
Systems and Technology Group

06/27/06Course Code: L2T2H1-10 Running Your First Cell Program1

Hello World!

Course Code: L2T2H1-10
Cell Ecosystem Solutions Enablement



Systems and Technology Group

06/27/06Course Code: L2T2H1-10 Running Your First Cell Program2

Course Objectives

You will learn how to write, build and run “Hello 
World!” on the Cell System Simulator.

There are three different versions of “Hello 
World!” for the PPE only, SPE only and for the Cell 
BE, i.e. using PPE and SPE.



Systems and Technology Group

06/27/06Course Code: L2T2H1-10 Running Your First Cell Program3

How to get “Hello World!”

Pre-requisites
– Toolchain
– Compiler
Build Process
Source Code
– Makefiles
– Source PPE
– Source SPE
Simulator
– Getting the binary into the simulator
– Running the binary



Systems and Technology Group

06/27/06Course Code: L2T2H1-10 Running Your First Cell Program4

SDK Installation Requirements

Hardware “official” requirements
– At least 2GHz x86 or x86-64 processor

– At least 1GB RAM

– At least 5GB available space

Software “official” requirements
– Fedora Core 4

• With TCL/TK
– SDK Installation Files

– Network connectivity to download 2.6.14 kernel (SDK 1.0) or 
2.6.15 (SDK 1.0.1)



Systems and Technology Group

06/27/06Course Code: L2T2H1-10 Running Your First Cell Program5

SDK Installation Files
Barcelona Supercomputing Center website
– GNU x86 toolchain toolchain-2.3-i686.tar.bz2

– FC4/PowerPC RPMs ppc-fc4-rpms-1.0.0-1.i386.rpm

– Cell Linux kernel patches cell-linux-patches-1.0.tar.bz2

– SPE runtime lib source libspe-1.0.tar.bz2 

– Installation script install.sh

IBM alpha works (binary / ILA for early release program)
– System simulator systemsim-cell-1.0-fc4-x86.tar.bz2 

– XLC xlc-cell-cmp-1.0-1.i386.rpm
xlc-cell-lib-1.0-1.i386.rpm

– Sample and Library (source / CPL v1.0) cell-sdk-lib-samples-1.0.tar.bz2

– SPU instruction timing tool cell-spu-timing-1.0-fc4-x86.tar.bz2



Systems and Technology Group

06/27/06Course Code: L2T2H1-10 Running Your First Cell Program6

Your Virtual Machine

Contains an installed Fedora Core 4
– including the complete cell sdk

You can log in using
– User: student
– Password: go4cellNow

Settings for Cell
– Alias cdsim changes directory to the simulator start dir
– Environment variable $TOP CBE home



Systems and Technology Group

06/27/06Course Code: L2T2H1-10 Running Your First Cell Program7

Compilers
GCC
– GNU public compiler
– x86 toolchain includes PowerPC cross-compiler and SPU-capable cross-compiler

• /opt/sce/toolchain-2.3/ppu/bin/ppu-gcc
• /opt/sce/toolchain-2.3/spu/bin/spu-gcc

– Advantages
• widely available, open source compiler
• optimizations for POWER platform are improving

– Disadvantages
• auto vectorization capabilities are limited

XLC
– IBM internal compiler for POWER platform modified to generate SPU object code as well
– Advantages

• commercial-level compiler dedicated to generating highly-optimized POWER code
• auto vectorization capabilities originally designed for VMX instruction set have been 

implemented for SPU
– Disadvantages

• optimizations are slower to be implemented and released
Octopiler
– A version of XLC that is being developed by IBM Research
– Intended to perform auto vectorization, auto partitioning, and overlay management to 

standard sequential code
– http://www.research.ibm.com/journal/sj/451/eichenberger.html



Systems and Technology Group

06/27/06Course Code: L2T2H1-10 Running Your First Cell Program8

Build the code

TOP set to directory containing make header & footer
– make.footer contains all the complicated build rules

Place SPU code in a subdirectory of directory containing PPC code
– e.g. subdirectory name is ‘spu’

Makefile for PPC code:
– DIRS = spu

– PROGRAM_ppu = <PPU_executable_name>

– IMPORTS = <spu_executable-embed.a> -lspe

– include $(TOP)/make.footer

Makefile for SPU code:
– PROGRAM_spu := <SPU_executable_name>

– LIBRARY_embed = >SPU_executable-embed.a>

– include $(TOP)/make.footer



Systems and Technology Group

06/27/06Course Code: L2T2H1-10 Running Your First Cell Program9

Three Different Versions of “Hello World!”

PPU only

SPU only

Synergistic



Systems and Technology Group

06/27/06Course Code: L2T2H1-10 Running Your First Cell Program10

“Hello World!” – PPU Only
PPC program
– just like any “Hello World!” program one would write

Makefile
– make.footer included to set up compiler and compiler flags

– PROGRAM_ppu tells make to use PPC cross-compiler

#include <stdio.h>

int main(void)
{

printf("Hello world!\n");
return 0;

}

PROGRAM_ppu = hello
include $(SDK_TOP)/make.footer



Systems and Technology Group

06/27/06Course Code: L2T2H1-10 Running Your First Cell Program11

“Hello World!” – SPE Only
SPE Program

SPE Makefile

#include <stdio.h>

int main(unsigned long long speid, unsigned long long argp, 
unsigned long long envp)
{

printf("Hello world!\n");
return 0;

}

PROGRAMS_spu := hello_spu
IMPORTS = $(SDKLIB_spu)/libc.a
include $(SDK_TOP)/make.footer



Systems and Technology Group

06/27/06Course Code: L2T2H1-10 Running Your First Cell Program12

“Hello World!” – SPE Only (2)

Can only be started directly in the Simulator

Printf()
– there is no direct access to linux console by SPE
– printf() several implementations in different libraries

• Doing nothing
• Doing a system call to PPE

– simulator implements printf() to aid in debugging on simulator console



Systems and Technology Group

06/27/06Course Code: L2T2H1-10 Running Your First Cell Program13

“Hello World!” – PPU and SPU

SPE program
– Same as for SPE only

SPE Makefile

PROGRAMS_spu := hello_spu
LIBRARY_embed := hello_spu.a
IMPORTS        = $(SDKLIB_spu)/libc.a
include $(SDK_TOP)/make.footer



Systems and Technology Group

06/27/06Course Code: L2T2H1-10 Running Your First Cell Program14

“Hello World!” – PPU and SPU (2)
PPU program

PPU Makefile

#include <stdio.h>
#include <libspe.h>
extern spe_program_handle_t hello_spu;
int main(void)
{

int speid, status;
speid = spe_create_thread (0, &hello_spu, NULL, NULL, -1, 0);
spe_wait(speid, &status, 1);
return 0;

}

PROGRAM_ppu = hello_ppu
IMPORTS = ../spu/hello_spu.a -lspe
include $(SDK_TOP)/make.footer



Systems and Technology Group

06/27/06Course Code: L2T2H1-10 Running Your First Cell Program15

PPE and SPE Synergistic Programming
#include <stdio.h>
#include <libspe.h>
extern spe_program_handle_t hello_spu;
int main(void)
{

int speid, status;
speid = spe_create_thread (0, &hello_spu, NULL, NULL, -1, 0);
spe_wait(speid, &status, 1);
return 0;

}

#include <stdio.h>
#include <cbe_mfc.h>
#include <spu_mfcio.h>

int main(unsigned long long speid, unsigned long long argp, 
unsigned long long envp)
{

printf("Hello world!\n");
return 0;

}

PPE 
Code

SPE 
Code



Systems and Technology Group

06/27/06Course Code: L2T2H1-10 Running Your First Cell Program16



Systems and Technology Group

06/27/06Course Code: L2T2H1-10 Running Your First Cell Program17

Two Ways to Exchange Files between Host and Simulator
RAMDISK
– the Systemsim simulator runs its environment off a ramdisk that is built using 

“make” in the $SDK_TOP/ramdisk directory
– files can be inserted into this ramdisk such that when the simulator is started 

the files will be there already
• useful for data input files or binaries that are known to work correctly

Callthru
– “backdoor” communication mechanism for the simulated environment to 

communicate with the host environment
– useful for bringing in files to the simulated environment without shutting down 

and restarting the simulator
– Example:  (binary host simulator)

• callthru source /home/systemsim/hello/ppu/hello_ppu > hello_ppu
• chmod 755 hello_spu
• ./hello_spu

– Example (result file simulator host)
• callthru sink /home/systemsim/results/result_file < cat result_file
• exporting result files out of the simulated environment for later inspection



Systems and Technology Group

06/27/06Course Code: L2T2H1-10 Running Your First Cell Program18

Running the Binary
Start the simulator

– # cd systemsim-cell-release/run/cell/linux
– #../run_gui
– Hit “Go”



Systems and Technology Group

06/27/06Course Code: L2T2H1-10 Running Your First Cell Program19

Execute Binary

Bring executable(s) into the simulator using the callthru utility
– callthru source /home/systemsim/hello/ppu/hello_ppu > 

hello_ppu

Execute binary
– chmod 755 hello_spu
– ./hello_spu

Tip!
Copy binary to /tmp/´<exe> on
host to shorten the filename



Systems and Technology Group

06/27/06Course Code: L2T2H1-10 Running Your First Cell Program20

Directory Structure

hello_ppu

hello_be
– spu



Systems and Technology Group

06/27/06Course Code: L2T2H1-10 Running Your First Cell Program21

(c) Copyright International Business Machines Corporation 2005.
All Rights Reserved.  Printed in the United Sates September 2005.

The following are trademarks of International Business Machines Corporation in the United States, or other countries, or both. 
IBM IBM Logo Power Architecture

Other company, product and service names may be trademarks or service marks of others.

All information contained in this document is subject to change without notice. The products described in this document are 
NOT intended for use in applications such as implantation, life support, or other hazardous uses where malfunction could result 
in death, bodily injury,  or catastrophic property damage. The information contained in this document does not affect or change 
IBM product specifications or warranties.  Nothing in this document shall operate as an express or implied license or indemnity 
under the intellectual property rights of IBM or third parties. All information contained in this document was obtained in specific 
environments, and is presented as an illustration. The results obtained in other operating environments may vary.

While the information contained herein is believed to be accurate, such information is preliminary, and should not be relied 
upon for accuracy or completeness, and no representations or warranties of accuracy or completeness are made.

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED ON AN "AS IS"  BASIS. In no event will IBM be liable 
for damages arising directly or indirectly from any use of the information contained in this document.

IBM Microelectronics Division The IBM home page is http://www.ibm.com
1580 Route 52, Bldg. 504 The IBM Microelectronics Division home page is 
Hopewell Junction, NY 12533-6351 http://www.chips.ibm.com


