Maximizing Multiprocessor Performance with the SUIF Compiler

Mary W. Hall' Jennifer M. Anderson Saman P. Amarasinghe
Brian R. Murphy Shih-Wei Liao Edouard Bugnion
Monica S. Lam

Computer Systems Laboratory
Stanford University
Stanford, CA 94305

TUSC Information Sciences Institute
Marina del Rey, CA 90292

Abstract

This paper presents an overview of the SUIF compiler, which automatically parallelizes and optimizes
sequential programs for shared-memory multiprocessors. We describe new technology in this system for
locating coarse-grain parallelism and for optimizing multiprocessor memory behavior essential to obtaining
good multiprocessor performance. These techniques have a significant impact on the performance of half
of the NAS and SPECp95 benchmark suites. In particular, we achieve the highest SPEC{p95 ratio to
date of 63.9 on an eight-processor 440MHz Digital AlphaServer.

1 Introduction

Affordable shared-memory multiprocessors can potentially deliver supercomputer-like performance to the
general public. Today, these machines are mainly used in a multiprogramming mode, increasing system
throughput by running several independent applications in parallel. The multiple processors can also be
used together to accelerate the execution of single applications. Automatic parallelization is a promising
technique to allow ordinary sequential programs to take advantage of multiprocessors [4, 6, 9, 11].

Multiprocessors present more difficult challenges to parallelizing compilers than vector machines which
were their initial target. Effective use of a vector architecture involves parallelizing repeated arithmetic
operations on large data streams (e.g., innermost loops in array-oriented programs). On a multiprocessor,
however, parallelizing innermost loops typically does not provide sufficient granularity of parallelism—mnot
enough work is performed in parallel to overcome the overhead of synchronization and communication
between processors. To utilize a multiprocessor effectively, the compiler must exploit coarse-grain parallelism,
locating large computations that can execute independently in parallel. Multiprocessor systems also have
more complex memory hierarchies than typical vector machines. Modern multiprocessors contain multiple
levels of caches in addition to the shared memory. Locating parallelism is but the first step in producing
efficient multiprocessor code; it is critical to make effective use of the memory hierarchy to achieve high
performance.

These additional challenges often prevented early parallelizing compilers from being effective for multipro-
cessors. Consequently, parallel programming today predominantly requires that the programmer explicitly
manage both the parallelism and the memory use of the application. Developing an efficient parallel program
in this way requires a highly knowledgeable programmer. Moreover, explicit parallel programming is tedious
and error prone, and the resulting programs are only optimized for a specific machine.

This research was supported in part by the Air Force Material Command and DARPA contracts F30602-95-C-0098, DABT63-
95-C-0118 and DABT63-94-C-0054, NASA’s HPCC program, an NSF Young Investigator Award, an NSF CISE postdoctoral
fellowship, and fellowships from AT&T Bell Laboratories, DEC Western Research Laboratory, Intel Corporation and NSF.
Jennifer Anderson is currently a researcher with Digital Equipment’s Western Research Lab.

This paper presents an overview of the automatic parallelization techniques in the Stanford SUIF com-
piler. We describe two techniques essential to obtaining good multiprocessor performance for array-based
numerical programs: locating coarse-grain parallelism and managing multiprocessor memory use. We present
performance measurements for two complete benchmark suites, the NAS and the SPECfp95 benchmarks.
Overall, the results for these scientific programs are promising. The compiler yields speedups on more than
three-fourths of the programs, and has obtained the highest SPECfp95 ratio reported to date, indicating
that the compiler is also able to achieve efficient absolute performance.

2 Finding Coarse-Grain Parallelism

Multiprocessors work best when the individual processors have large units of independent computation.
Finding such coarse-grain parallelism is challenging. First, it is necessary to find available parallelism across
procedure boundaries. Furthermore, the original computations may not be parallelizable as given but require
some transformations to parallelize. For example, experience in hand parallelization suggests that it is often
necessary to replace global arrays by private versions on different processors. Sometimes the computation
must be restructured—for example, a sequential accumulation replaced by a parallel reduction operation.

It takes a large suite of robust analysis techniques to successfully locate coarse-grain parallelism. To cope
with the complexity involved in building such a system into SUIF, we rely on general and uniform frameworks.
We have automated the analysis to privatize arrays and to recognize reductions to both scalar and array
variables. All the analysis techniques in our compiler operate across procedure boundaries seamlessly. There
are three major components in the analysis to detect coarse-grain parallelism:

Scalar analyses. An integrated pass analyzes scalar variables in the programs. It detects parallelism
among operations with scalar variables using techniques such as data dependence analysis, scalar privati-
zation analysis, and reduction recognization. It also derives symbolic information on these scalar variables
that is useful to the array analysis pass, including constant propagation, induction variable recognition and
elimination, recognition of loop-invariant computations, and symbolic relation propagation [8, 10].

Array Analyses. An integrated array analysis uses a unified mathematical framework based on linear
algebra and integer linear programming [9]. The analysis applies the basic data dependence test to determine
if accesses to an array can refer to the same location. To support array privatization, it also finds array data-
flow information that determines if array elements used in an iteration refer to the values produced in a
previous iteration. It also recognizes commutative operations on sections of an array and transforms them
into parallel reductions. The reduction analysis is powerful enough to recognize commutative updates of
even indirectly accessed array locations, allowing parallelization of sparse computations. All these analyses
are formulated in terms of integer programming problems on systems of linear inequalities representing the
data accessed. These inequalities are derived from loop bounds and array access functions. Optimizations
to speed up common cases are implemented to reduce the compilation time.

Interprocedural Analysis Framework. To manage the software engineering complexity, all of the anal-
yses are implemented using a uniform interprocedural framework. The framework uses a true interprocedural
analysis [11], which is more efficient than the more common technique of inline substitution [4]. Inline substi-
tution replaces each procedure call with a copy of the called procedure, then analyzes the expanded code in
the usual intraprocedural manner. Inline substitution is not practical for large programs, as program size can
increase to an unmanageable extent. Our technique analyzes only a single copy of each procedure, capturing
its side effects in a function. This function is then applied at each call site to produce precise results. When
necessary, the algorithm selectively clones a procedure so that code can be optimized or parallelized under
different calling contexts (such as when different constant values are passed to the same formal parameter),
thus achieving the full advantages of inlining without expanding the code indiscriminately.

Parallelized Loops

Our analyses can successfully parallelize loops spanning hundreds of lines of code and numerous procedures,
as shown by the above code segment from the SPECfp95 benchmark turb3d. The boxes in the figure represent
procedure bodies and the lines connecting them represent procedure calls. The main computation is a series
of four loops to compute three-dimensional fast Fourier transforms (FFTs). Using interprocedural scalar
and array analyses, the SUIF compiler determines that these loops are parallelizable. Each loop contains
over 500 lines of code spanning eight or nine procedures with up to 42 procedure calls. Note that if this
program had been fully inlined, the loops presented to the compiler for analysis would have each contained

over 86,000 lines of code.

Figure 1: Illustration showing scope of coarse-grain parallelism analysis.

3 Memory Optimizations

Numerical applications on high-performance microprocessors are often memory bound. One or more levels
of caches are commonly used to bridge the gap between processor and memory speeds, but it is still not
uncommon to find a processor wasting half its time stalled on memory accesses because of frequent cache
misses. This memory bottleneck is further exacerbated on multiprocessors, as they have increased need for
memory traffic and more contention on the memory bus.

To optimize for memory subsystem behavior, the compiler must address the following four issues that
affect the behavior of the caches:

Communication. Processors on a multiprocessor system communicate data through accesses to the same
memory location. Coherent caches typically keep the data consistent by causing accesses to data
written by another processor to miss in the cache. Such misses are called true sharing misses.

Limited Capacity. Numeric applications tend to have large working sets, which typically exceed the capacity
of the cache. These applications often stream through large amounts of data before re-using any of the
data, resulting in poor temporal locality and a large number of capacity misses.

Limited Associativity. Caches typically have a small set associativity, that is, each memory location can only
map to one or just a few locations in the cache. Conflict misses can occur even when the application’s
working set is smaller than the cache if the data are mapped to the same cache locations.

Large Line Size. Data in a cache are transferred in fixed-size units called cache lines. Applications that do
not use all the data in a cache line, e.g. when accessing data with a non-unit stride, incur more misses
and are said to have poor spatial locality. On a multiprocessor, large cache lines can also lead to cache
misses that occur when different processors use different parts of the same cache line. Such misses are
called false sharing misses.

The compiler tries first to eliminate as many cache misses as possible, and then to minimize the impact
of any that remain. We reduce the problem of eliminating cache misses due to the four factors above to
two subproblems: (1) ensuring that processors re-use the same data as much as possible and (2) making
the data accessed by each processor contiguous in the shared address space. The techniques to address each
subproblem are discussed below. Finally, to tolerate the latency of remaining cache misses, the compiler uses
compiler-inserted prefetching to move data into the cache before it is needed.

Improving Processor Re-use of Data. The compiler reorganizes the computation so that each processor
re-uses the same data as much as possible[2, 3, 12]. This reduces the working set on each processor thus
minimizing capacity misses; it also reduces communication between processors thus minimizing true sharing
misses. To achieve this goal, the compiler uses the technique of affine partitioning. The technique analyzes
the reference patterns in the program to derive an affine mapping (linear transformation plus an offset) of
the computation and data onto the processors. The affine mappings are chosen so as to maximize the re-use
of data by the same processor while maintaining sufficient parallelism to keep the processors busy. The
compiler also uses loop blocking to reorder the computation executed on a single processor so that data is
re-used in the cache.

Making Processor Data Contiguous. The compiler tries to arrange the data so that the accesses of
a processor are contiguous whenever possible. This improves spatial locality, reduces conflict misses and
reduces false sharing. The SUIF compiler is able to manage data placement within a single array, as well
as across multiple arrays. The data-to-processor mappings computed by the affine partitioning analysis are
used to determine the data being accessed by each processor. To make the data within a single array that
is accessed by one processor contiguous, the compiler uses data permutation and data stripmining[1]. Data
permutation interchanges the dimensions of the array—e.g. transposing a two-dimensional array. Data
stripmining changes the dimensionality of an array so that all data accessed by the same processor is in the
same plane of the array. To make the data across multiple arrays that 1s accessed by the same processor
contiguous, we use a technique that involves the cooperation of the compiler and operating system called
compiler-directed page coloring[5]. The compiler uses its knowledge of the access patterns to direct the
operating system’s page allocation policy to make each processor’s data contiguous in the physical address
space. The operating system uses these hints to determine the virtual-to-physical page mapping at page
allocation time.

4 Experimental Results

We demonstrate the impact of SUIF’s analyses and optimizations with a series of performance evaluations.
The measurements were obtained on a Digital AlphaServer 8400 with eight 21164 processors, each with two
levels of on-chip cache and a 4MB external cache. As it is harder to obtain speedups on machines with fast
processors, the use of a state-of-the-art machine in our experiment makes our results more meaningful and
applicable to future systems.

)
"'
-1"'"

1L

stripmine
permute

The diagram shows how data transformations are used to make the data accessed by each processor con-
tiguous in the shared address space. The original arrays are two-dimensional; the axes are numbered so that
elements along the first axis are contiguous. First the affine partitioning analysis determines which data
elements are accessed by the same processor (in the figure, the shaded elements are those accessed by the
first processor). Second, data stripmining turns the two-dimensional array into a three-dimensional array.
Now all the shaded elements accessed by the same processor are in the same plane of the array. Finally,
data permutation is applied to rotate the array so that data accessed by each processor become contiguous,
as shown in the diagram.

Figure 2: Illustration of Memory Optimizations

We use two complete standard benchmark suites to evaluate our compiler. We present results on the 10
programs in the SPEC{p95 benchmark suite, which is commonly used for benchmarking uniprocessors. The
runs were performed using the full reference data sets. We also use the eight programs from the NAS parallel
benchmarks designed to benchmark parallel systems. We used the official benchmark programs, with the
exception of embar where we used a slightly modified version from Applied Parallel Research. In all cases
we used the large sample data set size provided.

Figure 3 shows the speedups of the SPECfp95 and the NAS benchmarks, measured on up to eight
processors on a 300MHz AlphaServer. The speedups were calculated over the best sequential execution
time. Note that mgrid and applu appear in both benchmark suites (the program source and data set sizes
differ slightly in the two suites). To measure the effects of the different compiler techniques, we break
down the performance obtained on eight processors into three components, as shown in Figure 4. Baseline
shows the speedup obtained with parallelization based on intraprocedural data dependence analysis and only
scalar privatization and reduction transformations. Coarse grain includes the baseline techniques as well as
techniques for locating coarse-grain parallel loops: array privatization and reduction transformations, and

a 1617
>
° .
2 | swim
o 15
%)
141
131
121
111
10+ tomcatv
oL
a 8t embar
s+ 3
(7]
[}
a T
T mgrid
applu
turb3d 61
61 hydro2d appbt
applu
sk
sl cgm
appsp
su2cor o
41 .
mgrid
3T T
2T 2+
waves
fpppp | buk
i £ £ & £ £ #r A apsi t fftpde
0 | | | | | | | | 0 | | | | | | | |
0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8
Processors Processors

Figure 3: Speedups on the (a) SPECfp95 and (b) NAS Parallel Benchmarks

full interprocedural analysis of both scalar and array variables. Memory includes the coarse-grain techniques
as well as all the multiprocessor memory optimizations described in Section 3.

The figure shows that of the 18 programs, three-fourths show good parallel speedup and are thus able
to take advantage of additional processors. SUIF’s coarse-grain techniques and memory optimizations have
a significant impact on the performance of half of all the programs. The swim and tomcatv programs show
superlinear speedups because the compiler eliminates almost all cache misses, and their 14MB working sets
fit into the multiprocessor’s aggregate cache. For most of the programs that do not speed up, the compiler
finds a significant portion of their computation to be parallelizable, but the granularity is too fine to yield
good multiprocessor performance on machines with fast processors. Only two applications, fpppp and buk,
have no statically analyzable loop-level parallelism and are thus not amenable to our techniques.

To show that our compiler delivers high absolute performance, we report the times and SPEC ratios
obtained on an eight-processor 440MHz Digital AlphaServer 8400 in Table 1. The SPEC ratios compare
the machine performance to that of a reference machine. The total SPEC ratio is the geometric mean of
the ratios obtained for individual programs. The geometric mean of the performance improves over the
uniprocessor execution by 3.0 with four processors and by 4.3 with eight processors. The eight-processor
ratio of 63.9 we obtain represents a 50% improvement over the highest number reported to date[7].

141~ D Memory Optimization
12 . Coarse-Grain Parallelism
o100 — [| D Baseline
3 L
2 81 H
o
g L
67
47
27 ﬂ
oL 111 [] —
2 E 53T T 23 @3 249 5 2 2 ¥ £ 5§ & ©T
T 8§ ¢ 588 &8¢ 2 5223 2¢ 3285
E ® 5 5§ £ & 5 & g T & & E £ E
e “ 2 =

Figure 4: Impact of SUIF optimizations, shown as speedup on eight processors.

Execution Time (sec) SPEC ratio
Benchmark 1P | 4P | 8P 1P | 4P | 8P
tomcatv 219.1 30.3 18.5 16.9 | 122.1 | 200.0
swim 297.9 | 335 17.2 || 28.9 | 256.7 | 500.0
suZcor 155.0 44.9 31.0 9.0 31.2 45.2
hydro2d 249.4 | 61.1 40.7 9.6 | 393] 59.0
mgrid 185.3 | 42.0 27.0 || 13.5 | 595 | 926
applu 296.1 | 85.5 39.5 74 257 | b55.7
turb3d 267.7 | 73.6 435 || 153 | 55.7 | 94.3
apsi 137.5 | 141.2 | 143.2 15.3 14.9 14.7
fpppp 3316 | 331.6 | 331.6 || 29.0 | 29.0 | 29.0
waved 151.8 | 141.9 | 1474 19.8 21.1 20.4
SPEC ratio 15.0 | 44.4 | 63.9

Table 1: Absolute performance for the SPECfp95 benchmarks measured on a 440MHz Digital AlphaServer.

References

(1]

[2]

J. M. Anderson, S. P. Amarasinghe, and M. S. Lam. Data and computation transformations for mul-
tiprocessors. In Proceedings of the Fifth ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, July 1995.

J. M. Anderson and M. S. Lam. Global optimizations for parallelism and locality on scalable parallel
machines. In Proceedings of the SIGPLAN ’93 Conference on Programming Language Design and
Implementation, pages 112-125, Albuquerque, NM, June 1993.

P. Banerjee, J. Chandy, M. Gupta, E. Hodges, J. Holm, A. Lain, D. Palermo, S. Ramaswamy, and
E. Su. The PARADIGM compiler for distributed-memory multicomputers. IEEE Computer, 28(10),
October 1995.

W. Blume, R. Eigenmann, K. Faigin, J. Grout, J. Hoeflinger, D. Padua, P. Petersen, W. Pottenger,
L. Rauchwerger, P. Tu, and S. Weatherford. Effective automatic parallelization with Polaris. Interna-
tional Journal of Parallel Programming, May 1995.

E. Bugnion, J. M. Anderson, T. C. Mowry, M. Rosenblum, and M. S. Lam. Compiler-directed page
coloring for multiprocessors. In Proceedings of the Seventh International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS-VII), Cambridge, MA, October
1996.

K. Cooper, M. W. Hall, R. T. Hood, K. Kennedy, K. S. McKinley, J. M. Mellor-Crummey, L. Torc-
zon, and S. K. Warren. The ParaScope parallel programming environment. Proceedings of the IEEE,
81(2):244-263, February 1993.

Standard Performance Evaluation Corporation. Digital Equipment Corporation Alphaserver 8400 5/440
SPEC CFP95 results. spec newsletter, 8(3), October 1996.

M. Haghighat and C. Polychronopolous. Symbolic analysis for parallelizing compilers. ACM Transac-
tions on Programming Languages and Systems, 18(4), July 1996.

M. W. Hall, S. P. Amarasinghe, B. R. Murphy, S.-W. Liao, and M. S. Lam. Detecting coarse-grain
parallelism using an interprocedural parallelizing compiler. In Proceedings of Supercomputing 95, San

Diego, CA, December 1995.

P. Havlak. Interprocedural symbolic analysis. PhD thesis, Dept. of Computer Science, Rice University,
May 1994.

F. Irigoin, P. Jouvelot, and R. Triolet. Semantical interprocedural parallelization: An overview of the
PIPS project. In Proceedings of the 1991 ACM International Conference on Supercomputing, Cologne,
Germany, June 1991.

K. Kennedy and U. Kremer. Automatic data layout for high performance Fortran. In Proceedings of
Supercomputing ‘95, San Diego, CA, December 1995.

