only)

(vector double) frexpd2 (vector double x, vector signed long long *pexp)

A vector double is returned that contains normalized fractions, and a vector signed long long is stored in *pexp, which contains exponent integers. Each fraction element \(frac \) and each exponent integer element \(exp \) represent the value of the corresponding element of \(x \), such that:

- \(|frac|\) is in the interval \([1/2, 1)\) or is 0.
- \(x_i = frac \times 2^{exp}\)
- If \(x_i \) is 0, the corresponding element of *pexp is also 0.
- If \(x_i \) is NaN, the corresponding result is NaN and the corresponding element of *pexp is undefined.
- If \(x_i \) is infinite, the corresponding result is infinite and the corresponding element of *pexp is undefined.

frexpf4: Represent Float as Fraction and Exponent

(vector float) frexpf4 (vector float x, vector signed int *pexp)

A vector float is returned that contains normalized fractions, and a vector signed int is stored in *pexp, which contains exponent integers. Each fraction element \(frac \) and each exponent integer element \(exp \) represent the value of the corresponding element of \(x \), such that:

- \(|frac|\) is in the interval \([1/2, 1)\) or is 0.
- \(x_i = frac \times 2^{exp}\)
- If \(x_i \) is 0, the corresponding element of *pexp is also 0.
- If \(x_i \) is NaN, the corresponding result is NaN and the corresponding element of *pexp is undefined.
- If \(x_i \) is infinite, the corresponding result is infinite and the corresponding element of *pexp is undefined.
hypotd2: Hypotenuse Double (SPU Only)

(vector double) hypotd2 (vector double x, vector double y)

A vector double is returned that contains the square root of \(x_i^2 + y_i^2 \) without undue overflow or underflow, for the corresponding elements of vector double x and vector double y.

hypotf4: Hypotenuse Float

(vector float) hypotf4 (vector float x, vector float y)

A vector float is returned that contains the square root of \(x_i^2 + y_i^2 \) without undue overflow or underflow, for the corresponding elements of vector float x and vector float y.

ilogbd2: Integer Exponent of Double (SPU Only)

(vector signed long long) ilogbd2 (vector double x)

A vector signed long long is returned where each element is defined below for the corresponding element of vector double x:

- If \(x_i \) is \(\text{NaN} \), the value is the macro FP_ILOGBNAN.
- If \(x_i \) is equal to 0, the value is the macro FP_ILOGB0.
- If \(x_i \) is equal to positive or negative \(\text{Inf} \), the value is the macro INT_MAX.
- Otherwise, the result is (int)logb(x_i).

ilogbf4: Integer Exponent of Float

(vector signed int) ilogbf4 (vector float x)

A vector signed int is returned where each element is defined below for the corresponding element of vector float x:

- If \(x_i \) is \(\text{NaN} \), the value is the macro FP_ILOGBNAN.
- If \(x_i \) is equal to 0, the value is the macro FP_ILOGB0.
- If \(x_i \) is equal to positive or negative \(\text{Inf} \), the value is the macro INT_MAX.
- Otherwise, the result is (int)logbf(x_i).

Because the SPU treats single-precision \(\text{Inf} \) and \(\text{NaN} \) codes as regular floating-point numbers, ilogbf4() returns a result of 128 for these numbers. For compatibility with the double function ilogb(), FP_ILOGBNAN is set to INT_MAX.

irintf4: Nearest Integer Float

(vector signed int) irintf4 (vector float x)

A vector signed int is returned that contains the nearest integer to the corresponding element of vector float x, consistent with the current rounding mode. If the rounded value is outside the range of the return type, the numeric result is unspecified.

On the SPU, the rounding mode for floats is always towards zero.

iroundf4: Round Float to Nearest Integer

(vector signed int) iroundf4 (vector float x)

A vector signed int is returned that contains the rounded integer value of the corresponding element of vector float x.

Elements are rounded to the nearest value; halfway cases are rounded away from zero, regardless of the current rounding direction.

If the rounded value is outside the range of the return type, the numeric result is unspecified.
is0denormd2: 0 or Denormalized Double (SPU Only)

\[(vector\ unsigned\ long\ long)\ is0denormd2\ (vector\ double\ x)\]

A vector unsigned long long is returned where each element is defined below for the corresponding element of \(x\):

- All bits of the resulting element are set to 1 if \(x_i\) is a denormalized value or zero.
- Otherwise, the bits are set to zero.

is0denormf4: 0 or Denormalized Float

\[(vector\ unsigned\ int)\ is0denormf4\ (vector\ float\ x)\]

A vector unsigned int is returned where each element is defined below for the corresponding element of \(x\):

- All bits of the resulting element are set to 1 if \(x_i\) is a denormalized value or zero.
- Otherwise, the bits are set to zero.

isequald2: Compare Equal Double (SPU Only)

\[(vector\ unsigned\ long\ long)\ isequald2\ (vector\ double\ x,\ vector\ double\ y)\]

A vector unsigned long long is returned where each element is defined below for the corresponding elements of \(x\) and \(y\):

- All bits of the resulting element are set to 1 if \(x_i\) and \(y_i\) are equal.
- Otherwise, the bits are set to zero.

The function correctly compares denormalized numbers. If either input is \(\text{NaN}\), the comparison result is false (zero). If both inputs are \(\text{Inf}\) with the same sign, the inputs are considered equal. The values \(0\) and \(-0\) are considered equal.

isequalf4: Compare Equal Float

\[(vector\ unsigned\ int)\ isequalf4\ (vector\ float\ x,\ vector\ float\ y)\]

A vector unsigned int is returned where each element is defined below for the corresponding elements of \(x\) and \(y\):

- All bits of the resulting element are set to 1 if \(x_i\) and \(y_i\) are equal.
- Otherwise, the bits are set to zero.

The function correctly compares denormalized numbers. If either input is \(\text{NaN}\), the comparison is false (zero). If both inputs are \(\text{Inf}\) with the same sign, the inputs are considered equal. The values \(0\) and \(-0\) are considered equal.

isfinited2: Double Is Finite (SPU Only)

\[(vector\ unsigned\ long\ long)\ isfinited2\ (vector\ double\ x)\]

A vector unsigned long long is returned where each element is defined below for the corresponding element of \(x\):

- All bits of the resulting element are set to 1 if \(x_i\) is finite.
- Otherwise, the bits are set to zero.

isfinitef4: Float Is Finite

\[(vector\ unsigned\ int)\ isfinitef4\ (vector\ float\ x)\]

A vector unsigned int is returned where each element is defined below for the corresponding element of \(x\):
• All bits of the resulting element are set to 1 if \(x_i \) is finite.
• Otherwise, the bits are set to zero.

On the SPU, infinite values are not representable in single precision. Therefore, all bits of the resulting element are set to 1 regardless of the value of \(x_i \).

isgreaterequald2: Greater or Equal Double (SPU Only)

\[
isgreaterequald2 \ (vector \ unsigned \ long \ long) \ isgreaterequald2 \ (vector \ double \ x, \ vector \ double \ y)
\]

A vector unsigned long long is returned where each element is defined below for the corresponding elements of vector double \(x \) and vector double \(y \):
• All bits of the resulting element are set to 1 if \(x_i \) is equal to or greater than \(y_i \).
• Otherwise, the bits are set to zero.

The function correctly compares denormalized numbers. If either element of the input is NaN, the comparison is false. If both elements of the inputs are Inf with the same sign, the inputs are considered equal. The values 0 and -0 are considered equal.

isgreaterequalf4: Greater or Equal Float

\[
isgreaterequalf4 \ (vector \ unsigned \ int) \ isgreaterequalf4 \ (vector \ float \ x, \ vector \ float \ y)
\]

A vector unsigned int is returned where each element is defined below for the corresponding elements of vector float \(x \) and vector float \(y \):
• All bits of the resulting element are set to 1 if \(x_i \) is equal to or greater than \(y_i \).
• Otherwise, the bits are set to zero.

The function correctly compares denormalized numbers. If either element of the input is NaN, the comparison is false. If both elements of the inputs are Inf with the same sign, the inputs are considered equal. The values 0 and -0 are considered equal.

isgreaterd2: Greater Than Double (SPU Only)

\[
isgreaterd2 \ (vector \ unsigned \ long \ long) \ isgreaterd2 \ (vector \ double \ x, \ vector \ double \ y)
\]

A vector unsigned long long is returned where each element is defined below for the corresponding elements of vector double \(x \) and vector double \(y \):
• All bits of the resulting element are set to 1 if \(x_i \) is greater than \(y_i \).
• Otherwise, the bits are set to zero.

The function correctly compares denormalized numbers.

isgreaterf4: Greater Than Float

\[
isgreaterf4 \ (vector \ unsigned \ int) \ isgreaterf4 \ (vector \ float \ x, \ vector \ float \ y)
\]

A vector unsigned int is returned where each element is defined below for the corresponding elements of vector float \(x \) and vector float \(y \):
• All bits of the resulting element are set to 1 if \(x_i \) is greater than \(y_i \).
• Otherwise, the bits are set to zero.

The function correctly compares denormalized numbers.
isinfd2: Double Is Infinity (SPU Only)

(vector unsigned long long) isinfd2 (vector double x)

A vector unsigned long long is returned where each element is defined below for the corresponding element of vector double x:

- All bits of the resulting element are set to 1 if \(x_i \) is infinite.
- Otherwise, the bits are set to zero.

isinff4: Float Is Infinity

(vector unsigned int) isinff4 (vector float x)

A vector unsigned long int is returned where each element is defined below for the corresponding element of vector float x:

- All bits of the resulting element are set to 1 if \(x_i \) is infinite.
- Otherwise, the bits are set to zero.

On the SPU, infinite values are not representable in single precision. Therefore, all bits of the resulting element are set to zero, regardless of the value of \(x_i \).

islessd2: Double Is Less Than (SPU Only)

(vector unsigned long long) islessd2 (vector double x, vector double y)

A vector unsigned long long is returned where each element is defined below for the corresponding elements of vector double x and vector double y:

- All bits of the resulting element are set to 1 if \(x_i \) is less than \(y_i \).
- Otherwise, the bits are set to zero.

The function correctly compares denormalized numbers.

islessequald2: Double Is Less Than or Equal To (SPU Only)

(vector unsigned long long) islessequald2 (vector double x, vector double y)

A vector unsigned long long is returned where each element is defined below for the corresponding elements of vector double x and vector double y:

- All bits of the resulting element are set to 1 if \(x_i \) is less than or equal to \(y_i \).
- Otherwise, the bits are set to zero.

The function correctly compares denormalized numbers.

islessequalf4: Float Is Less Than or Equal To

(vector unsigned int) islessequalf4 (vector float x, vector float y)

A vector unsigned int is returned where each element is defined below for the corresponding elements of vector float x and vector float y:

- All bits of the resulting element are set to 1 if \(x_i \) is less than or equal to \(y_i \).
- Otherwise, the bits are set to zero.

The function correctly compares denormalized numbers.
islessf4: Float Is Less Than

(vector unsigned int) `islessf4 (vector float x, vector float y)`

A vector unsigned int is returned where each element is defined below for the corresponding elements of vector float `x` and vector float `y`:

- All bits of the resulting element are set to 1 if \(x_i\) is less than \(y_i\).
- Otherwise, the bits are set to zero.

The function correctly compares denormalized numbers.

islessgreaterd2: Double Is Less Than or Greater Than (SPU Only)

(vector unsigned long long) `islessgreaterd2 (vector double x, vector double y)`

A vector unsigned long long is returned where each element is defined below for the corresponding elements of vector double `x` and vector double `y`:

- All bits of the resulting element are set to 1 if \(x_i\) is less than or greater than \(y_i\).
- Otherwise, the bits are set to zero.

The function correctly compares denormalized numbers.

islessgreaterf4: Float Is Less Than or Greater Than

(vector unsigned int) `islessgreaterf4 (vector float x, vector float y)`

A vector unsigned int is returned where each element is defined below for the corresponding elements of vector float `x` and vector float `y`:

- All bits of the resulting element are set to 1 if \(x_i\) is less than or greater than \(y_i\).
- Otherwise, the bits are set to zero.

The function correctly compares denormalized numbers.

isnand2: Double Is NaN (SPU Only)

(vector unsigned long long) `isnand2 (vector double x)`

A vector unsigned long long is returned where each element is defined below for the corresponding element of vector double `x`:

- All bits of the resulting element are set to 1 if \(x_i\) is NaN.
- Otherwise, the bits are set to zero.

isnanf4: Float Is NaN

(vector unsigned int) `isnanf4 (vector float x)`

A vector unsigned int is returned where each element is defined below for the corresponding element of vector float `x`:

- All bits of the resulting element are set to 1 if \(x_i\) is NaN.
- Otherwise, the bits are set to zero.

On the SPU, NaN is not representable in single precision. Therefore, all bits of the resulting element are set to zero, regardless of the value of \(x_i\).
isnanld2: Double Is Normal (SPU Only)

(vector unsigned long long) isnanld2 (vector double x)

A vector unsigned long long is returned where each element is defined below for the corresponding element of vector double x:

- All bits of the resulting element are set to 1 if x_i is normal (not a NaN or an infinity).
- Otherwise, the bits are set to zero.

isnormalf4: Float Is Normal

(vector unsigned int) isnormalf4 (vector float x)

A vector unsigned int is returned where each element is defined below for the corresponding element of vector float x:

- All bits of the resulting element are set to 1 if x_i is normal (not a NaN or an infinity).
- Otherwise, the bits are set to zero.

isunorderedd2: Double Is Unordered (SPU Only)

(vector unsigned long long) isunorderedd2 (vector double x, vector double y)

A vector unsigned long long is returned where each element is defined below for the corresponding elements of vector double x and vector double y:

- All bits of the resulting element are set to 1 if x_i is unordered with respect to y_i.
- Otherwise, the bits are set to zero.

NaN is unordered to any operand, including NaN itself.

isunorderedf4: Float Is Unordered

(vector unsigned int) isunorderedf4 (vector float x, vector float y)

A vector unsigned int is returned where each element is defined below for the corresponding elements of vector float x and vector float y:

- All bits of the resulting element are set to 1 if x_i is unordered to y_i.
- Otherwise, the bits are set to zero.

NaN is unordered to any operand, including NaN itself. On the SPU, NaN does not exist in single precision. Therefore, this function will always return 0.

ldexpd2: Multiply Double by 2 Raised to its Power (SPU Only)

(vector double) ldexpd2 (vector double x, vector signed long long ex)

A vector double is returned that contains $x_i * 2^{ex_i}$ for the corresponding elements of vector double x and vector signed long long ex. For large elements of ex (overflow), the element in the result saturates to HUGE_VAL with an appropriate sign. For small elements of ex (underflow), the corresponding element of the result is 0.

ldexpf4: Multiply Float by 2 Raised to its Power

(vector float) ldexpf4 (vector float x, vector signed int ex)

A vector float is returned that contains $x_i * 2^{ex_i}$ for the corresponding elements of vector float x and vector signed int ex. For large elements of ex (overflow), the element in the result saturates to HUGE_VALF with an appropriate sign. For small elements of ex (underflow), the corresponding element of the result is 0.
lgamma2: Natural Log of Gamma Function of Double (SPU Only)

\[(\text{vector double}) \ lgamma2 \ (\text{vector double} \ \mathbf{x})\]

A vector double is returned that contains the natural logarithm of the absolute value of the result of the gamma function for the corresponding elements of vector double \(\mathbf{x}\).

lgamma4: Natural Log of Gamma Function of Float

\[(\text{vector float}) \ lgamma4 \ (\text{vector float} \ \mathbf{x})\]

A vector float is returned that contains the natural logarithm of the absolute value of the result of the gamma function for the corresponding element of vector float \(\mathbf{x}\).

llabsi2: Absolute Value Long Long (SPU Only)

\[(\text{vector long long}) \ llabsi2 \ (\text{vector signed long long} \ \mathbf{x})\]

A vector long long is returned that contains the absolute value, \(|\mathbf{x}_i|\), of the corresponding element of vector signed long long \(\mathbf{x}\).

If the absolute value of \(\mathbf{x}_i\) cannot be represented, the corresponding result is undefined and no error is reported.

lldivi2: Divide Long Long (SPU Only)

\[(\text{lldivi2} _t) \ lldivi2 \ (\text{vector signed long long} \ \mathbf{x}, \text{vector signed long long} \ \mathbf{y})\]

Each element of vector signed long long \(\mathbf{x}\) is divided by each element of vector signed long long \(\mathbf{y}\), and the result is returned in a structure of type \(\text{lldivi2} _t\), which contains a vector of quotients and a vector of remainders.

Each element of the vector in the structure member \(\text{quot}\) is the algebraic quotient truncated towards zero. Each element of the vector in the structure member \(\text{rem}\) is the corresponding remainder, such that \(\mathbf{x}_i = \text{quot}_i \times \mathbf{y}_i + \text{rem}_i\).

If \(\mathbf{y}_i\) is 0, the corresponding element of the resulting quotient is 0.

lldivu2: Divide Unsigned Long Long (SPU Only)

\[(\text{lldivu2} _t) \ lldivu2 \ (\text{vector unsigned long long} \ \mathbf{x}, \text{vector unsigned long long} \ \mathbf{y})\]

Each element of vector unsigned long long \(\mathbf{x}\) is divided by each element of vector unsigned long long \(\mathbf{y}\), and the result is returned in a structure of type \(\text{lldivu2} _t\), which contains a vector of quotients and a vector of remainders.

Each element of the vector in the structure member \(\text{quot}\) is the algebraic quotient truncated towards zero. Each element of the vector in the structure member \(\text{rem}\) is the corresponding remainder, such that \(\mathbf{x}_i = \text{quot}_i \times \mathbf{y}_i + \text{rem}_i\).

If \(\mathbf{y}_i\) is 0, the corresponding element of the resulting quotient is 0.

llrintd2: Find Nearest Long Long of Double (SPU Only)

\[(\text{vector signed long long}) \ llrintd2 \ (\text{vector double} \ \mathbf{x})\]

A vector signed long long is returned that contains the nearest long long integer to the corresponding element of vector double \(\mathbf{x}\) consistent with the current rounding mode. If the rounded value is outside the range of the return type, the numeric result is unspecified.

llrntf4: Find Nearest Long Long of Float (SPU Only)

\[(\text{llroundf4} _t) \ llrntf4 \ (\text{vector float} \ \mathbf{x})\]

A structure of type \(\text{llroundf4} _t\) is returned that contains the nearest long long integer to the corresponding element of vector float \(\mathbf{x}\) consistent with the current rounding mode. If the rounded value is outside the range of the return type, the numeric result is unspecified.
On the SPU, the rounding mode for floats is always towards zero.

llroundd2: Round Double to Nearest Long Long (SPU Only)

`(vector signed long long) llroundd2 (vector double x)`

A vector signed long long is returned that contains the corresponding elements of vector double \(x \) rounded to the nearest value, rounding halfway values away from zero regardless of the current rounding direction. If the rounded value is outside the range of the return type, the numeric result is unspecified.

llroundf4: Round Float to Nearest Long Long (SPU Only)

`(llroundf4_t) llroundf4 (vector float x)`

A structure of type `llroundf4_t` is returned that contains the corresponding elements of vector float \(x \) rounded to the nearest value, rounding halfway cases away from zero regardless of the current rounding direction. If the rounded value is outside the range of the return type, the numeric result is unspecified.

logd2: Natural Log of Double (SPU Only)

`(vector double) logd2 (vector double x)`

A vector double is returned that contains the natural logarithms of the corresponding elements of vector double \(x \). If \(x_i \) is negative, the corresponding result is undefined and no error is reported.

logf4: Natural Log of Float

`(vector float) logf4 (vector float x)`

A vector float is returned that contains the natural logarithms of the corresponding elements of vector float \(x \). If \(x_i \) is negative, the corresponding result is undefined and no error is reported. If \(x_i \) is 0, the result is \(-L_{\text{HUGE}}\text{VALF}\).

log10d2: Log Base 10 of Double (SPU Only)

`(vector double) log10d2 (vector double x)`

A vector double is returned that contains the base-10 logarithm of the corresponding elements of vector double \(x \). If \(x_i \) is negative, the corresponding result is undefined and no error is reported.

log10f4: Log Base 10 of Float

`(vector float) log10f4 (vector float x)`

A vector float is returned that contains the base-10 logarithm of the corresponding elements of vector float \(x \). If \(x_i \) is negative, the corresponding result is undefined and no error is reported. If \(x_i \) is 0, the result is \(-L_{\text{HUGE}}\text{VALF}\).

log1pd2: Natural Log of Double Plus 1 (SPU Only)

`(vector double) log1pd2 (vector double x)`

A vector double is returned that contains the natural logarithm of \(1 + x_i \). The function returns mathematically accurate values even when \(x_i \) is near zero. If \(x_i \) is less than \(-1\), the corresponding result is undefined and no error is reported.
log1pf4: Natural Log of Float Plus 1

(vector float) log1pf4 (vector float x)

A vector float is returned that contains the natural logarithms of $1 + x_i$.

The function returns mathematically accurate values even when x_i is near zero. If an element of x is -1, the result is $-\text{HUGE}_\text{VALF}$.

If x_i is less than -1, the corresponding result is undefined and no error is reported.

log2d2: Log Base 2 of Double (SPU Only)

(vector double) log2d2 (vector double x)

A vector double is returned that contains the base-2 logarithm of the corresponding elements of vector double x.

If x_i is less than 0, the corresponding result is undefined and no error is reported.

log2f4: Log Base 2 of Float

(vector float) log2f4 (vector float x)

A vector float is returned that contains the base-2 logarithm of the corresponding elements of vector float x.

If x_i is 0, the result is $-\text{HUGE}_\text{VALF}$.

If x_i is less than 0, the corresponding result is undefined and no error is reported.

logbd2: Represent Double as Fraction Greater Than 1 and Exponent (SPU Only)

(vector double) logbd2 (vector double x)

An integer exponent ex_i and a fraction $frac_i$ are determined for the corresponding elements of vector double x.

A vector double is returned where each element contains the value of ex_i for x_i, such that:

- \[x_i = frac_i \times \text{FLT}_\text{RADIX}^{ex_i} \]
- \[\text{frac} \text{ is in the interval } [1, \text{FLT}_\text{RADIX}) \]

If x_i is 0, the corresponding result is undefined and no error is reported.

On the SPU, if x_i is 0, the corresponding result is $-\text{HUGE}_\text{VALF}$ if x_i is infinite, the corresponding result is positive infinite. If x_i is NaN, the corresponding result is also NaN.

logbf4: Represent Float as Fraction Greater Than 1 and Exponent

(vector float) logbf4 (vector float x)

An integer exponent ex_i and a fraction $frac_i$ are determined for the corresponding elements of vector float x.

A vector float is returned where each element contains the value of ex_i for x_i, such that:

- \[x_i = frac_i \times \text{FLT}_\text{RADIX}^{ex_i} \]
- \[\text{frac} \text{ is in the interval } [1, \text{FLT}_\text{RADIX}) \]

If x_i is 0, the corresponding result is undefined and no error is reported.

modfd2: Represent Double as Proper Fraction and Exponent (SPU Only)

(vector double) modfd2 (vector double x, vector double *pint)

Each element of vector double x is split into an integral part v_i and a fractional part $frac_i$. A vector double is returned where each element contains the corresponding $frac_i$ element, and another vector double is stored in *pint, which contains the corresponding v_i elements, such that:

- \[x_i = frac_i + v_i \]
- \(|\text{frac}_i|\) is in the interval \([0, 1)\).
- Both \(\text{frac}_i\) and \(v_i\) have the same sign as \(x_i\).

`modff4`: Represent Float as Proper Fraction and Exponent

\[
\text{(vector float)} \modff4 (\text{vector float } x, \text{vector float } *\text{pint})
\]

Each element of vector float \(x\) is split into an integral part \(v_i\) and a fractional part \(\text{frac}_i\). A vector float is returned where each element contains the corresponding \(\text{frac}_i\) element, and another vector float is stored in \(*\text{pint}\), which contains the corresponding \(v_i\) elements, such that:
- \(x_i = \text{frac}_i + v_i\)
- \(|\text{frac}_i|\) is in the interval \([0, 1)\).
- Both \(\text{frac}_i\) and \(v_i\) have the same sign as \(x_i\).

`nearbyintd2`: Find Nearest Integer for Double (SPU Only)

\[
\text{(vector double)} \text{nearbyintd2 (vector double } x)\]

A vector double is returned that contains the corresponding elements of vector double \(x\) rounded to the nearest integer consistent with the current rounding mode, but without raising an inexact floating-point exception.

`nearbyintf4`: Find Nearest Integer for Float

\[
\text{(vector float)} \text{nearbyintf4 (vector float } x)\]

A vector float is returned that contains the corresponding elements of vector float \(x\) rounded to the nearest integer, consistent with the current rounding mode, but without raising an inexact floating-point exception.

On the SPU, the rounding mode for a float is always towards zero.

`negated2`: Negate Double (SPU Only)

\[
\text{(vector double)} \text{negated2 (vector double } x)\]

A vector double is returned that contains \(-x_i\) for the corresponding elements of vector double \(x\).

`negatef4`: Negate Float

\[
\text{(vector float)} \text{negatef4 (vector float } x)\]

A vector float is returned that contains \(-x_i\) for the corresponding elements of vector float \(x\).

`negatei4`: Negate Signed Integer

\[
\text{(vector signed int)} \text{negatei4 (vector signed int } x)\]

A vector signed int is returned that contains \(-x_i\) for the corresponding elements of vector signed int \(x\).

If \(-x_i\) cannot be represented, the corresponding result is undefined and no error is reported.

`negatell2`: Negate Signed Long Long Integer (SPU Only)

\[
\text{(vector signed long long)} \text{negatell2 (vector signed long long } x)\]

A vector signed long long is returned that contains \(-x_i\) for the corresponding elements of vector signed long long \(x\).

If \(-x_i\) cannot be represented, the corresponding result is undefined and no error is reported.
nextafterd2: Find Next Integer After for Double (SPU Only)

(vector double) nextafterd2 (vector double x, vector double y)

A vector double is returned that contains the next representable value after \(x_i \) in the direction of \(y_i \) for the corresponding elements of vector double \(x \) and vector double \(y \). If \(x_i \) is equal to \(y_i \), the result is \(y_i \).

If the magnitude of \(x_i \) is the largest finite value representable, the result is undefined.

nextafterf4: Find Next Integer After for Float

(vector float) nextafterf4 (vector float x, vector float y)

A vector float is returned that contains the next representable value after \(x_i \) in the direction of \(y_i \) for the corresponding elements of vector float \(x \) and vector float \(y \). If the element of \(x_i \) is equal to \(y_i \), the result is \(y_i \).

If the magnitude of \(x_i \) is the largest finite value representable, the result is undefined.

powd2: Raise Double to Double Power (SPU Only)

(vector double) powd2 (vector double x, vector double y)

A vector double is returned that contains \(x_i \) raised to the power of \(y_i \), \(x_i^{y_i} \), for the corresponding elements of vector double \(x \) and vector double \(y \).

If \(x_i \) is finite and negative and \(y_i \) is finite and not a integer value, the corresponding result is undefined and no error is reported.

powf4: Raise Float to Float Power

(vector float) powf4 (vector float x, vector float y)

A vector float is returned that contains \(x_i \) raised to the power of \(y_i \), \(x_i^{y_i} \), for the corresponding elements of vector float \(x \) and vector float \(y \).

On the SPU, if the result would be greater than \(\text{HUGE}_\text{VALF} \), the result is saturated to \(\text{HUGE}_\text{VALF} \) and no error is reported.

recipd2: Reciprocal of Double (SPU Only)

(vector double) recipd2 (vector double x)

A vector double is returned that contains the reciprocal of the corresponding elements of vector double \(x \).

The function handles special cases as follows:

- When \(x_i \) is \(\pm\text{Inf} \), the result is 0 with the sign of \(x_i \).
- When \(x_i \) is 0, the result is \(\text{Inf} \) with the sign of \(x_i \).
- When \(x_i \) is \(\text{NaN} \), the result is \(\text{NaN} \).

recipf4: Reciprocal of Float

(vector float) recipf4 (vector float x)

A vector float is returned that contains the reciprocal of the corresponding elements of vector float \(x \).

The function handles special cases as follows:

- When \(x_i \) is \(\pm\text{Inf} \), the result is 0 with the sign of \(x_i \).
- When \(x_i \) is 0, the result is \(\text{HUGE}_\text{VALF} \) with the sign of \(x_i \).
- When \(x_i \) is \(\text{NaN} \), the result is \(\text{NaN} \).
remainderd2: Remainder of Doubles (SPU Only)

(vector double) remainderd2 (vector double x, vector double y)

A vector double is returned that contains the remainder $x_i \text{ REM } y_i$ for the corresponding elements of vector double x and vector double y.

If y_i is 0, the corresponding element of the result is undefined and no error is reported.

remainderf4: Remainder of Floats

(vector float) remainderf4 (vector float x, vector float y)

A vector float is returned that contains the remainder $x_i \text{ REM } y_i$ for the corresponding elements of vector float x and vector float y.

If y_i is 0, the corresponding element of the result is undefined and no error is reported.

remquod2: Remainder Function of Double (SPU Only)

(vector double) remquod2 (vector double x, vector double y, vector signed long long *pquo)

This function returns the same vector double result as remainderd2(). In addition a vector signed long long is stored in *pquo, which contains the corresponding element values whose sign is the sign of x_i / y_i and whose magnitude is congruent modulo 2^n to the magnitude of the integral quotient of x_i / y_i, where n is an implementation-defined integer greater than or equal to 3.

remquof4: Remainder Function of Float

(vector float) remquof4 (vector float x, vector float y, vector signed int *pquo)

This function returns the same vector float result as remainderf4(). In addition a vector signed int is stored in *pquo, which contains the corresponding element values whose sign is the sign of x_i / y_i and whose magnitude is congruent modulo 2^n to the magnitude of the integral quotient of x_i / y_i, where n is an implementation-defined integer greater than or equal to 3.

rintd2: Round Double to the Nearest Integer (SPU Only)

(vector double) rintd2 (vector double x)

A vector double is returned that contains the corresponding elements of vector double x rounded to the nearest integer, consistent with the current rounding mode.

rintf4: Round Float to the Nearest Integer

(vector float) rintf4 (vector float x)

A vector float is returned that contains the corresponding elements of vector float x rounded to the nearest integer, consistent with the current rounding model.

On the SPU, the rounding mode for float is always towards zero.

roundd2: Round Double (SPU Only)

(vector double) roundd2 (vector double x)

A vector double is returned that contains the rounded elements of vector double x. Rounding is done to the nearest integer value in floating-point format. Halfway cases are rounded away from zero regardless of the current rounding direction.
roundf4: Round Float

(vector float) roundf4 (vector float x)

A vector float is returned that contains the rounded elements of vector float x. Rounding is done to the nearest integer value in floating-point format. Halfway cases are rounded away from zero regardless of the current rounding direction.

rsqrtfd2: Reciprocal Square Root of Double (SPU Only)

(vector double) rsqrtfd2 (vector double x)

A vector double is returned that contains the reciprocal of the square root of \(x_i\) for the corresponding elements of vector double x. Special cases are handled as follows:

- When \(x_i\) is less than 0, the result is NaN.
- When \(x_i\) is +\(\text{Inf}\), the result is +0.
- When \(x_i\) is 0, the result is \(\text{Inf}\) with the sign of \(x_i\).
- When \(x_i\) is NaN, the result is NaN.

rsqrtf4: Reciprocal Square Root of Float

(vector float) rsqrtf4 (vector float x)

A vector float is returned that contains the reciprocal of the square root of \(x_i\) for the corresponding elements of vector float x. Special cases are handled as follows:

- When \(x_i\) is less than 0, the result is NaN.
- When \(x_i\) is +\(\text{Inf}\), the result is +0.
- When \(x_i\) is 0, the result is \(\text{Inf}\) with the sign of \(x_i\).
- When \(x_i\) is NaN, the result is NaN.

On the SPU, if \(x_i\) is less than 0, the corresponding result is undefined.

scalblnd2: Scale Double by Long Long Integer (SPU Only)

(vector double) scalblnd2 (vector double x, vector signed long long n)

A vector double is returned that contains \(x_i\) efficiently multiplied by \(2^n\) for the corresponding elements of vector double x and vector signed long long n.

scalbnf4: Scale Float by Integer

(vector float) scalbnf4 (vector float x, vector signed int n)

A vector float is returned that contains \(x_i\) efficiently multiplied by \(2^n\) for the corresponding elements of vector float x and vector signed int n.

signbitd2: Sign Bit of Double (SPU Only)

(vector unsigned long long) signbitd2 (vector double x)

A vector unsigned long long is returned where each element is defined below for the corresponding element of vector double x:

- All bits of the resulting element are set to 1 if the sign bit is set in \(x_i\).
- Otherwise, the bits are set to zero.
signbitf4: Sign Bit of Float

(vector unsigned int) signbitf4 (vector float x)

A vector unsigned int is returned where each element is defined below for the corresponding element of vector float x:

- All bits of the resulting element are set to 1 if the sign bit is set in x.
- Otherwise, the bits are set to zero.

sincosd2: Sine and Cosine of Double (SPU Only)

(void) sincosd2 (vector double x, vector double *sx, vector double *cx)

A vector double is stored in *sx and a vector double is stored in *cx that contain the respective sines and cosines of the corresponding elements of vector double x.

The results of sincosd2() may not be accurate for very large values of x, and no error is reported. Implementations should document the point at which accuracy is lost.

sincosf4: Sine and Cosine of Float

(void) sincosf4 (vector float x, vector float *sx, vector float *cx)

A vector float is stored in *sx and a vector float is stored in *cx that contain the respective sines and cosines of the corresponding elements of vector float x.

The results of sincosf4() may not be accurate for very large values of x, and no error is reported. Implementations should document the point at which accuracy is lost.

sind2: Sine of Double (SPU Only)

(vector double) sind2 (vector double x)

A vector double is returned that contains the corresponding sines of the elements of vector double x.

The results of sind2() may not be accurate for very large values of x, and no error is reported. Implementations should document the point at which accuracy is lost.

sinf4: Sine of Float

(vector float) sinf4 (vector float x)

A vector float is returned that contains the corresponding sines of the elements of vector float x.

The results of sinf4() may not be accurate for very large values of x, and no error is reported. Implementations should document the point at which accuracy is lost.

sinhd2: Hyperbolic Sine of Double (SPU Only)

(vector double) sinhd2 (vector double x)

A vector double is returned that contains the corresponding hyperbolic sines of the elements of vector double x.

On the SPU, element values of the result that are greater than HUGE_VALF are returned as HUGE_VALF, and no error is reported.
sqrtd2: Square Root of Double (SPU Only)

(vector double) sqrtd2 (vector double x)

A vector double is returned that contains the real square roots $x^{1/2}$ for the corresponding elements of vector double x.

This function handles special cases as follows:

- When x_i is less than 0, the result is NaN.
- When x_i is +Inf, the result is +Inf.
- When x_i is 0, the result is 0 with the sign of x_i.
- When x_i is NaN, the result is NaN.

sqrtf4: Square Root of Float

(vector float) sqrtf4 (vector float x)

A vector float is returned that contains the real square roots $x^{1/2}$ for the corresponding elements of vector float x.

This function handles special cases as follows:

- When x_i is less than 0, the result is NaN.
- When x_i is +Inf, the result is +Inf.
- When x_i is 0, the result is 0 with the sign of x_i.
- When x_i is NaN, the result is NaN.

On the SPU, the result is undefined when x_i is negative.

tand2: Tangent of Double (SPU Only)

(vector double) tand2 (vector double x)

A vector double is returned that contains the corresponding tangents of the elements of vector double x.

The results may not be accurate for very large values of x_i and no error is reported. Implementations should document the point at which accuracy is lost.

tanf4: Tangent of Float

(vector float) tanf4 (vector float x)

A vector float is returned that contains the corresponding tangents of the elements of vector float x.

The results may not be accurate for very large values of x_i and no error is reported. Implementations should document the point at which accuracy is lost.

tanhd2: Hyperbolic Tangent of Double (SPU Only)

(vector double) tanhd2 (vector double x)

A vector double is returned that contains the corresponding hyperbolic tangents of the elements of vector double x.

tanhf4: Hyperbolic Tangent of Float

(vector float) tanhf4 (vector float x)

A vector float is returned that contains the corresponding hyperbolic tangents of the elements of vector float x.
tgammad2: Gamma of Double (SPU Only)

A vector double is returned that contains the corresponding results of the gamma function applied to the respective elements of vector double \(x \).

If \(x_i \) is a negative integer, the corresponding element of the result is undefined and no error is reported.

tgammaf4: Gamma of Float

A vector float is returned that contains the corresponding results of the gamma function applied to the respective elements of vector float \(x \).

If \(x_i \) is a negative integer, the corresponding element of the result is undefined and no error is reported.

truncd2: Truncate Double (SPU Only)

A vector double is returned that contains \(x_i \) rounded to the nearest integer \(n \) that is not larger in magnitude than \(x_i \) (rounded towards zero) for each corresponding element of vector double \(x \).

truncf4: Truncate Float

A vector float is returned that contains \(x_i \) rounded to the nearest integer \(n \) that is not larger in magnitude than \(x_i \) (rounded towards zero) for each corresponding element of vector float \(x \).