
STI Design Center Whitepaper

A Remote Procedure Call Implementation
for the

Cell Broadband Architecture

1 Introduction

In this paper, we present an implementation of Remote Procedure Call (RPC)
programming model for the Cell Broadband Engine Architecture (CBEA). CBE RPC is a
facility for calling a SPU procedure from a PPU program as if it were a regular PPU
procedure call. To the application programmer, a SPU function call looks like a PPU call,
and there are several components that work together to implement this facility, including
the Interface Description Language, its compiler, and the IDL runtime library.

In the following section we provide the motivation for implementing a RPC-like
programming model for the CBEA. In section 3, we describe the steps an application
programmer needs to go through to develop a typical CBE RPC application. In section 4
we describe the CBE RPC internals. A brief description of the Interface Description
Language is discussed in section 5. In section 6 we provide two examples. In the last
section, conclusions are drawn and future work is considered. Two appendices on the user
options for the IDL compiler and a complete IDL language synopsis are also provided.

2 Motivations

With a heterogeneous processing environment, the CBEA poses many programming
challenges to the application programmer. This specific CBE RPC implementation is
designed with the intention of enabling programmers to quickly write software for the Cell
Broadband Engine. Using a familiar programming model, the CBE RPC implementation
provides application programmers an environment to start developing applications for the
architecture quickly and effectively.

The CBE RPC programming model is quite simple. Using a combination of runtime
library and generated stub code, the PPU program can make calls to SPU functions
seamlessly. Furthermore, each SPU function is loaded onto the SPU only once. The
programmer can make multiple calls to the same function without having to load it again.

The asynchronous nature of the RPC programming model provides an easy way for
programmers to exploit parallelism without having to understand the low level working of
the MFC DMA layer.

3 Overview of CBE RPC application development steps

To write a CBE program using this RPC implementation, the application programmer

IDL.doc Page 1 of 17
 Copyright 2005, SCEI/Toshiba/IBM All Rights Reserved

STI Design Center Whitepaper

needs to provide an interface definition file that defines the PPU/SPU interface. This
interface, defined in the Interface Definition Language (IDL), consists of a set of
prototypes for the SPU functions that the PPU will request the SPU to execute. The
program is then compiled with the CBE IDL compiler. The output of the IDL compilation
is a C header file and two C files, one for the PPU and one for the SPU. These two output C
files contain the PPU and SPU stub code, where all the details of execution, data transfer,
and so on, are managed in conjunction with the RPC runtime.

The generated header file is included in the two generated C files as well as PPU and SPU
source files. It contains all the declarations and data structures that result from the interface
definitions.

The IDL generated stubs make the PPU and SPU appear to communicate directly through
ordinary, local procedure calls or method invocations. The stubs, together with the RPC
runtime, enable the SPU to pull the necessary input parameters from the PPU to execute the
procedure and push the output parameters to a pre-allocated place on the PPU once the
SPU finishes executing the procedure. Figures 1 illustrates how the generated stub code
works with the runtime library to enable SPU function invocation with parameters passing
from PPU.

RPC Runtime

Library

PPU

Compiler
and Linker

SPU Compiler
and Linker

SPU Binary PPU Binary

Written by Programmer

PPU
application

.idl file SPU
function

IDL Compiler

ppu_stub.c

spu_stub.c

stub.h

PPU program invokes SPU
functions at runtime

IDL.doc Page 2 of 17
 Copyright 2005, SCEI/Toshiba/IBM All Rights Reserved

STI Design Center Whitepaper

4 CBE RPC internals
4.1 Generated stub code

The IDL compiler uses lex and yacc to process the IDL file. The results of the compilation
are one C header file and two C files. The C header file includes function declarations that
are defined in the two C files. It also includes definitions for data structures that both PPU
and SPU stubs need.

For each function 'foo' defined in the IDL file, the following data structures are defined:
 idl_foo_param_info
 This data structure keeps all the allocated pointers for input and output
 parameters of SPU function 'foo'

 idl_foo_work_item

This data structure describes all the parameters and necessary information
for the PPU and SPU to prepare parameters for marshaling and
demarshaling to and from the SPU.

For each prototype function 'foo' defined in the IDL file, the following functions are
defined:

 idl_id_t foo ()

This is the stub code for function 'foo'. The PPU program can seamlessly
invoke the SPU function 'foo' through this function. This function creates
the param_info structure and sets all the appropriate parameters so the
SPU stub code can DMA necessary parameters to local store.

 Returns an integer identifying the function. This is useful for the PPU
 program to query the status of the SPU execution.

 int idl_join_foo (idl_id_t idl_func_id)
 Waits for the function execution with the idl_id_t func_id to finish
 executing. This function blocks until the SPU function finishes executing
 and sends a signal back to the PPU.

 int idl_poll_foo (idl_id_t idl_func_id)
 Polls the SPU execution of the function with idl_id_t func_id.
 Returns 1 if the function execution has finish; 0 otherwise.

 void idl_join_all_foo()
 Waits for all the executions of function 'foo' to finish
 Returns void.

For each interface 'foo_interface', the following functions are defined:

 void idl_foo_interface_cleanup()

IDL.doc Page 3 of 17
 Copyright 2005, SCEI/Toshiba/IBM All Rights Reserved

STI Design Center Whitepaper

 After finish calling all the functions defined in the .idl interface, an
 application must call this function to free up all the allocated resources

This function returns void

4.2 PPU runtime library

The RPC runtime library initializes the SPUs, loads the appropriate SPU functions to local
store, and manages the task queue. PPU requests for SPU executions are represented as
task structure. As each SPU function is invoked, a new task is created and put on a task
queue. The tasks are scheduled according to a round-robin policy. There is a static number
of slots on the queue. As soon as a SPU function returns, a slot on the queue is free up. If
the queue is full, the PPU application will have to wait for a free slot in the queue.

4.3 How it all works together

The PPU program calls the function 'foo'. The stub function 'foo' initializes the SPU with
necessary data and code, pack the parameters, and sends a mailbox message to the SPU to
start the SPU stub program. The mailbox message contains the address of the work_item
data structure which the SPU pulls over using MFC get commands.

5 Interface Description Language

The CBE RPC Interface Description Language is a subset of the DCE Interface
Description Language. It also contains some new key words to allow CBE specific
features like double buffering and vector type. A full grammar synopsis can be found in
Appendix B.

5.1 Keywords and Reserved Words

IDL contains keywords and reserved words. These must not be used as identifiers. The
following are IDL keywords and reserved words:

 interface
 int
 char
 double
 float
 vector
 in
 out
 sync
 async
 size_is
 dbuf_size
 import

IDL.doc Page 4 of 17
 Copyright 2005, SCEI/Toshiba/IBM All Rights Reserved

STI Design Center Whitepaper

5.2 Identifiers

Each object is named with a unique identifier. The maximum length of an identifier is 31
characters. Some identifiers are used as a base from which the compiler constructs other
identifiers. These identifiers have further restrictions on their length. The character set for
identifiers is the alphabetic characters A to Z and a to z, the digits 0 to 9, and the _
(underbar) character. An identifier must start with an alphabetic character or the _
(underbar) character.

The CBE IDL is a case-sensitive language.

5.3 Comments

The /* (slash and asterisk) characters introduce a comment. The contents of a comment are
examined only to find the */ (asterisk and slash) that terminate it. Thus, comments do not
nest. One or more comments may occur before the first non-comment lexical element of
the IDL source, between any two lexical elements of the IDL source, or after the last
non-comment lexical element of the IDL source.

5.5 Interface Definition Structure

An interface written in IDL has the following structure:
 <interface> ::= <interface_header> { <interface_body> }

5.6 Interface Header
 <interface_header> ::= "interface" <identifier>

5.7 Interface Body
 <interface_body> ::= [<import>] ... [<export>] ...

5.8 Import
 <import> ::= “import” filename “;”

5.9 Export
 <export> ::= <const_declaration> ";"
 | <type_declaration> ";"
 | <op_declaration> ";"

5.10 Constant Declaration

 <const_declaration>::=
 "const" <const_type_spec> <identifier> "=" <const_exp>

 <const_type_spec> ::=
 int_type
 | char_type
 | string_type
 | void_ptr_type

IDL.doc Page 5 of 17
 Copyright 2005, SCEI/Toshiba/IBM All Rights Reserved

STI Design Center Whitepaper

 <const_exp> ::=
 integer_const_exp
 | character_const_exp
 | string_const_exp
 | identifier
 | NULL

In the production <string_const_exp>, no character is permitted to be the doube quote
character unless it is immediately preceded by the \ (backslash) character. In the
production <character_const_exp>, no character maybe the single quote character unless it
is immediately preceded by the backslash character.

LITERAL_INTEGER may appear only if <const_type_spec> is long, short, int
LITERAL_CHARACTER may appear only if <const_type_spec> is char
LITERAL_STRING may appear only if <const_type_spec> is char*
NULL may appear only if <const_type_spec> is void*
An <identifier> must have been defined in a preceding constant declaration. The type that
<identifier> was defined to be in that declaration must be consistent with the
<const_type_spec> in the current declaration.

In the generated code, constants are declared as #define macros

5. 11 Operation Declaration
 <op_declaration> ::=
 <op_attribute> “idl_id_t” <identifier> <parameter_declarators>

The syntax for <op_attribute> is

 <op_attribute> ::= [“sync” | “async” | “async_i” | “async_b”]

The keyword sync specifies synchronous execution. The PPU application must wait for the
SPU to finish executing before continuing executing

The keyword async_b specifies asynchronous execution. The PPU application returns as
soon as it copies the in parameters over. The user an reuse the in-buffer after the function
returns. An idl_id_t is returned to the PPU. PPU can call join_func (idl_id_t id) function
later to sync up the results.

The keyword async_i specifies asynchronous execution. The PPU application does not
have to wait for the SPU to finish executing. The user cannot reuse the in-buffer after the
function returns. An idl_id_t is returned to the PPU. The PPU program can call join_func
(idl_id_t id) function later to sync up the results (see IDL compiler user guide) The user
cannot reuse the in-buffer after the function return until after a successful join_func.

The attribute async has the same semantics as the attribute async_i

IDL.doc Page 6 of 17
 Copyright 2005, SCEI/Toshiba/IBM All Rights Reserved

STI Design Center Whitepaper

An operation must return a value of the opaque type idl_id_t. This serves as a handle in the
asynchronous execution case; the programmer can use this idl_id_t handle to synchronize
the results of the program.

The <identifier> in an operation declaration is the name of the operation (this is just the
name of the function)

Each parameter declaration in an operation declaration takes the following form:

 [<parameter_attributes>] <type_specifier> <parameter declarator>

Parameter declarators and attributes are declared separately in the following section.

5.12 Parameter Declarations

A parameter declaration takes the following form:
 [<parameter_attributes>] <type_specifier> <parameter_declarator>

A parameter attribute can be any of the following:

 in: the parameter is an input parameter
 out: the parameter is an output parameter

 size_is(val): the parameter has a size of ‘val’, ‘val’ can be a previously declared

constant or parameter or any integer)

 dbuf_size(val): if the specified parameter is an array, then this parameter is
considered for double buffering. The parameter has a size of ‘val’, ‘val’ can be a
previously declared constant or parameter or any integer. This value must be
divisible by the array size. Furthermore, the double buffer size (in bytes) must be a
multiple of 128. If these conditions are not met, the double buffering request is
ignored.

The directional attribute in and out specify the directions in which a parameter is to be
passed. The in attribute specifies that the parameter is passed from the PPU to the SPU.
The out attribute specifies that the parameter is passes from the SPU to PPU

An output parameter must be passed by reference and therefore must be declared either as
an array or a pointer. The size of the array and pointer must be given as in parameter prior
to the declaration of the out parameter. Example:

 [async] idl_id_t foo ([in] int size, [out, size_is(size)] int
ret_array[])

In this example, size is declared before ret_array and size is also specified as the size of the
out parameter ret_array

5.13 User defined type

IDL.doc Page 7 of 17
 Copyright 2005, SCEI/Toshiba/IBM All Rights Reserved

STI Design Center Whitepaper

User-defined type right now is not implemented in the idl language. However, the
programmer can import a header file to be included in all the generated source code files.
This header file can contain any user defined type needed in the .idl file.

A pointer to a user defined structrure must have size_is(int val) as an attribute

Example: if the programmer wants to include the file “vse_subdiv.h” in all the generated
stub code file. The .idl file will have this:

 interface vse_subdiv
 {
 import “vse_subdiv.h”;
 [sync] idl_id_t foo ([in] int size,[in, size_is(size)] MyStruct* ptr);
 }

The definition for MyStruct is in the file “vse_subdiv.h” and size is the size of the
structure.

5.14 Arrays
IDL supports one dimensional array with the following features

Fixed: The size of the array is defined in IDL at compile time (this can be a declared
constant or an integer in the size_is(int val) attribute)

Variable size: The size of the array is determined at runtime. The user can declare the size
of the array by using the size_is(int val) attribute with val being an in parameter passed to
the SPU at runtime.

An array parameter must have the size_is attribute specifying the number of the elements
of the array, example:
 [in, size_is (array_a_size)] int array_a
with array_a_size being an integer

6 Examples
We provide two examples of how to use the CBE RPC layer in an application. The first
example is a simple 'hello_world' program. This is just a simple illustration of how
everything fits together. In actuality, it is not recommended to have such a simple program
running on the SPU. In the second program, a more complex example is given. Using the
RPC facility, a PPU program invokes different functions from a SPU math library. All the
SPU functions are executed asynchronously and only when the results are needed that the
PPU program queries for SPU completion status.

6.1 Simple example: hello world

In this example, the PPU will invoke the SPU function hello from inside the PPU
program execution. This simple program is an illustration of how all the components of the

IDL.doc Page 8 of 17
 Copyright 2005, SCEI/Toshiba/IBM All Rights Reserved

STI Design Center Whitepaper

RPC layer work together.

interface greeting
{
 [sync] idl_id_t hello ([in] int nbytes,
 [in, size_is(nbytes)] char message[]);
}

interface defines a group
of functions that can coexist
on the same SPU

sync forces the PPU to wait
for SPU to complete running
‘hello’

the return type must be idl_id_t,
which is an integer ID that allows the PPU
to wait for SPU to complete ‘hello’ in the
case of asynchronous execution

parameter attributes (in, size_is)
provide necessary information
regarding input types and sizes

Figure 3 lists the content of ppu_hello.c

#include <stub.h>

int
main (int argc, char* argv[])
{
 char* str = “hello, world!”;

 /* */

 hello (strlen(str), str);
}

IDL Compiler

Written by Programmer

PPU
application

hello.idl
file

SPU
function

ppu_stub.c

spu_stub.c

stub.h

ppu_stub.c loads ‘hello’ on SPU, initiates
execution

PPU program can call ‘hello’
just like any other function

stub.h is generated by the IDL
compiler

IDL.doc Page 9 of 17
 Copyright 2005, SCEI/Toshiba/IBM All Rights Reserved

STI Design Center Whitepaper

Figure 4 lists the content of spu_hello.c

IDL Compiler

Written by Programmer

PPU
application

hello.idl
file

SPU
function

ppu_stub.c

spu_stub.c

stub.h

#include <stdio.h>
#include <stub.h>

idl_id_t hello (
 int nbytes, char msg[])
{
 printf (“SPU: %s\n”, msg);
 return 0;
}

SPU source file also must
include the generated header file

spu_stub.c contains functions that
waits for work, DMA parameters
into SPU local store, and calls
‘hello’

6.2 Asynchronous example: math library

In this example, we have a math library composed of four functions, add, subtract, multiply,
and divide. Each of these functions operates on array inputs that the SPU need to pull from
system memory to SPU local store. The generated stub code of course handles all of the
data transfer between PPU and SPU. The PPU can invokes these functions, let the SPUs
execute them in parallel while doing other works, then when ready issue a join statement to
wait for them to complete.

IDL.doc Page 10 of 17
 Copyright 2005, SCEI/Toshiba/IBM All Rights Reserved

STI Design Center Whitepaper

idl_join_add is generated by the IDL
compiler to let the PPU wait for add to
complete

#include <stub.h>

#define NITEMS 1024
float a[NITEMS];
float b[NITEMS];
float r[NITEMS];

int
main (int argc, char** argv)
{
 idl_id_t id;

 //call ‘add’ and continue
 //without waiting
 id = add (NITEMS, a, b, r);

 /* working on other things

 */
 idl_join_add (id);
}

IDL Compiler

Written by Programmer

PPU
application

hello.idl
file

SPU
function

ppu_stub.c

spu_stub.c

stub.h

async allows PPU to work in parallel with SPU

7 Conclusion and future works

The RPC programming model provides a familiar and easy environment for application
programmer to start developing applications for the CBE architecture. The marshaling and
de-marshaling of parameters to and from the SPU are hidden from the application layer.

The drawback to using the RPC layer is that it does not fit for performance critical
application. The generated stubs and the IDL runtime impose certain performance penalty.
Furthermore, the subset of the DCE Interface Description Language used in this
implementation is rather limited. The application programmers will no doubt require more
flexibility to express their SPU functions.

In the future, a more complete RPC solution could be implemented for the CBE
architecture. The interface description language here is but a subset of the original DCE
IDL that we are modeling after. A more robust double buffering scheme is also very
beneficial to streaming applications.

8 References
1) IBM Distributed Computing Environment for AIX, Version 2.2: Application
Development Guide

IDL.doc Page 11 of 17
 Copyright 2005, SCEI/Toshiba/IBM All Rights Reserved

STI Design Center Whitepaper

Appendix A - IDL compiler user options

The idl compiler is a single program (idl). It first parses an IDL input file

(.idl) and then produces C code for the stubs.

Usage: idl [<options>[<idl-file>

Options Description

-h shows this help

-c if this option is set, the idl compiler will generate code to check

 whether there's enough memory in the local storage to bring the

 parameters over. An error message is returned to the programmer

 at runtime of the generated stub code if there's not enough memory

 in the SPU LS. If this option is not set, who knows what would happen?

 The stack may blow, the text section may be overwritten...

 No check is generated on default.

-d sets output directory. The default is the current directory

-f sets the name of the stub header file. The default is stub.h

-s sets the name of the stub code for spu. The default is spu_stub.c

-p sets the name of the stub code of ppu. The default is ppu_stub.c

-n sets the maximum number of spus the ppu stub code can allocate.

 NOTE: spus are allocated on a need-based policy. If there's no need to

 allocate more spus (allocated spus are currently idle), extra spus

 will not be allocated,even if the maximum number of spus are not

 reached yet.

-b the name of spu elf file the ppu will load. The default is the name of

 the interface in the .idl file

-e If this flag is set, the idl compiler will output an echo.idl with the

 same content as the input idl file

-k If this flag is set, the idl compiler generates code that's can be compiled

 as c++ code

-r sets the name of the README file. The default README

 (not implemented yet)

-i If this flag is set, all the parameters that can be double buffered

 will be pulled into local storage incrementally. For example, if you

 have an in parameter of 128K, but you only have 100K of local storage

 left, and this parameter can be double-buffered, then you would want

 to set this flag and let the SPU pulls only 64K of data in at a time.

IDL.doc Page 12 of 17
 Copyright 2005, SCEI/Toshiba/IBM All Rights Reserved

STI Design Center Whitepaper

 This option allows programmer to call function with large parameters

 that don't fit into SPU local storage

-g If this flag is set, profiling information will be printed out. The

 following profiling information is provided:

 _ the number of bytes SPU DMAed in

 _ the number of bytes SPU DMAed out

 _ the number of cycles (amount of time) the SPU takes to DMA in

 parameters

 _ the number of cycles (amount of time) the SPU takes to DMA out

 parameters

 _ the number of cycles (amount of time) the SPU takes to execute

 the actual spu function

 _ the total number of cycles (amount of time) the SPU takes to run

 If anyone needs more information, please let me know

 For double buffering, the number of cycles the SPU spent to pull in

 parameters cannot be known exactly, so that information isn't

 reported.

 For synchronous execution, performance information is printed out

 after the function finishes executing.

 For asynchronous execution, performance information is printed out

 in the wait_spu_func function

Example: to generate stub files for the file sample.idl, the command would be:

 ./idl -p ppu/stub_sample.c -s spu/stub_sample.c -n 4 sample.idl

IDL.doc Page 13 of 17
 Copyright 2005, SCEI/Toshiba/IBM All Rights Reserved

STI Design Center Whitepaper

Appendix B – IDL Grammar Synopsis

<idl_interface> ::= <interface_header> "{" <interface_body> "}"
<interface_header> ::= "interface" IDENTIFIER

<interface_body> ::=
 <interface_body> <import>
 | <interface_body> <export>
 | empty

<import> ::= "import" <import_file> ";"
<import_file> ::= FILENAME

<export> ::=
 <const_declaration> ";"
 | <op_declaration> ";"

<const_declaration> ::= "const" <const_type_spec> IDENTIFIER "=" <const_exp>

<const_type_spec> ::=
 <int_type>
 | <float_type>
 | "char"
 | "char *"
 | "boolean"

<const_exp> ::=
 <integer_const_exp>
 | <float_const_exp>
 | <character_const_exp>
 | <string_const_exp>
 | IDENTIFIER
 | EXPNULL

<integer_const_exp> ::= LITERAL_INTEGER

<float_const_exp> ::= LITERAL_FLOAT

<character_const_exp> ::= LITERAL_CHAR

<string_const_exp> ::= LITERAL_STRING

<op_declaration> ::= <op_attribute> <idl_id_type> IDENTIFIER
<parameter_declarators>

<idl_id_type> ::= "idl_id_t"

IDL.doc Page 14 of 17
 Copyright 2005, SCEI/Toshiba/IBM All Rights Reserved

STI Design Center Whitepaper

<op_attribute> ::= "[" <op_attr> "]"

<op_attr> ::=
 "async"
 | "async_b"
 | "async_i"
 | "sync"

<parameter_declarators> ::=
 "(" "void" ")"
 | "(" <parm_decs> ")"

<parm_decs> ::=
 empty
 | <parm_dec_list>

<parm_dec_list> ::=
 <param_declarator>
 | <parm_dec_list> "," <param_declarator>

<param_declarator> ::=
 <param_attributes> <type_spec> <declarator>

<param_attributes> ::=
 "[" <parm_attrs> "]"

<parm_attrs> ::= <directional_attribute> <param_attribute>

<param_attribute> ::=
 empty
 | <field_attribute>

<directional_attribute> ::=
 "in"
 | "out"
 | "inout"

<field_attribute> ::=
 "size_is" "(" <attr_var> ")"

<attr_var> ::=
 LITERAL_INT
 | IDENTIFIER
<type_spec> ::=
 <simple_type_spec>

IDL.doc Page 15 of 17
 Copyright 2005, SCEI/Toshiba/IBM All Rights Reserved

STI Design Center Whitepaper

 | <constructed_type>

<constructed_type> ::= IDENTIFIER

<simple_type_spec> ::= <base_type_spec>

<base_type_spec> ::=
 <int_type>
 | <float_type>
 | <char_type>
 | <boolean_type>
 | <byte_type>
 | <void_type>
 | <vector_int_type>
 | <vector_float_type>
 | <vector_char_type>

<float_type> ::=
 "float"
 | "double"

<int_type> ::=
 "int"
 | <signed int>
 | <unsigned_int>

<signed_int> ::=
 "signed int"
 | <int_size> "int"
 | <int_size>

<unsigned_int> ::=
 "unsigned int"
 | <int_size> "unsigned int"
 | <int_size> "unsigned"
 | "unsgined" <int_size> "int"
 | "unsigned" <int_size>

<int_size> ::=
 "long"
 | "short"

<char_type> ::=
 "unsigned" "char"
 | "char"

IDL.doc Page 16 of 17
 Copyright 2005, SCEI/Toshiba/IBM All Rights Reserved

STI Design Center Whitepaper

<boolean_type> ::=
 "boolean"

<byte_type> ::=
 "byte"

<void_type> ::= "void"

<vector_char_type> ::=
 "vector" <char_type>

<vector_float_type> ::=
 "vector" <float_type>

<vector_int_type> ::=
 "vector" <int_type>
<declarator> ::=
 <complex_declarator>
 | IDENTIFIER

<complex_declarator> ::=
 <array_declarator>
 | "*" IDENTIFIER

<array_declarator> ::=
 IDENTIFIER "[" "]"

IDL.doc Page 17 of 17
 Copyright 2005, SCEI/Toshiba/IBM All Rights Reserved

