Dynamic I nstrumentation of Binaries
for Gprof Compatible Profiling

by

Michael Noeth
Jyothish S. Varma
Tao Yang

May 9, 2005

Final Project for CSC791A
Dr. Frank Muller
11:50AM - 1.05PM TR

I ntroduction

Background
A programmer's goal is to write correct, efficient code. Code must initially be written

with the goal of being correct. Once correctness has been established, programmers
generally strive to make their code as efficient as possible. This project focuses on
creating more efficient code through the use of profiling tools. Execution profiling tools
are agreat asset to programmers creating efficient code. Profiling tools can give
programmers insight into what functions are being called and how much time is spent in
each during a program's execution. This information can be used to identify bottlenecks
in aprogram that may be a good candidate for reexamination to improve efficiency. One
such tool in common use is Gprof.

Problem Statement

Currently, Gprof instruments source code at compile time and tracks what functions were
called, how many times each function was called, how long was spent in each function,
and a call graph (what function called the function in question). Profiling with Gprof
entails the following steps:

1. Compile your source code with the -pg option

2. Run your binary file (during this stage a gmon.out file will be generated
containing profiling information)

3. Examine the profile information by running Gprof on the gmon.out file

The current framework that Gprof uses may be too restrictive for certain profiling
activities. Gprof requires that the source code be recompiled with the -pg option
specified in order for profiling instrumentation to take place. This can be too restrictive
in the event that (1) only the binary is available (the source code is not accessible), (2)
compilation time is prohibitively long, or (3) the programmer wishes to instrument
dynamic libraries for profiling that the program calls during execution. We propose
creating atool for binary instrumentation of Gprof profiling.

Design

We set out to create atool that inserts instrumentation for Gprof profiling into arbitrary
binaries. Dyninst provided the means for adding additional code to an already compiled
binary. We extracted the code used by the Gnu C Compiler when the -pg option was
specified and inserted it into arbitrary binaries.

When source code compiled with the -pg is run, we discovered that “mcount” is called at
the beginning of each function in the program. At the end of execution, the final call to
mcount generates the gmon.out file that contains Gprof profiling data. 1n order to
reproduce the gmon.out file for code compiled without the -pg option, we used Dyninst to
insert calls to mcount at the beginning of each function.

See the Methodology section for more information.

Results

To test the accuracy of our tool, we compared the resulting profiles of programs compiled
with the -pg option specified and profiles of programs instrumented with our tool. We
compared three different programs: (1) asimple micro benchmark that made many
function calls, (2) the LINPACK benchmark, and (3) the Illoop benchmark. We ranked
the difficulty of the benchmarks as follows in table 1:

Benchmark Number of Number of function | Overall complexity
functions calls ranking
Our micro 5 683234 3
benchmark
LINPACK 10 139183 2
Benchmark
Llloop Benchmark 9 176023595 1

Table 1: Ranking of benchmarks used to verify correctness of binary instrumentation

We ranked complexity from 1 to 3 with 1 being the most complex program based on the
number of functions in the call graph and the total number of function calls. Since we
wrote our own benchmark, this received the lowest complexity rating. Our tool worked
well for our micro benchmark aswell as LINPACK. For the most complex benchmark
(INoop benchmark) we were able to replicate only some of the profile by compiling with
the -pg option. We leave the profiling of complex benchmarks to future works.

See the results section for more information.

M ethodology

Overview

Our instrumentation of arbitrary binaries took place over the course of four stages. The
first stage consisted of afamiliarization with the tools we would be using (Gprof, Gnu C
Compiler, and Dyninst). The second stage consisted of proving we could insert profiling
code directly into the source of an application and ensuring the profile was correct. The
third stage extended the second by ensuring that the inserted source code could be called
from adynamic library. This additional stage proved necessary because Dyninst calls its
snippets from adynamic library. The final stage consisted of dynamically inserting
profiling instrumentation directly into arbitrary binaries using Dyninst.

Stage 1. Familiarization with tools

The first step of the project was becoming familiar with the tools we would be using to
develop a method of instrumenting binaries with Gprof profiling. The tools we focused
on were Gprof, the Gnu C Compiler (gcc), and Dyninst. Mike Noeth and Jyothish
Varma worked to become team experts on Gprof and gcc while Tao Y ang became the
expert on Dyninst.

Through use of GDB and examination of the gcc source code, we discovered that a
function called mcount was called at the beginning of every function to be profiled by
Gprof. Onthe first call to mcount, al data structures for profiling were setup, and an
initial call to profil (a system call to perform a stack walk and collect information every
10 milliseconds — see man profil for more information) was made. Subsequent calls to
mcount resulted in tallying calls to each individual function while the profil continued to
perform its stack walk every 10 milliseconds. The final call to mcount resulted in all the
data collected being written to file (gmon.out) and stopping the profil stack walk. The
mcount function was extracted from the gcc source code and compiled into an object file
from which we could link the mcount call into our programs.

Familiarization with Dyninst was broken down into three major tasks to be prototyped.
The first task was to specify a binary for Dyninst to instrument with code. This would
later alow our tool to instrument atarget binary with Gprof profiling code. The second
task required that we be able to identify all the functions used in a program. Thiswould
later allow our tool to identify the functions to be prototyped. The third task required that
we be able to insert code at the beginning of a function. Thiswould later allow our tool
to instrument the necessary call to mcount at the beginning of each function.

Stage 2: Static compilation of mcount

The second stage consisted of creating a simple application and inserting profiling code
into the existing source code by hand. Thiswould ensure that we understood how
mcount was working, and that we knew when and where to call it. Two binaries were
compiled: one with the -pg option specified and the other with the profiling code inserted
by hand. Both binaries generated gmon.out profiles that could be examined using Gprof.
To complete this stage, we needed to ensure the resultant profiles of both binaries
matched.

We began this stage by creating a micro benchmark that would serve as our application
(appendix A —Micro benchmark source code). The benchmark made multiple function
callsto create a somewhat complex call graph. We compiled the micro benchmark and
ensured it executed as expected.

Next, we modified the micro benchmark with calls to mcount at the beginning of each
function. The modified micro benchmark was linked to the object file containing mcount
obtained in stage 1.

We compiled two binaries: the first was the unmodified micro benchmark compiled with
the -pg option specified; the second was the modified micro benchmark linked with the
mcount code obtained in stage 1. Both binaries generated gmon.out files which were
examined using Gprof. The resultant profiles matched exactly in the number of calls
made to each function as well as the time spent in each function. From here we decided
we were ready to move onto the next stage.

Stage 3: Dynamic compilation of mcount

Originally, we did not plan on athird stage. We thought that after proving our design via
stage 2, we would be able to move on to stage 4 (implementing a tool to instrument
binaries with Gprof profiling). After attempting stage 4 and seeing no success, we had to
back track. Reviewing Dyninst documentation revealed that the code we were inserting
was called from adynamic library. Thus we decided that we had to call the mcount
function from adynamic library (by hand) to ensure this was not the cause of failurein
stage 4.

The mcount function discovered in stage 1 was compiled into adynamic library. We
loaded our dynamic library (appendix A —Wrapper source code) and rather than making
static calls to mcount in the modified micro benchmark, we called mcount from the
dynamic library.

This additional stage revealed that part of our problem was due to name collisions. When
gce iscompiled and installed, it adds an additional library with mcount and its supporting
functions. Rather than calling our profiling code from the dynamic library we created,
the functions from the library installed with gcc were being invoked. By renaming
mcount and all the supporting functions, we were able to avoid the name collisions.

Stage 4: Dynamic instrumentation of mcount

With a new dynamic library created from stage 3 (with new names for mcount and its
supporting functions) we attempted to create our tool again. We simply attempted to call
the renamed mcount at the beginning of each function for an arbitrary binary. There were
two complications at this phase. The first complication was that mcount requires
knowing the address range of the code it is profiling, but this information was being
corrupted due to the use of dynamic libraries. The second complication was that Dyninst
was messing up the stack. Thus, the stack walk code was unable to perform correctly.

Thefirst call to mcount setup data structures for tracking the profiling data. To allocate
space for this data to be collected, mcount requires knowing the address range of the
program being profiled. Inthe gcc version of mcount, a hard coded value is used to
specify the beginning address of the code segment, and a function etext (we believe this
stands for end of text segment) returns the address of the last function in the text segment
of a program to be used as the ending address of the code segment. The ranges were
coming out incorrect due to another naming collision with etext. The etext function was
not returning the correct address anymore. To resolve this issue, we used Dyninst to scan
all the functions be profiled, collect their addresses, and pick the largest and smallest
address found. The smallest address specified the beginning of the range while the large
address specified the end of the range. With this modification, we were able to work
around the name collision of etext.

In order to create a call graph, Gprof requires knowledge of which function called
mcount (we will refer to this function as “Caller #1”), and knowledge of which function
called Caller #1 (we will refer to this function as “ Caller #2"). To obtain these values,
the mcount code uses asystem call __builtin_addr(int level). To get Caller #1, mcount
uses _ builtin_addr(0), and to get Caller #2, mcount uses __ builtin_addr(1). When
Dyninst is used to insert calls to mcount, the stack is corrupted (see figure 1). Dueto
Dyninst’s method of inserting code, mcount could no longer determine Caller #2. We
tried to use increasing levelsof __ builtin_addr, but these resulted in memory address
from the heap (where Dyninst created its own fake stack). When the top of the stack is
reached, any higher levels cause the application to segfault.

Without Dyninst With Dyninst
mcount
builtin_addr(0
mecount P —addri0)~__ Dyninst
Caller #1 =~ | - builtin_addr(1)—— " Caller #1
Caller#2 =~ Caller #2
main main

__builtin_addr(2}) em——__ 2
__builtin_addr(3} ————_ 7

__builtin_addr{4) =——m—— Segfault

Figure 1: Comparison of program stacks with and without Dyninst

To work around the Dyninst stack, we implemented our own simple stack (appendix A —
Fake stack source code). Upon entering a new function, we pushed that functions address
onto the stack. Upon leaving a function, we popped the address off of the stack. We
modified mcount so that it would use the address of the item on the top of the stack for
Caller #1 (rather than __ builtin_addr(0)) and the item one away from the top of the stack
for Caller #2 (rather than __builtin_addr(1)). With this modification, we were able to
work around the stack corruption that Dyninst introduced.

After implementing our own range finder and stack, we were able to generate the correct
profiles for arbitrary binaries. The proof of our design is shown in the next section.

Results

To verify that our tool is able to correctly instrument Gprof profiling, we compared the
profiles of three applications instrumented with our tool against the profiles of these
applications compiled with the -pg option specified. Seetable 1 for more details on the
applications profiled. For each application profiled we will show (1) aside by side
comparison of the Gprof call graph for our tool and a -pg version, (2) a graph of the time
spent break down for our tool and a -pg version, and (3) a brief commentary about the

profiles.

The first application compared was the micro benchmark originally written to test
correctness in stages 2 and 3 of our implementation. We deemed this benchmark the
easiest to profile because it did no real work, and was written as a quick test of our

concepts.

Compiled without -pg but modifiecd

Compiled with pg option specified L
with our toaol

Figure 2: Comparison of call graphs for —pg version of the micro benchmark versus the
micro benchmark modified with our tool

Callpercentages formicro benchmark
o
0% 0% 0% 0% 0% 0%
120
100
E G0 1T
T 60 =pa
L3 mtool
& 40 1T
20 17—
I:l T T T T T
main har tar yar foo var
Function Hame

Figure 3: Comparison of time breakdowns for —pg version of the micro benchmark
versus the micro benchmark modified with our tool. Note that the percentages at the top
indicate the % difference between the two bars.

In both figures 2 and 3 we see that for the micro benchmark, our tool performs flawlessly.
The call graphs match in the -pg version and our tool. Thereis also no difference

between the call percentages either.

The second application compared was the LINPACK benchmark. This benchmark was
introduced by Jack Donarra as a floating point performance benchmark. It isfar more

complex than our micro benchmark in that it actually does work. This benchmark is not
the most complex because it was written for far slower computers and only runs for less

than 1 second.

oo k.

raun [1]

Complled whhouwt -pg but modfled
with our teol

Figure 4: Comparison of call graphs for —pg version of the LINPACK benchmark versus
the LINPACK benchmark modified with our tool

Camplled with -pg optlon specifiad

Call percnetage forLINPACK benchmark
120 0% 4.3% 8.7% 26% 0% 14% 0% 0% 6.1% 0% 0%
100
Eoan
I Bpy
L)
T mtool
4 40
20
il B NE Sea——
i g i 3 3 & & B & ¥ 4
& gﬁ-'& 3 ® & Gl \gaf‘% @é‘% g o &
Function Hame

Figure5: Comparison of time breakdowns for —pg version of the LINPACK benchmark
versus the LINPACK benchmark modified with our tool. Note that the percentages at the
top indicate the % difference between the two bars.

In both figures 4 and 5 we see that for the LINPACK benchmark, our tool performs well
(but not perfect on the percentages). The call graphs match in the -pg version and our
tool. There are dight differences between the call percentages. We attribute this
percentage difference to machine load and a difference in the cost of the original mcount
and our modified mcount.

The third application compared was Illoop. This benchmark is the most complex
benchmark used. It does real work, has many function calls, and runs for along time.
Thiswas the most strenuous test for our tool.

. Complled without =po bt modifled
Complled with optlon specified
" Tgop P with our tool

Figure 6: Comparison of call graphs for —pg version of the llloop benchmark versusthe
[lloop benchmark modified with our tool

Callpercnetage for llloop benchmark
0% 0% 0% 0% 0% 0% 0% 0% 0%
120 ~
100
=
£ a0
T gn A Opg
g Wtool
F 40
20 —
D IR—J T T T - T Q T I‘\F‘ Iu 1
i) iy ok o o] 3 s o
o oF & & &2 & P -\.5} "
) = T)) 2
d}{b) & &
Function Hame

Figure 7: Comparison of time breakdowns for —pg version of the llloop benchmark
versus the llloop benchmark modified with our tool. Note that the percentages at the top
indicate the % difference between the two bars.

In both figures 6 and 7 we see that for the llloop benchmark, our tool performswell but
failsto capture extremely large numbers of calls. The call graphs match in the -pg
version and our tool except that for functions endloop, main, and kernels. There appears
to be some sort of overflow error occurring. We have put off solving this problem to
future works. There is no difference between the call percentages.

Future Works

We have determined that there are 3 modifications / improvements immediately visible
for our binary instrumenting tool. They are:

1. Allow for extremely large numbers (i.e. llloop benchmark) to not cause
differences in the -pg call graph and the tool’ s resultant call graph.

2. When Dyninst modifies a binary, it is able to write the resultant image to disk.
We were unable to get the resultant image to run. There was a problem with
loading the mcount code from adynamic library.

3. Allow the user to expand the range of memory profiled. This might enable a user
to profile not just his/ her application, but also the dynamically loaded libraries
that the application calls aswell. We noticed while working with Dyninst that we
were able to capture the addresses of these functions in the dynamically loaded
libraries, but never attempted to profile them.

Work Breakdown

Michael Noeth
- Wrote al progress reports
Familiarized with gcc and Gprof
Extracted mcount code
Helped implement etext and fake stack solution

Jyothish SVarma
Web page
Familiarized with gcc and Gprof
Extracted mcount code
Helped implement etext and fake stack solution

Tao Yang
Familiarized with Dyninst
Wrote most of initial code for Dyninst mutator
Helped implement etext and fake stack solution

References

http://www.dyninst.org/
http://www.gnu.org/software/binutils/manual/gprof-2.9.1/
http://www.dyninst.org/papers/apiPreprint.pdf
http://docs.freebsd.org/44doc/psd/18.gprof/paper.html
http://docs.freebsd.org/44doc/papers/kerntune. pdf
http://docs.hp.com/en/B3909-90002/ch06s01.html
http://www.netlib.org/benchmark/top500/lists/linpack.html

http://www.dyninst.org/
http://www.gnu.org/software/binutils/manual/gprof-2.9.1/
http://www.dyninst.org/papers/apiPreprint.pdf
http://docs.freebsd.org/44doc/psd/18.gprof/paper.html
http://docs.freebsd.org/44doc/papers/kerntune.pdf
http://docs.hp.com/en/B3909-90002/ch06s01.html
http://www.netlib.org/benchmark/top500/lists/linpack.html

Appendix A

Micro benchmark source code
#i ncl ude <stdio. h>

void foo();
voi d bar();
void tar();
void var();
void yar();

/lextern void (*ptr_internal _ntount)(void);
/lextern int |oad_play();

int main(int argc, char *argv[])
int i,j;

#i f def PG_NOTON
| oad_pl ay();
#endi f

for(i =0; i < 100; i++)
{
if(i %3 == 0)
foo();
el se
for(j = 0; j < 100; j++)
bar () ;
}
}

voi d foo()

{

int i;

#i f def PG_NOTON
ptr_internal _ntount();
#endi f

for(i = 0; i < 100; i++)
var();
voi d bar ()
{
#i f def PG_NOTON

ptr_internal _ntount();
#endi f

tar();
yar();
}

void tar()

int i;

#i f def PG_NOTON
ptr_internal _ncount ();
#endi f

for(i = 0; i < 100; i++)
} yar();

void var()

{
int i;
#i f def PG_NOTON

ptr_internal _ncount ();
#endi f

for(i = 0; i < 1000; i++);
}

void yar()
int i;

#i f def PG_NOTON
ptr_internal _ncount ();

#endi f

for(i = 0; i < 1000; i++4);
}

Modified gmon.c source code
/*-

*

Al rights reserved.

are net:

—

* 7 Ok ok ok % F % % %

e

di stribution.

Copyright (c) 1991 The Regents of the University of California.

Redi stri bution and use in source and binary forns, with or without
nodi fication, are permtted provided that the follow ng conditions

1. Redistributions of source code nmust retain the above copyri ght
notice, this Iist of conditions and the follow ng disclainer.

2. Redistributions in binary formmust reproduce the above copyri ght
notice, this list of conditions and the follow ng disclainer in

docunent ati on and/or other materials provided with the

* 3. Al advertising materials nmentioning features or use of this

sof t war e
* nmust di splay the follow ng acknow edgenent :
* Thi's product includes software devel oped by the University of
* California, Berkeley and its contributors.
*

4. Neither the nane of the University nor the nanes of
contributors

its

* may be used to endorse or pronote products derived fromthis
sof t war e

* wi t hout specific prior witten perm ssion

*

* TH 'S SOFTWARE | S PROVI DED BY THE REGENTS AND CONTRI BUTORS " "AS | S
AND

* ANY EXPRESS OR | MPLI ED WARRANTI ES, | NCLUDI NG, BUT NOT LI M TED TO,
THE

* | MPLI ED WARRANTI ES OF MERCHANTABI LI TY AND FI TNESS FOR A PARTI CULAR
PURPCSE

* ARE DI SCLAIMED. I N NO EVENT SHALL THE REGENTS OR CONTRI BUTORS BE
LI ABLE

* FOR ANY DI RECT, | NDI RECT, | NClI DENTAL, SPECI AL, EXEMPLARY, OR
CONSEQUENTI AL

* DAMAGES (I NCLUDI NG BUT NOT LIM TED TO, PROCUREMENT OF SUBSTI TUTE
GOCDS

* OR SERVI CES; LOSS OF USE, DATA, OR PROFITS; OR BUSI NESS

| NTERRUPTI ON)

* HOWEVER CAUSED AND ON ANY THEORY OF LI ABILITY, WHETHER | N CONTRACT,
STRI CT

* LIABILITY, OR TORT (I NCLUDI NG NEGLI GENCE OR OTHERW SE) ARI SING I N
ANY WAY

* QUT OF THE USE OF THI S SOFTWARE, EVEN | F ADVI SED OF THE PCSSI BI LI TY
OF

* SUCH DANVAGE

*/

/*

* This is a nodified gnon.c by J. WHawti n <ool on@nkh. or g>,

* 14/ 8/ 96 based on the original gnon.c in GCC and the hacked version

* solaris 2 sparc version (config/sparc/gnon-sol.c) by Mark Eichin. To
do

* process profiling on solaris 2. X X86

*

* It nmust be used in conjunction with sol2-gcl.asm which is used to
start

* and stop process nonitoring.

Di fferences.

On Solaris 2 ntount is called by library functions not ntount, so
has been added for both.

Al so the prototype for profil() is different

Solaris 2 does not seemto have char *m nbrk whcih allows the
setting of

* the m ni mum SBRK region so this code has been renoved and |lets pray
mal | oc

does not ness it up.

*
*
* Not es
*
* This code could easily be integrated with the original gnon.c and

per haps
* shoul d be.

mailto:<oolon@ankh.org>

*/

#i f ndef |int

static char sccsid[] =

#endi f /* not lint */
#i ncl ude <stdi o. h>

#if 0O
#i ncl ude <uni std. h>

#endi f

#i f def DEBUG

#i ncl ude <stdi o. h>
#endi f

#if 0
#i ncl ude "i 386/ gnon. h"
#el se

struct phdr {
char
char
i nt

}s

#defi ne H STFRACTI ON 2

" @ #)gnon. c

*| pc;
*hpc;
ncnt ;

#def i ne H STCOUNTER unsi gned short

#defi ne HASHFRACTI ON 1

#defi ne ARCDENSITY 2
#defi ne M NARCS 50

#defi ne BASEADDRESS 0x8000000 /* On Solaris 2 X86 al

here

struct tostruct {
char *sel fpc
| ong count;
unsi gned short |ink;
b
struct rawarc {

unsi gned | ong

unsi gned | ong

| ong
1
#def i ne ROUNDDOMN(X, y)
#def i ne ROUNDUP(x, y)
#endi f

/* char *m nbrk; */
#i fdef __al pha
extern char *sbrk ();
#endi f

/*

and not at 0 */

raw_fronpc;
raw sel f pc
raw_count;

(((
(((

X
(

)1 (y))*(y))
x)+(y)-1)7(y))*(y))

5.3 (Berkel ey) 5/22/91"

execut abl es start

frons is actually a bunch of unsigned shorts indexing tos

*/
[11TMP:: static int profiling = 3;
static int profiling = O;
static unsigned short *frons;
static struct tostruct *tos = O;
static |ong tolimt = 0;
static char *s | owpc = O;
static char *s_hi ghpc = 0;
static unsigned | ong s_textsize = 0;

static int ssiz;
static char *sbuf;
static int s_scale;
/* see profil(2) where this is describe (incorrectly) */
#def i ne SCALE 1 TO 1 0x10000L

#defi ne MSG "No space for profiling buffer(s)\n"
extern int errno;

/lextern int test();

new_nonst art up(l owpc, hi ghpc)
char *| owpc;
char *hi ghpc;

{
i nt nonsi ze;
char *puffer,;
register int o;
/*
* round | owpc and highpc to nultiples of the density we're
usi ng
* so the rest of the scaling (here and in gprof) stays in
ints.
*/

| owpc = (char *)
ROUNDDOMN((unsi gned) | owpc, HI STFRACTI ON*si zeof (H STCOUNTER)) ;
s_lowpc = | owpc;
hi ghpc = (char *)
ROUNDUP((unsi gned) hi ghpc, H STFRACTI ON*si zeof (Hl STCOUNTER)) ;
s_hi ghpc = hi ghpc;
s_textsize = highpc - | owpc;
nonsi ze = (s_textsize / H STFRACTION) + sizeof (struct phdr);
buffer = (char *) sbrk(nonsize);
fflush(stdout);

if (buffer == (char *) -1) {
wite(2, MG, sizeof (MG);
return;

}
frons = (unsigned short *) sbrk(s_textsize / HASHFRACTI ON);

if (froms == (unsigned short *) -1) {
wite(2, MG, sizeof (MG);
froms = O;

return;
}
tolimt = s textsize * ARCDENSITY / 100
if (tolimt < MNARCS) {
tolimt = M NARCS
} else if (tolimt > 65534) {
tolimt = 65534;

tos = (struct tostruct *) sbrk(tolimt * sizeof(struct tostruct

)
if (tos == (struct tostruct *) -1) {
wite(2, MG, sizeof (MG);
froms = O;
tos = O;
return;
}

/* m nbrk = (char *) sbrk(0);*/
tos[0].link = O;
sbuf = buffer;
Ssiz = nonsi ze;

((struct phdr *) buffer) -> Ipc = | owpc;
((struct phdr *) buffer) -> hpc = highpc;
((struct phdr *) buffer) -> ncnt = ssiz;
nonsi ze -= sizeof (struct phdr);
if (nonsize <= 0)

return;

o = highpc - | owpc;
if(nonsize < o0)
#i f ndef hp300
s _scale = ((float) nmonsize / o) * SCALE 1 TO 1;
#else /* avoid floating point */

{
int quot = o / nonsize;
if (quot >= 0x10000)
s _scale = 1;
else if (quot >= 0x100)
s_scal e = 0x10000 / quot;
else if (o >= 0x800000)
s_scal e = 0x1000000 / (o / (nonsize >> 8));
el se
s_scal e = 0x1000000 / ((o << 8) / nonsize);
}
#endi f
el se

s_scale = SCALE_1_TO 1,
new_noncontrol (1);

new_ntl eanup()

{
i nt fd;
i nt f rom ndex;
i nt endf rom

char *fronpc;
i nt t oi ndex;
struct rawarc rawarc;

new_noncontrol (0);
fd = creat("gnon.out" , 0666);
if (fd<0) {
perror("ntount: gnon.out");
return;

}
ifdef DEBUG
fprintf(stderr , "[ntleanup] sbuf Ox% ssiz %d\n" , sbuf , ssiz

3~

endi f

wite(fd, sbuf , ssiz);
endfrom = s_textsize / (HASHFRACTION * sizeof (*fromns));
for (fromndex = 0 ; from ndex < endfrom; from ndex++) {
if (fromg[fromindex] == 0) {
conti nue;
}

fronpc = s_lowpc + (from ndex * HASHFRACTI ON * si zeof (*frons));
for (toindex=frons[from ndex]; toindex!=0;
t oi ndex=t os[t oi ndex].link) {
i fdef DEBUG
fprintf(stderr ,
"[ncl eanup] fronpc Ox% sel fpc Ox% count %\ n"
fronpc , tos[toindex].selfpc , tos[toindex].count);
endi f
rawarc.raw_fronpc = (unsigned |ong) fronpc;
rawarc.raw _sel fpc = (unsigned | ong) tos[toindex].selfpc;
rawar c. raw_count = tos[toindex].count;
wite(fd , &awarc , sizeof rawarc);

}

close(fd);

/* Solaris 2 libraries use _ntount. */

asm(".globl _ntount; _ntount: jnp new_internal ntount");

/* This is for conmpatibility with old versions of gcc which used
ncount. */

asnm(".globl ntount; ntount: jnp new_internal ntount");

#i f def USI NG_DYNI NST
new_i nt er nal _ntount (unsi gned my_pc, unsigned mnmy_cal |l er_pc, unsigned
max_addr, unsigned m n_addr)

#el se
new_i nt er nal _ntount (i nt para)
#endi f
{
regi ster char *sel fpc
regi ster unsi gned short *fronpci ndex;
regi ster struct tostruct *top;
regi ster struct tostruct *prevt op;

regi ster |ong t oi ndex;

static char already_setup;

/*
find the return address for ntount,
* and the return address for nctount's caller
*/

#i f def USI NG_DYNI NST
selfpc = (void *)my_pc
fronpci ndex = (unsigned short *)ny_caller_pc;
#el se
selfpc = (void *) __builtin_return_address (0);
fronpcindex = (void *) _ builtin_return_address (1);
#endi f

if(!already_setup) {
al ready_setup = 1;
new _nonstartup((char *) mn_addr, (char *) max_addr);

#i fdef USE_ONEXI T
on_exi t (new_ntl eanup, O0);

#el se
at exi t (new_ntl eanup) ;
#endi f
}
/*
* check that we are profiling
* and that we aren't recursively invoked.
*/
if (profiling) {
goto out;
}
profiling++;
/*
* check that fronpcindex is a reasonable pc val ue.
* for exampl e: signal catchers get called fromthe
st ack,
* not fromtext space. too bad.
*/

fronpci ndex = (unsigned short *)((long)fronpcindex -
(1 ong)s_I owpc);
if ((unsigned |ong)fronpci ndex > s_textsize) {
got o done
}
fronpci ndex =
& roms[((I ong) f ronpci ndex) / (HASHFRACTI ON *
si zeof (*frons))];
toi ndex = *fronpci ndex;
if (toindex == 0) {
/*
* first tinme traversing this arc
*/
toi ndex = ++tos[0].link
if (toindex >= tolimt) {
got o overfl ow,

*fronpci ndex = toi ndex;

top = &t os[toindex];
top->sel fpc = sel fpc;
t op->count = 1;
top->link = 0;
got o done;

}

top = &t os[toindex];

if (top->selfpc == selfpc) {

/*
* arc at front of chain; usual case.
*/
t op- >count ++;
got o done;
}
/*
* have to go | ooking down chain for it.
* top points to what we are | ooking at,
* prevtop points to previous top.
* we know it is not at the head of the chain.
*

/

for (; /* goto done */;) {

if (top->link == 0) {
/*

* top is end of the chain and none of the chain
* had top->sel fpc == sel fpc.
* so we allocate a new tostruct
* and link it to the head of the chain.
*/
toi ndex = ++tos[0].link;
if (toindex >= tolimt) {

got o overfl ow,
}

top = &t os[toindex];
top->sel fpc = sel fpc;
t op->count = 1;
top->link = *fronpcindex;
*fronpci ndex = toi ndex;
got o done;
}
/*
* ot herwi se, check the next arc on the chain.
*/
prevtop = top;
top = & os[top->link];
if (top->selfpc == selfpc) {
/*

* there it is.

* increment its count

* nove it to the head of the chain.
*/

t op- >count ++;

toi ndex = prevtop->link;
prevtop->link = top->link;
top->link = *fronpcindex;
*fronpci ndex = toi ndex;
got o done;

}

done:
profiling--;
/* and fall through */
out:
return; /* normal return restores saved registers */
overfl ow
profiling++;, /* halt further profiling */
define TOLIMT "ncount: tos overflow n"
wite(2, TOLIMT, sizeof (TOLIMT));
goto out;
}
/*
* Control profiling
* profiling is what ntount checks to see if
* all the data structures are ready.
*

/
new_noncont r ol (node)

i nt node;
{
i f (node)
{
[* start */
profil ((unsigned short *)(sbuf + sizeof(struct phdr)),
ssiz - sizeof(struct phdr),
(int)s_l owpc, s_scale);
profiling = O;
} else {
/* stop */
profil ((unsigned short *)0, 0, 0, 0);
profiling = 3;
}
}

Dyninst mutator source code
#i ncl ude <stdi o. h>

#i ncl ude<stdl i b. h>

#i ncl ude<sys/ types. h>
#i ncl ude<uni std. h>

#i ncl ude <fcntl. h>

#i ncl ude <assert. h>

#i ncl ude "BPatch. h"

#i ncl ude "BPatch_Vector. h"
#i ncl ude "BPatch_t hread. h"
#i ncl ude "BPat ch_sni ppet. h"

BPat ch bpat ch;

int main(int argc, char **argv)

{

BPat ch_i mage *appl nage;
BPat ch_Vector < BPatch_point * >*points;
BPat ch_Vector < BPatch function * >*functions;

BPat ch_Vector < BPatch_function * >sni ppet Func;
BPat ch_Vect or < BPat ch_sni ppet * >sni ppet Args;

const char *arg[5];
char tnpstr[80];

int i, j;
bool i sSharedLi b;
FI LE *fp;

char text1[80];
char text?2[80];
char text 3[80];
char conmand[80] ;
int tnpint;

int range_max = -1;

int range_ mn = -1;

if(argc !'= 2)
printf ("./dynMitator appPat hNane\n");
exit (0);

}

for (i =0; i <5; i++)
arg[i] = 0;

BPat ch_t hread *appThread = bpatch. createProcess(argv[1], arg, NULL);
appl mage = appThread->get | mage ();

i f(!appThread->l oadLi brary("./gnonShar edLi b. so", fal se))

printf ("load library failed!\n");
exit (0);
}

/1 get the entry (which calls ntount) and exit handl er pointers
BPat ch_Vect or <BPat ch_functi on *>entry_handl er _vec;
BPat ch_Vect or<BPat ch_function *>exit _handl er _vec;

appl mage- >fi ndFuncti on ("update_pc_stack"”, entry_handl er _vec);
assert(entry_handl er _vec. si ze() == 1);

appl mage- >fi ndFuncti on ("pop_pc_stack", exit_handl er_vec);
assert(exit_handl er _vec.size() == 1);

BPat ch_Vect or <BPatch_nodul e *>*al | nodul es;
al I rodul es = appl nage- >get Modul es() ;

/1 find the min and max address of the text segnent
for (j = 0; j < allnodul es->size (); j++)
{
tnpstr[0] = O;
if ((*allnodul es)[j]->getName (tnpstr, 80))

functions = (*all nodul es)[]j]->get Procedures();
for(i = 0; i < (*functions).size(); i++)
{

tnpstr[0] = O;

(*functions)[i]->getNane (tnpstr, 80);

BPat ch_function *targ_func=(*functions)[i];

/] attenpting to profile shared library nodule - break
if((*functions)[i]->isSharedLib ())

i sSharedLi b = true;
br eak;

}

voi d *base_addr =t ar g_f unc->get BaseAddr () ;
assert (base_addr != NULL);

i f(range_max == -1)
{
range_max = (int) base_addr;
range_mn = (int) base_addr;
}

el se

{
if((int) base_addr > range_max)
range_max = (int) base_addr;

if((int) base_addr < range_min)
range_mn = (int) base_addr;

}

}

/1 instrument entry and exit points with stack code
for (j = 0; j < allnodul es->size (); j++)

tmpstr[0] = O;
if((*allnodules)[j]->getNane(tnpstr, 80))

{
if (!'strcp (tnpstr, "DEFAULT_MODULE"))
conti nue;

functions = (*all nodul es)[]j]->get Procedures();
for(i =0; i < (*functions).size(); i++)

{

tnpstr[0] = O;

(*functions)[i]->getNane (tnpstr, 80);

if ((*functions)[i]->isSharedLib ())
br eak;

BPat ch_function *targ_func=(*functions)[i];

/1 1. get base addr
voi d *base_addr =t ar g_f unc->get BaseAddr () ;

assert (base_addr != NULL);
BPat ch_const Expr func_addr _expr (base_addr);
sni ppet Ar gs. push_back(& unc_addr _expr);

/1 2. pass paraneters mn address and nmax address (found above)
BPat ch_const Expr max_addr _expr (range_max) ;

BPat ch_const Expr mi n_addr _expr (range_m n);

sni ppet Ar gs. push_back(&rax_addr _expr);

sni ppet Ar gs. push_back(&m n_addr _expr);

/1 3. define expr for entry & exit
BPat ch_funcCal | Expr entryCall (*entry_handl er _vec[0],
sni ppet Args) ;
BPat ch_funcCal | Expr exitCall (*exit_handl er_vec[0], snippetArgs);

/1l 4. get entry points & insert

BPat ch_Vector < BPatch_point * >*entry points = (*functions)[i]-
>f i ndPoi nt (BPatch_entry);

appThr ead- >i nsert Sni ppet (entryCall,*entry_points);

/1 5. get exit points & insert
BPat ch_Vector < BPatch_point * >*exit_points = (*functions)[i]-
>f i ndPoi nt (BPatch_exit);
appThr ead- >i nsert Sni ppet (exitCall, *exit_points);
}
}
}

appThr ead- >cont i nueExecution ();

while (!appThread->i sTerm nated ())
bpat ch. wai t For St at usChange ();

Fake stack source code
#i ncl ude <cstdi o>
#i ncl ude <cstdli b>
#i ncl ude <vect or>

usi ng nanmespace std;
vect or <unsi gned>pcst ack

extern "C' void new_internal ntount (unsi gned, unsigned, unsigned,
unsi gned) ;

voi d update_pc_stack(unsi gned pcval, unsigned max, unsigned m n)

{
pcst ack. push_back(pcval);

i f(pcstack.size() == 1)
new_i nt er nal _ntount (pcstack[0], 0, max, mn);
el se

new_i nt er nal _ntount (pcst ack[pcst ack. si ze() -
1], pcst ack[pcst ack. si ze()-2], max, mn);

}
voi d pop_pc_stack(unsi gned pcval)

/'l sanity check
i f(pcstack[pcstack.size()-1] !'= pcval)

fprintf(stderr,”\nERROR pop_pc_stack sanity check failed. top of
stack =% and argunent is %\ n\n", pcstack[pcstack.size()-1], pcval);
exit(-1);
}

pcst ack. pop_back();
}

Wrapper source code

#i ncl ude <stdi o. h>
#i ncl ude <dl fcn. h>
#i ncl ude <stdlib. h>
#i ncl ude <assert. h>

void *Iib_handl e;
void (*ptr_internal ntount) (int)=NULL

int load_play()
{

char *error_nsg;

b _handl e = dl open ("./gnonSharedLi b.so", RTLD NOW;

lib_
if (!1ib_handle)

{
printf ("Error during dlopen()\n");
exit (1);
}
ptr_internal _ntount = dlsym (lib_handle, "new._.internal _ntount");
assert(ptr_internal _ntount !'= NULL);

/1dlclose (lIib_handle);

return O;

