Implementation of Additional Optimizations for VPO on the Power Platform

Chungsoo Lim, Gary A. Smith, Won So
{clim, gasmith, wso}@ncsu.edu
http://www4.ncsu.edu/~gasmith/csc791a_proj

Spring 2005 CSC791A Project Final Report
06 May 2005

Solved Issues

This section contains a detailed analysis of the issues solved during the course of our project.
Each of our three assigned tasks was investigated individually by team members. The team met
to discuss high-level issues involving cooperation of optimizations. We also shared insights
regarding how our individual implementations operate. Our group met at regular intervals to
evaluate team progress and ensure that the workload breakdown was fair to all team members.
As tasks were completed, members of the team transitioned between roles to collaborate on the
remaining tasks until completion.

Common Subexpression Elimination (CSE)

Chungsoo investigated the local CSE compiler pass. Later, Chungsoo and Gary
collaborated on the global version of this optimization. VPO code for CSE is located in
powerpc-vpo/vpo/lib/cse.c.

Chungsoo verified the correctness of local CSE using two approaches. The first approach
was to read the corresponding code and try to find errors. The second was to create
example test codes consisting of a single basic block. Chungsoo compiled tests,
compared RTLs and assembly codes, and evaluated results. He found evidence to
support that local CSE functioned correctly for the test codes.

Three warning messages were present when global CSE was invoked. Although the
messages were only warnings from the compiler’s standpoint, they were the result of
global CSE failing to fully optimize the code. The following list summarizes warnings
and their solutions.

1. vpo (common_subexpression_elimination): basic block not examined
Gary found that this warning message is emitted because basic blocks were
originally left unexamined in the implementation. Control flow was traversed by
the CSE optimization starting at the top block. All successors were then
recursively examined until the entire control flow tree was evaluated.

Some basic blocks, comments for example, were not touched during this process.
In addition, dead code (i.e., a control flow tree whose root has no predecessor)

Page 1 of 7

would not be evaluated using the original traversal scheme. As a result, blocks
marked undone at the beginning of CSE continued to be in this state at the end of
the algorithm.

After the active control flow path has been evaluated, Gary’s amended CSE
source code (see the CSC791A comment in cse.c —
common_subexpression_elimination function) walks through all basic blocks to
find items in the undone state. As a result, this warning is no longer emitted by
VPO after our changes are incorporated in the compiler package. This warning
was produced by nearly all of the cases in powerpc-vpo/tests. After Gary’s
changes, the warning was eliminated.

. vpo (add_link): not enough links available

Gary investigated and resolved this problem. Links are needed by CSE when
associating producer and consumer instructions. Given that a single producer can
feed many consumers, a large number of links may be needed by the CSE
optimization pass. The number of links available for this purpose is specified by
the MAXLINKS macro in the VPO implementation. When the optimization
attempts to add a link and none are available, the “not enough links available”
warning is emitted. The CSE compiler pass will complete; however, optimization
opportunities are missed because all of the available links are consumed. The
default value of MAXLINKS for powerpc-vpo is 6.

This warning was produced by the following cases in powerpc-vpo/tests: ctests
{010, 011, 012, 050, 051, 052, 060, 905, 905b, 905c¢, 905d, 905¢, 908, 910, 917,
918}, eqntott, espresso, misc {othello, od, matmult, fm-part, diag08, diag03,
diag01, compact}, and others {t12, t13, t8, t9}. The solution to this problem was
to specify MAXLINKS=15 in vpo/lib/Makefile. The warning message was
eliminated from all test cases as a result of this change.

Note: Segmentation faults were originally produced for egntott and espresso
when this change was implemented. After many hours of investigation, Gary
learned that custom debugging code added to the VPO implementation was the
cause for the segmentation faults. Once this debugging code was switched off, all
tests in powerpc-vpo/tests were successful. Although this fix appears trivial, the
problem was difficult to diagnose. The segmentation faults were being emitted
from various locations through the compiler, such as the show_rtl and rins
functions, that were not directly related to the debugging output. Furthermore, the
abnormal behavior continued after calls to the functions causing segmentation
faults were eliminated. In some cases, the presence of basic fprintf calls was
causing a problem.

The effort invested in finding the source of the segmentation faults was valuable.

When the “vpo (cse_basic_block): cannot recalculate =r[2];” (item 3 below)
message was eliminated by Chungsoo, problems were encountered with the

Page 2 of 7

espresso test. Gary suggested that Chungsoo switch off debugging output.
Subsequently, all tests functioned correctly.

. vpo (cse_basic_block): cannot recalculate =r[2];

This warning message is produced because the current vpo implementation does
not fully support power-pc RTLs. When this message was encountered, it was
difficult to track down where this message was generated. Chungsoo tried to
reproduce this message with simple test code. Fortunately, test013.c in the
powerpc-vpo/tests/ctest directory can reproduce the warning message. This code
contains only one printf statement for printing out strings. First of all, the RTL
that caused the message was identified. The RTL is as follows:

r[3] = TC[LO_TC_LBL_temp];=r[2];

Note that unlike any other RTLs, there are two semicolons. Chungsoo sought
advice from Professor Muller, who suggested that the corresponding assembly
line may be helpful. The matching assembly line is as follows:

Lwz 3,L0 TC_LBL_temp (2)

LO_TC _LBL _temp is an offset to a memory location and r[2] is used as a base
register in indirect addressing mode.

Extensive code examination was performed to determine how existing code could
be modified to support such an RTL. After hours of painful examination, two
problems were identified.

1) Argument to rplfast()

rplfast() is called by csc_basic_block(), which performs local common sub-
expression elimination. This function replaces an item with the fastest known
version. The function is called twice for load instructions (for both source and
destination) or once for other instructions (for destination). Two of the arguments
to the function are the pointers that specify the beginning and the end of a string
that is a part of an RTL. For example, if the function is called for a source
operand (left hand side of an equation), the pointers specify the beginning and the
end of the source.

Thorough examination of the code revealed that the function was called twice
(destination only) for the problematic RTL. This behavior resulted from the
presence of two semicolons in the RTL. If only part of a source is used as an input
to rplfast(), the entire source cannot be replaced by a less expensive alternative.
Furthermore, an optimization opportunity may be missed in this scenario.

The pointer that defines the end of the string is moved forward from the first
semicolon to the second semicolon in order to solve this problem and make the

Page 30of 7

pointers specify the entire source. After this change, the warning message was
eliminated. In the VPO implementation, yyparse() checks the validity of RTLSs.
A yyparse() return value of 0 indicates success and a return value of 1 indicates
that a warning is present. The warning message was originally generated when
the RTL was removed by rplfast() and yyparse() returned 1. By setting the
pointers correctly, the RTL is not removed and yyparse() returns 0.

2) gtds()
The warning message was eliminated for all RTLs. However, a problem still

existed in the updated implementation. For instance, a given RTL would be
eligible for elimination but would remain after CSE. Chungsoo inspected
equivalent classes and found that the specific equivalent class created by the RTL
was incorrect. For example, the equivalent class might appear as follows:

r[3] = TC[LO_TC_LBL_temp]

The part after the first semicolon, r[2], in the problematic RTL is missing in the
equivalent class. To pinpoint this problem, the update_equivalence_table()
function was examined. This function uses source and destination information
provided by gtds(). gtds() emits source and destination portion of an RTL as
string pointers.

Chungsoo discovered that gtds() and rplfast() had the same pointer problem.
gtds() is called twice for the problematic RTL because of the presence of two
semicolons. When this function is called for the first time, TC[LO_TC_LBL_temp]
is emitted as a source. When called the second time, r[2] is emitted as a source.
This behavior causes the equivalent class to be incorrect.

To fix the problem, Chungsoo made gtds() return the entire source instead of two
separate ones. After fixing this problem, a correct equivalent class is created for
the troublesome RTL and thus, the RTL can be eliminated by CSE. Chungsoo
also made sure that register’s use counter in the source portion of the RTL was
updated correctly.

This warning was produced by the following cases in powerpc-vpo/tests: ctests
{013, 014, 015, 016, 017, 018, 902}, diff, espresso, jpeg, misc {subpuzzle}, msim,
yacc. By fixing the two problems described above, the warning message is
completely eliminated and more optimization opportunities for CSE are provided.

Evaluation order determination (EOD)

Won investigated the Evaluation order determination optimization. Evaluation order
determination (EOD) is an optimization, which reorders evaluations so that ones which
cost much are evaluated first. There is no benefit with this optimization by itself but it
effectively helps following optimization such as register allocation reducing the live
ranges of registers.

Page 4 of 7

EOD code within VPO is located in powerpc-vpo/vpo/lib/eod.c. The EOD pass is
composed of two processes: The first is constructing links between RTLs with ruage()
function and compute costs of RTLs. The second is reordering RTLSs so that the
operations evaluating the same value aggregate together then the evaluations with higher
costs are located prior to the ones with lower costs.

Test results by enabling EOD with *“-VV” option shows that the EOD routine in given
power-vpo has some problems. For most benchmarks, compilation does not finish. Won
investigated the EOD routine and fixed existing problems. Steps for attacking problems
and corresponding fixes are described as follows:

1) Basic test [3/28 ~ 4/3]

By writing the custom function® which emits RTLs before and after performing this
optimization, Won examined the problems in current EOD implementation. Testing with
simple operations such as series of summations and multiplications does not expose the
problem and the changes in RTLs before and after EOD look correct.

2) Naive approach to resolve the infinite looping problem [4/3 ~ 4/10]

By testing with the files in the benchmark, which end up with infinite looping such as
JPEG, 2 problems were identified in the code and resolved. The first problem was the
wrong link (Every RTL has a link array which stores pointers for producer RTLs. i.e. use-
def chain) constructed by ruage() function in the 1% process. Some RTLs have wrong
links to a future instruction. This problem is fixed by adding a condition before calling
add_link() function. The second problem happened while reordering instructions. The
while loop calling reoder() could not escape from it because it was looping with the same
RTL. This problem might be cause by a error in the reorder() function. It was fixed by
adding one condition inside this loop so that it can avoid traversing the same item
infinitely. However, the compiled binary was suffering segmentation fault in some cases
though the infinite looping problem was fixed.

3) Analytical approach to resolve the infinite looping problem [4/11 ~ 4/23]

Following Dr. Mueller’s suggestion, Won tried to run VPO for Sparc machines (sparc-
vpo). Though VPO on a Sparc is fully operational®, comparing RTLs from sparc-vpo and
ones from power-vpo gave an insight. Since VPO is designed to operate RTLs regardless
of platforms, a problem may not occur due to an algorithmic error but some architectural
differences of Sparc and Power platforms. Won found that rusage() function were
working improperly after examining differences in RTLs. Rusage() function creates links
(i.e. set up dependences) which are not explicitly shown in RTLs. These links include a
link between function call and an operation using its return value, and a link between an
operation setting a condition register and its consumer operation. In power-vpo, the link
between a function call and an RTL using its return values was not created properly. The

! The —D option does not print out any output yet with some trials.

2 \We are not successful in building given power-vpo code for Sparc machines. Instead we downloaded original vpo
code from UVA and compiled on Sparc machines. With a little modification, sparc-vpo works but it is not fully
functional. Some errors are found while compiling given benchmarks even with —\VVA option.

Page 5 of 7

reason was that the condition for finding a call instruction — the macro cnts() — worked
only for a Sparc RTL. Won modified the condition — the macro is_call() — so that the link
is created correctly between a function call and a dependent instruction. (See WSO_FIX
in rusage().)

The previous fixed code turned out to be obsolete because it only eliminates the links
referencing the future instructions but does not create right links. Therefore, old changes
were reverted. With a new fix, the infinite looping problem was completely removed.
However, some benchmarks still experienced segmentation faults during execution or
diff fails during verification.

4) Attack for segmentation faults [4/24 ~ 5/1]

Won began with testing with a simple benchmark, wc and cb in misc, which causes a diff
fail and a segmentation fault respectively. With extensive comparison of RTLs, Won
found that the problem occurred only when reordering a operation which assigns grp2 (i.e.
“r[2] = ...”), which always immediately follows a call operation (i.e. “ST=...”). This
assignment of grp2 seems to exist for recovering a data frame pointer after a function call.
If this operation is moved down below, the generated assembly code is incorrect.
Therefore, one more check routine is added into move_down() function which is
recursively called by reoder() function. (See WSO_FIX in move_down().) The routine
checks if the operation asked to be moved down is the assignment of gpr2 and prevents it
from being reordered if it is. With this fix, all benchmarks pass compilation, execution
and verification. The table below summarizes the changes of benchmark results before
and after these fixes.

CNF = “compilation does not finish”

Benchmarks | -VA -VV -VV -VV
w/o fix with fix in 3) with fix in 3) & 4)
avdhoot OK ta26.c: CNF OK OK
Ctest OK* | test905.c: CNF OK OK
Diff OK diffreg.c: CNF diff fail OK
eqgntott OK cannon.c: CNF OK OK
espresso OK cmpl.c: CNF Verification error OK
Jpeg OK jddeflts.c: CNF seg. fault OK
Misc OK cbh: CNF cb, othello: seg. fault | OK
wc: diff fail
Msim OK OK OK OK
Others OK OK OK OK
Yacc OK Y1.c: CNF Verification error OK

* test008.c and test115.c are experiencing diff fails with -VVA. We ignored these.

Live Variable Analysis

Gary was responsible for the liveness analysis optimization. Existing VPO source code
was evaluated to discover the status of existing functionality. The source code for
live_variable_analysis is located in powerpc-vpo/vpo/lib/dataflow.c.

Page 6 of 7

This analysis pass clears old dataflow accounting information in basic blocks, examines
each RTL, sets use/def vectors, and performs an iterative liveness analysis algorithm.

Gary learned how to emit RTL and assembly files from the VPO compiler suite.
Although debugging output was available from the VPO compiler tool, Gary created
custom functions to output liveness information. For instance, writing custom routines to
output control flow information, RTL instructions, and liveness data was more efficient
for our testing purposes than utilizing the existing code in the VPO package. Test codes
were authored and utilized to ensure that liveness analysis is functional.

When examining the results of live variable analysis, it was learned that no variables
other than the stack pointer and global data pointer were live across basic blocks. The
compiler would perform loads immediately prior to value use and then stores as soon as
each operation was completed. As a result, registers were not live across basic blocks.
This problem is eliminated when CSE is enabled during compilation.

Open Issues

We found during testing that all cases who executed successfully for -VA (No Optimization)
compilation also functioned successfully when compiled with —-vVC (CSE) and -V (EOD). We
were curious about the interaction between CSE and EOD; therefore, we experimented with
using a combination of the optimizations simultaneously. We found that test cases using —-VVC
(CSE and EOD) compilation executed correctly. However, one case failed during testing. The
test case egntott yields output file differences when compiled with -\VVVVC. This difference can
be investigated through an in-depth examination of the test case and optimizations to learn why
differences exist. Since this test case executes successfully when the CSE and EOD
optimizations are invoked independently, we hypothesize that the interaction between the two
optimizations might be a cause for this behavior. Future work might seek to solve this problem
by isolating the portion of the eqntott code yielding this difference and evaluating how CSE and
EOD affect the associated calculations.

Disclaimer

This paper and associated software changes are intended for informational purposes only.
Therefore, any use of the information presented in this student work is at your own risk.
Chungsoo Lim, Gary A. Smith, and Won So provide no warranties of any kind surrounding the
use of this material.

Page 7 of 7

