
Systems and Technology Group

06/27/06Course Code: L3T2H1-58 Cell Programming Tips & Techniques 1

Cell Programming Tips & Techniques

Course Code: L3T2H1-58
Cell Ecosystem Solutions Enablement

Systems and Technology Group

06/27/06Course Code: L3T2H1-58 Cell Programming Tips & Techniques 2

Class Objectives – Things you will learn

Key programming techniques to exploit cell
hardware organization and language features for
– SPU

– SIMD

Systems and Technology Group

06/27/06Course Code: L3T2H1-58 Cell Programming Tips & Techniques 3

Class Agenda

Review relevant SPE Features
SPU Programming Tips
– Level of Programming (Assembler, Intrinsics, Auto-Vectorization)
– Overlap DMA with computation (double, multiple buffering)
– Dual Issue rate (Instruction Scheduling)
– Design for limited local store
– Branch hints or elimination
– Loop unrolling and pipelining
– Integer multiplies (avoid 32-bit integer multiplies)
– Shuffle byte instructions for table look-ups
– Avoid scalar code
– Choose the right SIMD strategy
– Load / Store only by quadword

SIMD Programming Tips

Systems and Technology Group

06/27/06Course Code: L3T2H1-58 Cell Programming Tips & Techniques 4

Review Cell Architecture

Systems and Technology Group

06/27/06Course Code: L3T2H1-58 Cell Programming Tips & Techniques 5

Cell Processor

Systems and Technology Group

06/27/06Course Code: L3T2H1-58 Cell Programming Tips & Techniques 6

Course Agenda
Cell Blade Products
Cell Blade Family of Servers
Cell Blade Architecture
Cell Blade Overview
– Critical signals, link speed and bandwidth
– Power consumption
– Hardware components

Blade and blade center assembly
Example of a cell blade with maximum interconnection capability
Options - Infiniband

Trademarks: Cell Broadband Engine ™ is a trademark of Sony Computer Entertainment, Inc.

References: Dan Brokenshire, BE Programming Tips

Systems and Technology Group

06/27/06Course Code: L3T2H1-58 Cell Programming Tips & Techniques 7

Key SPE Features

Systems and Technology Group

06/27/06Course Code: L3T2H1-58 Cell Programming Tips & Techniques 8

SPE – Single-Ported Local Memory

Systems and Technology Group

06/27/06Course Code: L3T2H1-58 Cell Programming Tips & Techniques 9

SPU Programming Tips

Systems and Technology Group

06/27/06Course Code: L3T2H1-58 Cell Programming Tips & Techniques 10

SPU Programming Tips

Level of Programming (Assembler, Intrinsics, Auto-Vectorization)

Overlap DMA with computation (double, multiple buffering)

Dual Issue rate (Instruction Scheduling)

Design for limited local store

Branch hints or elimination

Loop unrolling and pipelining

Integer multiplies (avoid 32-bit integer multiplies)

Shuffle byte instructions for table look-ups

Avoid scalar code

Choose the right SIMD strategy

Load / Store only by quadword

Systems and Technology Group

06/27/06Course Code: L3T2H1-58 Cell Programming Tips & Techniques 11

Programming Levels on Cell BE

Expert level
– Assembler, high performance, high efforts

More ease of programming
– C compiler, vector data types, intrinsics, compiler schedules

instructions + allocates registers

Auto-SIMDization
– for scalar loops, user should support by alignment directives,

compiler provides feedback about SIMDization

Highest degree of ease of use
– user-guided parallelization necessary, Cell BE looks like a

single processor

Trade-Off

Performance vs. Effort

Requirements for Compiler increasing with each level

Systems and Technology Group

06/27/06Course Code: L3T2H1-58 Cell Programming Tips & Techniques 12

Overlap DMA with computation

Double or multi-buffer code or (typically)
data
Example for double bufferign n+1 data
blcoks:

– Use multiple buffers in local store
– Use unique DMA tag ID for each buffer
– Use fence commands to order DMAs within

a tag group
– Use barrier commands to ordr DMAs within

a queue

Systems and Technology Group

06/27/06Course Code: L3T2H1-58 Cell Programming Tips & Techniques 13

Start DMAs from SPU

Use SPE-initiated DMA transfers rather than PPE-
initiated DMA transfers, because
– there are more SPEs than the one PPE

– the PPE can enqueue only eight DMA requests whereas
each SPE can enqueue 16

Systems and Technology Group

06/27/06Course Code: L3T2H1-58 Cell Programming Tips & Techniques 14

Instruction Scheduling

Systems and Technology Group

06/27/06Course Code: L3T2H1-58 Cell Programming Tips & Techniques 15

Instruction Starvation Situation

instruction buffers

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

There are 2 instruction buffers
– up to 64 ops along the fall-through

path

First buffer is half-empty
– can initiate refill

When MEM port is continuously
used
– starvation occurs (no ops left in

buffers)

Dual-Issue
Instruction
Logic

Dual-Issue
Instruction
Logic

initiate
refill
after
half
empty

Systems and Technology Group

06/27/06Course Code: L3T2H1-58 Cell Programming Tips & Techniques 16

Instruction Starvation Prevention

instruction buffer

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

SPE has an explicit IFETCH op
– which initiates an instruction

fetch

Scheduler monitors starvation
situation
– when MEM port is

continuously used
– insert IFETCH op within the

(red) window

Compiler design
– scheduler must keep track of

code layout

Dual-Issue
Instruction
Logic

Dual-Issue
Instruction
Logic

initiate
refill
after
half
empty

refill IFETCH latency

before
it is too
late to
hide
latency

Systems and Technology Group

06/27/06Course Code: L3T2H1-58 Cell Programming Tips & Techniques 17

Design for Limited Local Store

The Local Store holds up to 256 KB for
– the program, stack, local data structures, and DMA

buffers.

Most performance optimizations put pressure on
local store (e.g. multiple DMA buffers)

Use plug-ins (runtime download program kernels)
to build complex function servers in the LS.

Systems and Technology Group

06/27/06Course Code: L3T2H1-58 Cell Programming Tips & Techniques 18

Branch Optimizations

SPE
– Heavily pipelined high penalty for branch misses (18 cycles)
– Hardware policy: assume all branches are not taken
Advantage
– Reduced hardware complexity
– Faster clock cycles
– Increased predictability
Solution approaches
– If-conversions: compare and select operations
– Predications/code re-org: compiler analysis, user directives
– Branch hint instruction (hbr, 11 cycles before branch)

Systems and Technology Group

06/27/06Course Code: L3T2H1-58 Cell Programming Tips & Techniques 19

Branches

Systems and Technology Group

06/27/06Course Code: L3T2H1-58 Cell Programming Tips & Techniques 20

Systems and Technology Group

06/27/06Course Code: L3T2H1-58 Cell Programming Tips & Techniques 21

Hinting Branches & Instruction Starvation Prevention

instruction buffers

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

HINT buffer

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

SPE provides a HINT operation
– fetches the branch target into HINT

buffer
– no penalty for correctly predicted

branches

– compiler inserts hints when beneficial
Impact on instruction starvation
– after a correctly hinted branch,

IFETCH window is smaller

refill
latency

Dual-Issue
Instruction
Logic

Dual-Issue
Instruction
Logic

HINT br, target

BRANCH if true

target

fetches ops from target;
needs a min of 15 cycles
and 8 intervening ops

IFETCH
window

instruction buffers

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

HINT buffer

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

Systems and Technology Group

06/27/06Course Code: L3T2H1-58 Cell Programming Tips & Techniques 22

Loop Unrolling

– Unroll loops
• to reduce dependencies
• increase dual-issue rates

– This exploits the large SPU register file.

– Compiler auto-unrolling is not perfect, but pretty good.

Systems and Technology Group

06/27/06Course Code: L3T2H1-58 Cell Programming Tips & Techniques 23

Loop Unrolling - Examples

j=N;

For(i=1, i<N, i++) {

a[i] = (b[i] + b[j]) / 2;

j = i;

}

a[1] = (b[1] + b[N]) / 2;

For(i=2, i<N, i++) {

a[i] = (b[i] + b[i-1]) / 2;

}

For(i=1, i<100, i++) {

a[i] = b[i+2] * c[i-1];

}

For(i=1, i<99, i+=2) {

a[i] = b[i+2] * c[i-1];

a[i+1] = b[i+3] * c[i];

}

Systems and Technology Group

06/27/06Course Code: L3T2H1-58 Cell Programming Tips & Techniques 24

SPU

Systems and Technology Group

06/27/06Course Code: L3T2H1-58 Cell Programming Tips & Techniques 25

SPU – Software Pipeline

Systems and Technology Group

06/27/06Course Code: L3T2H1-58 Cell Programming Tips & Techniques 26

Integer Multiplies
Avoid integer multiplies on operands greater than 16 bits
– SPU supports only a 16-bit x16-bit multiply
– 32-bit multiply requires five instructions (three 16-bit multiplies

and two adds)

Keep array elements sized to a power-of-2 to avoid
multiplies when indexing.
Cast operands to unsigned short prior to multiplying.
Constants are of type int and also require casting.
Use a macro to explicitly perform 16-bit multiplies. This can
avoid inadvertent introduction of signed extends and masks
due to casting.

#define MULTIPLY(a, b)\

(spu_extract(spu_mulo((vector unsigned short)spu_promote(a,0),\

(vector unsigned short)spu_promote(b, 0)),0))

Systems and Technology Group

06/27/06Course Code: L3T2H1-58 Cell Programming Tips & Techniques 27

Avoid Scalar Code

Systems and Technology Group

06/27/06Course Code: L3T2H1-58 Cell Programming Tips & Techniques 28

Choose an SIMD strategy appropriate for your algorithm

Evaluate array-of-structure (AOS) organization

– For graphics vertices, this organization (also called or
vector-across) can have more-efficient code size and
simpler DMA needs,

– but less-efficient computation unless the code is unrolled.

Evaluate structure-of-arrays (SOA) organization.

– For graphics vertices, this organization (also called
parallel-array) can be easier to SIMDize,

– but the data must be maintained in separate arrays or the
SPU must shuffle AOS data into an SOA form.

Systems and Technology Group

06/27/06Course Code: L3T2H1-58 Cell Programming Tips & Techniques 29

Choose SIMD strategy appropriate for algorithm
vec-across
– More efficient code size
– Typically less efficient

code/computation
unless code is unrolled

– Typically simpler DMA needs

parallel-array

– Easy to SIMD – program as if scalar, operating on 4 independent
objects at a time

– Data must be maintained in separate arrays or SPU must shuffle vec-
across data into a parallel array form

Consider unrolling affects when picking SIMD strategy

Systems and Technology Group

06/27/06Course Code: L3T2H1-58 Cell Programming Tips & Techniques 30

SIMD Example

Systems and Technology Group

06/27/06Course Code: L3T2H1-58 Cell Programming Tips & Techniques 31

Load / Store by Quadword

Scalar loads and stores are slow, with long
latency.

SPUs only support quadword loads and stores.

Consider making scalars into quadword integer
vectors.

Load or store scalar arrays as quadwords, and
perform your own extraction and insertion to
eliminate load and store instructions.

Systems and Technology Group

06/27/06Course Code: L3T2H1-58 Cell Programming Tips & Techniques 32

SIMD Programming Tips

Systems and Technology Group

06/27/06Course Code: L3T2H1-58 Cell Programming Tips & Techniques 33

Systems and Technology Group

06/27/06Course Code: L3T2H1-58 Cell Programming Tips & Techniques 34

Systems and Technology Group

06/27/06Course Code: L3T2H1-58 Cell Programming Tips & Techniques 35

Systems and Technology Group

06/27/06Course Code: L3T2H1-58 Cell Programming Tips & Techniques 36

Systems and Technology Group

06/27/06Course Code: L3T2H1-58 Cell Programming Tips & Techniques 37

Systems and Technology Group

06/27/06Course Code: L3T2H1-58 Cell Programming Tips & Techniques 38

Systems and Technology Group

06/27/06Course Code: L3T2H1-58 Cell Programming Tips & Techniques 39

Systems and Technology Group

06/27/06Course Code: L3T2H1-58 Cell Programming Tips & Techniques 40

Systems and Technology Group

06/27/06Course Code: L3T2H1-58 Cell Programming Tips & Techniques 41

Use Offset Pointer
Use the PPE’s load/store with update instructions. These allow sequential
indexing through an array without the need of additional instructions to increment
the array pointer.

For the SPEs (which do not support load/store with update instructions), use the
d-form instructions to specify an immediate offset from a base array pointer

For example, consider the following PPE code that exploits the PowerPC store
with update instruction:

The same code can be modified for SPU execution as follows:

#define FILL_VEC_FLOAT(_q, _data) *(vector float)(_q++) = _data;

FILL_VEC_FLOAT(q, x);

FILL_VEC_FLOAT(q, y);

FILL_VEC_FLOAT(q, z);

FILL_VEC_FLOAT(q, w);

#define FILL_VEC_FLOAT(_q, _offset, _data) *(vector float)(_q+(_offset)) = _data;

FILL_VEC_FLOAT(q, 0, x);

FILL_VEC_FLOAT(q, 1, y);

FILL_VEC_FLOAT(q, 2, z);

FILL_VEC_FLOAT(q, 3, w);

q += 4;

Systems and Technology Group

06/27/06Course Code: L3T2H1-58 Cell Programming Tips & Techniques 42

Shuffle byte instructions for table look-ups

Systems and Technology Group

06/27/06Course Code: L3T2H1-58 Cell Programming Tips & Techniques 43

(c) Copyright International Business Machines Corporation 2005.
All Rights Reserved. Printed in the United Sates September 2005.

The following are trademarks of International Business Machines Corporation in the United States, or other countries, or both.
IBM IBM Logo Power Architecture

Other company, product and service names may be trademarks or service marks of others.

All information contained in this document is subject to change without notice. The products described in this document are
NOT intended for use in applications such as implantation, life support, or other hazardous uses where malfunction could result
in death, bodily injury, or catastrophic property damage. The information contained in this document does not affect or change
IBM product specifications or warranties. Nothing in this document shall operate as an express or implied license or indemnity
under the intellectual property rights of IBM or third parties. All information contained in this document was obtained in specific
environments, and is presented as an illustration. The results obtained in other operating environments may vary.

While the information contained herein is believed to be accurate, such information is preliminary, and should not be relied
upon for accuracy or completeness, and no representations or warranties of accuracy or completeness are made.

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED ON AN "AS IS" BASIS. In no event will IBM be liable
for damages arising directly or indirectly from any use of the information contained in this document.

IBM Microelectronics Division The IBM home page is http://www.ibm.com
1580 Route 52, Bldg. 504 The IBM Microelectronics Division home page is
Hopewell Junction, NY 12533-6351 http://www.chips.ibm.com

