
Maximizing Multiprocessor Performance with the SUIF Compiler

Mary W� Hally Jennifer M� Anderson Saman P� Amarasinghe

Brian R� Murphy Shih�Wei Liao Edouard Bugnion

Monica S� Lam

Computer Systems Laboratory
Stanford University
Stanford� CA �����

yUSC Information Sciences Institute
Marina del Rey� CA �����

Abstract

This paper presents an overview of the SUIF compiler� which automatically parallelizes and optimizes

sequential programs for shared�memory multiprocessors� We describe new technology in this system for

locating coarse�grain parallelism and for optimizing multiprocessor memory behavior essential to obtaining

good multiprocessor performance� These techniques have a signi�cant impact on the performance of half

of the NAS and SPECfp�� benchmark suites� In particular� we achieve the highest SPECfp�� ratio to

date of ���� on an eight�processor ��	MHz Digital AlphaServer�

� Introduction

A�ordable shared�memory multiprocessors can potentially deliver supercomputer�like performance to the
general public� Today� these machines are mainly used in a multiprogramming mode� increasing system
throughput by running several independent applications in parallel� The multiple processors can also be
used together to accelerate the execution of single applications� Automatic parallelization is a promising
technique to allow ordinary sequential programs to take advantage of multiprocessors ��� �� �� ��	�

Multiprocessors present more di
cult challenges to parallelizing compilers than vector machines which
were their initial target� E�ective use of a vector architecture involves parallelizing repeated arithmetic
operations on large data streams �e�g�� innermost loops in array�oriented programs�� On a multiprocessor�
however� parallelizing innermost loops typically does not provide su
cient granularity of parallelism
not
enough work is performed in parallel to overcome the overhead of synchronization and communication
between processors� To utilize a multiprocessor e�ectively� the compiler must exploit coarse�grain parallelism�
locating large computations that can execute independently in parallel� Multiprocessor systems also have
more complex memory hierarchies than typical vector machines� Modern multiprocessors contain multiple
levels of caches in addition to the shared memory� Locating parallelism is but the �rst step in producing
e
cient multiprocessor code� it is critical to make e�ective use of the memory hierarchy to achieve high
performance�

These additional challenges often prevented early parallelizing compilers from being e�ective for multipro�
cessors� Consequently� parallel programming today predominantly requires that the programmer explicitly
manage both the parallelism and the memory use of the application� Developing an e
cient parallel program
in this way requires a highly knowledgeable programmer� Moreover� explicit parallel programming is tedious
and error prone� and the resulting programs are only optimized for a speci�c machine�

This research was supported in part by the Air Force Material Command and DARPA contracts F���������C������ DABT���

���C��		� and DABT����
�C����
� NASA�s HPCC program� an NSF Young Investigator Award� an NSF CISE postdoctoral

fellowship� and fellowships from AT�T Bell Laboratories� DEC Western Research Laboratory� Intel Corporation and NSF

Jennifer Anderson is currently a researcher with Digital Equipment�s Western Research Lab

�

This paper presents an overview of the automatic parallelization techniques in the Stanford SUIF com�
piler� We describe two techniques essential to obtaining good multiprocessor performance for array�based
numerical programs� locating coarse�grain parallelism and managingmultiprocessor memory use� We present
performance measurements for two complete benchmark suites� the NAS and the SPECfp�� benchmarks�
Overall� the results for these scienti�c programs are promising� The compiler yields speedups on more than
three�fourths of the programs� and has obtained the highest SPECfp�� ratio reported to date� indicating
that the compiler is also able to achieve e
cient absolute performance�

� Finding Coarse�Grain Parallelism

Multiprocessors work best when the individual processors have large units of independent computation�
Finding such coarse�grain parallelism is challenging� First� it is necessary to �nd available parallelism across
procedure boundaries� Furthermore� the original computations may not be parallelizable as given but require
some transformations to parallelize� For example� experience in hand parallelization suggests that it is often
necessary to replace global arrays by private versions on di�erent processors� Sometimes the computation
must be restructured
for example� a sequential accumulation replaced by a parallel reduction operation�

It takes a large suite of robust analysis techniques to successfully locate coarse�grain parallelism� To cope
with the complexity involved in building such a system into SUIF� we rely on general and uniform frameworks�
We have automated the analysis to privatize arrays and to recognize reductions to both scalar and array
variables� All the analysis techniques in our compiler operate across procedure boundaries seamlessly� There
are three major components in the analysis to detect coarse�grain parallelism�

Scalar analyses� An integrated pass analyzes scalar variables in the programs� It detects parallelism
among operations with scalar variables using techniques such as data dependence analysis� scalar privati�
zation analysis� and reduction recognization� It also derives symbolic information on these scalar variables
that is useful to the array analysis pass� including constant propagation� induction variable recognition and
elimination� recognition of loop�invariant computations� and symbolic relation propagation ��� ��	�

Array Analyses� An integrated array analysis uses a uni�ed mathematical framework based on linear
algebra and integer linear programming ��	� The analysis applies the basic data dependence test to determine
if accesses to an array can refer to the same location� To support array privatization� it also �nds array data�
�ow information that determines if array elements used in an iteration refer to the values produced in a
previous iteration� It also recognizes commutative operations on sections of an array and transforms them
into parallel reductions� The reduction analysis is powerful enough to recognize commutative updates of
even indirectly accessed array locations� allowing parallelization of sparse computations� All these analyses
are formulated in terms of integer programming problems on systems of linear inequalities representing the
data accessed� These inequalities are derived from loop bounds and array access functions� Optimizations
to speed up common cases are implemented to reduce the compilation time�

Interprocedural Analysis Framework� To manage the software engineering complexity� all of the anal�
yses are implemented using a uniform interprocedural framework� The framework uses a true interprocedural
analysis ���	� which is more e
cient than the more common technique of inline substitution ��	� Inline substi�
tution replaces each procedure call with a copy of the called procedure� then analyzes the expanded code in
the usual intraprocedural manner� Inline substitution is not practical for large programs� as program size can
increase to an unmanageable extent� Our technique analyzes only a single copy of each procedure� capturing
its side e�ects in a function� This function is then applied at each call site to produce precise results� When
necessary� the algorithm selectively clones a procedure so that code can be optimized or parallelized under
di�erent calling contexts �such as when di�erent constant values are passed to the same formal parameter��
thus achieving the full advantages of inlining without expanding the code indiscriminately�

�

FFTZ2

FFTZ1

TRANS
CFFT

DRCFT

TURB3D

ZFFT

XYFFT

DCRFT
 DCRFT

DCFT

P
ar

al
le

liz
ed

 L
o

o
p

s

Our analyses can successfully parallelize loops spanning hundreds of lines of code and numerous procedures�
as shown by the above code segment from the SPECfp�� benchmark turb�d� The boxes in the �gure represent
procedure bodies and the lines connecting them represent procedure calls� The main computation is a series
of four loops to compute three�dimensional fast Fourier transforms �FFTs�� Using interprocedural scalar
and array analyses� the SUIF compiler determines that these loops are parallelizable� Each loop contains
over ��� lines of code spanning eight or nine procedures with up to �� procedure calls� Note that if this
program had been fully inlined� the loops presented to the compiler for analysis would have each contained
over ������ lines of code�

Figure �� Illustration showing scope of coarse�grain parallelism analysis�

� Memory Optimizations

Numerical applications on high�performance microprocessors are often memory bound� One or more levels
of caches are commonly used to bridge the gap between processor and memory speeds� but it is still not
uncommon to �nd a processor wasting half its time stalled on memory accesses because of frequent cache
misses� This memory bottleneck is further exacerbated on multiprocessors� as they have increased need for
memory tra
c and more contention on the memory bus�

To optimize for memory subsystem behavior� the compiler must address the following four issues that
a�ect the behavior of the caches�

Communication� Processors on a multiprocessor system communicate data through accesses to the same
memory location� Coherent caches typically keep the data consistent by causing accesses to data
written by another processor to miss in the cache� Such misses are called true sharing misses�

Limited Capacity� Numeric applications tend to have large working sets� which typically exceed the capacity
of the cache� These applications often stream through large amounts of data before re�using any of the
data� resulting in poor temporal locality and a large number of capacity misses�

�

Limited Associativity� Caches typically have a small set associativity � that is� each memory location can only
map to one or just a few locations in the cache� Con�ict misses can occur even when the application�s
working set is smaller than the cache if the data are mapped to the same cache locations�

Large Line Size� Data in a cache are transferred in �xed�size units called cache lines� Applications that do
not use all the data in a cache line� e�g� when accessing data with a non�unit stride� incur more misses
and are said to have poor spatial locality � On a multiprocessor� large cache lines can also lead to cache
misses that occur when di�erent processors use di�erent parts of the same cache line� Such misses are
called false sharing misses�

The compiler tries �rst to eliminate as many cache misses as possible� and then to minimize the impact
of any that remain� We reduce the problem of eliminating cache misses due to the four factors above to
two subproblems� ��� ensuring that processors re�use the same data as much as possible and ��� making
the data accessed by each processor contiguous in the shared address space� The techniques to address each
subproblem are discussed below� Finally� to tolerate the latency of remaining cache misses� the compiler uses
compiler�inserted prefetching to move data into the cache before it is needed�

Improving Processor Re�use of Data� The compiler reorganizes the computation so that each processor
re�uses the same data as much as possible��� �� ��	� This reduces the working set on each processor thus
minimizing capacity misses� it also reduces communication between processors thus minimizing true sharing
misses� To achieve this goal� the compiler uses the technique of a�ne partitioning � The technique analyzes
the reference patterns in the program to derive an a
ne mapping �linear transformation plus an o�set� of
the computation and data onto the processors� The a
ne mappings are chosen so as to maximize the re�use
of data by the same processor while maintaining su
cient parallelism to keep the processors busy� The
compiler also uses loop blocking to reorder the computation executed on a single processor so that data is
re�used in the cache�

Making Processor Data Contiguous� The compiler tries to arrange the data so that the accesses of
a processor are contiguous whenever possible� This improves spatial locality� reduces con�ict misses and
reduces false sharing� The SUIF compiler is able to manage data placement within a single array� as well
as across multiple arrays� The data�to�processor mappings computed by the a
ne partitioning analysis are
used to determine the data being accessed by each processor� To make the data within a single array that
is accessed by one processor contiguous� the compiler uses data permutation and data stripmining ��	� Data
permutation interchanges the dimensions of the array
e�g� transposing a two�dimensional array� Data
stripmining changes the dimensionality of an array so that all data accessed by the same processor is in the
same plane of the array� To make the data across multiple arrays that is accessed by the same processor
contiguous� we use a technique that involves the cooperation of the compiler and operating system called
compiler�directed page coloring��	� The compiler uses its knowledge of the access patterns to direct the
operating system�s page allocation policy to make each processor�s data contiguous in the physical address
space� The operating system uses these hints to determine the virtual�to�physical page mapping at page
allocation time�

� Experimental Results

We demonstrate the impact of SUIF�s analyses and optimizations with a series of performance evaluations�
The measurements were obtained on a Digital AlphaServer ���� with eight ����� processors� each with two
levels of on�chip cache and a �MB external cache� As it is harder to obtain speedups on machines with fast
processors� the use of a state�of�the�art machine in our experiment makes our results more meaningful and
applicable to future systems�

�

1

2

3

1

2

3

1

2

3

1

2

3

st
ri

p
m

in
e

p
er

m
u

te

1

2

1

2

The diagram shows how data transformations are used to make the data accessed by each processor con�
tiguous in the shared address space� The original arrays are two�dimensional� the axes are numbered so that
elements along the �rst axis are contiguous� First the a
ne partitioning analysis determines which data
elements are accessed by the same processor �in the �gure� the shaded elements are those accessed by the
�rst processor�� Second� data stripmining turns the two�dimensional array into a three�dimensional array�
Now all the shaded elements accessed by the same processor are in the same plane of the array� Finally�
data permutation is applied to rotate the array so that data accessed by each processor become contiguous�
as shown in the diagram�

Figure �� Illustration of Memory Optimizations

We use two complete standard benchmark suites to evaluate our compiler� We present results on the ��
programs in the SPECfp�� benchmark suite� which is commonly used for benchmarking uniprocessors� The
runs were performed using the full reference data sets� We also use the eight programs from the NAS parallel
benchmarks designed to benchmark parallel systems� We used the o
cial benchmark programs� with the
exception of embar where we used a slightly modi�ed version from Applied Parallel Research� In all cases
we used the large sample data set size provided�

Figure � shows the speedups of the SPECfp�� and the NAS benchmarks� measured on up to eight
processors on a ���MHz AlphaServer� The speedups were calculated over the best sequential execution
time� Note that mgrid and applu appear in both benchmark suites �the program source and data set sizes
di�er slightly in the two suites�� To measure the e�ects of the di�erent compiler techniques� we break
down the performance obtained on eight processors into three components� as shown in Figure �� Baseline
shows the speedup obtained with parallelization based on intraprocedural data dependence analysis and only
scalar privatization and reduction transformations� Coarse grain includes the baseline techniques as well as
techniques for locating coarse�grain parallel loops� array privatization and reduction transformations� and

�

|
0

|
1

|
2

|
3

|
4

|
5

|
6

|
7

|
8

|

0

|

1

|

2

|

3

|

4

|

5

|

6

|

7

|

8

|

9

|

10

|

11

|

12

|

13

|

14

|

15

|

16

 Processors

 S
pe

ed
up

apsi
fpppp
wave5

su2cor

hydro2d
turb3d
applu
mgrid

tomcatv

swim

� � � � � � � �
� � � � � � � �� � � � � � � ��

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

|
0

|
1

|
2

|
3

|
4

|
5

|
6

|
7

|
8

|

0

|

1

|

2

|

3

|

4

|

5

|

6

|
7

|

8

 Processors

 S
pe

ed
up

fftpde
buk

mgrid

appsp
cgm
applu
appbt

embar

� � � � � � � �
�

� � � � � � �
�

�

�

�

�

�
�

�

�

�

�

�

�

�

� �

�

�

�

�

�
�

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�a� �b�

Figure �� Speedups on the �a� SPECfp�� and �b� NAS Parallel Benchmarks

full interprocedural analysis of both scalar and array variables� Memory includes the coarse�grain techniques
as well as all the multiprocessor memory optimizations described in Section ��

The �gure shows that of the �� programs� three�fourths show good parallel speedup and are thus able
to take advantage of additional processors� SUIF�s coarse�grain techniques and memory optimizations have
a signi�cant impact on the performance of half of all the programs� The swim and tomcatv programs show
superlinear speedups because the compiler eliminates almost all cache misses� and their ��MB working sets
�t into the multiprocessor�s aggregate cache� For most of the programs that do not speed up� the compiler
�nds a signi�cant portion of their computation to be parallelizable� but the granularity is too �ne to yield
good multiprocessor performance on machines with fast processors� Only two applications� fpppp and buk�
have no statically analyzable loop�level parallelism and are thus not amenable to our techniques�

To show that our compiler delivers high absolute performance� we report the times and SPEC ratios
obtained on an eight�processor ���MHz Digital AlphaServer ���� in Table �� The SPEC ratios compare
the machine performance to that of a reference machine� The total SPEC ratio is the geometric mean of
the ratios obtained for individual programs� The geometric mean of the performance improves over the
uniprocessor execution by ��� with four processors and by ��� with eight processors� The eight�processor
ratio of ���� we obtain represents a ��� improvement over the highest number reported to date��	�

�

16

14

10

6

12

8

4

2

0

to
m

ca
tv

sw
im

su
2c

or

hy
dr

o2
d

m
gr

id

ap
pl

u

tu
rb

3d

ap
si

fp
pp

p

w
av

e5

ap
pb

t

ap
pl

u

ap
ps

p

bu
k

cg
m

 e
m

ba
r

fft
pd

e

m
gr

id

Baseline

Coarse-Grain Parallelism

Memory Optimization

S
pe

ed
up

Figure �� Impact of SUIF optimizations� shown as speedup on eight processors�

Execution Time �sec� SPEC ratio
Benchmark �P �P �P �P �P �P

tomcatv ����� ���� ���� ���� ����� �����
swim ����� ���� ���� ���� ����� �����
su�cor ����� ���� ���� ��� ���� ����
hydro�d ����� ���� ���� ��� ���� ����
mgrid ����� ���� ���� ���� ���� ����
applu ����� ���� ���� ��� ���� ����
turb�d ����� ���� ���� ���� ���� ����
apsi ����� ����� ����� ���� ���� ����
fpppp ����� ����� ����� ���� ���� ����
wave� ����� ����� ����� ���� ���� ����
SPEC ratio ���� ���� ����

Table �� Absolute performance for the SPECfp�� benchmarks measured on a ���MHz Digital AlphaServer�

�

References

��	 J� M� Anderson� S� P� Amarasinghe� and M� S� Lam� Data and computation transformations for mul�
tiprocessors� In Proceedings of the Fifth ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming� July �����

��	 J� M� Anderson and M� S� Lam� Global optimizations for parallelism and locality on scalable parallel
machines� In Proceedings of the SIGPLAN ��� Conference on Programming Language Design and
Implementation� pages �������� Albuquerque� NM� June �����

��	 P� Banerjee� J� Chandy� M� Gupta� E� Hodges� J� Holm� A� Lain� D� Palermo� S� Ramaswamy� and
E� Su� The PARADIGM compiler for distributed�memory multicomputers� IEEE Computer� �������
October �����

��	 W� Blume� R� Eigenmann� K� Faigin� J� Grout� J� Hoe�inger� D� Padua� P� Petersen� W� Pottenger�
L� Rauchwerger� P� Tu� and S� Weatherford� E�ective automatic parallelization with Polaris� Interna�
tional Journal of Parallel Programming� May �����

��	 E� Bugnion� J� M� Anderson� T� C� Mowry� M� Rosenblum� and M� S� Lam� Compiler�directed page
coloring for multiprocessors� In Proceedings of the Seventh International Conference on Architectural
Support for Programming Languages and Operating Systems �ASPLOS�VII	� Cambridge� MA� October
�����

��	 K� Cooper� M� W� Hall� R� T� Hood� K� Kennedy� K� S� McKinley� J� M� Mellor�Crummey� L� Torc�
zon� and S� K� Warren� The ParaScope parallel programming environment� Proceedings of the IEEE�
�������������� February �����

��	 Standard Performance Evaluation Corporation� Digital Equipment Corporation Alphaserver ���� �����
SPEC CFP�� results� spec newsletter� ����� October �����

��	 M� Haghighat and C� Polychronopolous� Symbolic analysis for parallelizing compilers� ACM Transac�
tions on Programming Languages and Systems� ������ July �����

��	 M� W� Hall� S� P� Amarasinghe� B� R� Murphy� S��W� Liao� and M� S� Lam� Detecting coarse�grain
parallelism using an interprocedural parallelizing compiler� In Proceedings of Supercomputing ��
� San
Diego� CA� December �����

���	 P� Havlak� Interprocedural symbolic analysis� PhD thesis� Dept� of Computer Science� Rice University�
May �����

���	 F� Irigoin� P� Jouvelot� and R� Triolet� Semantical interprocedural parallelization� An overview of the
PIPS project� In Proceedings of the ���� ACM International Conference on Supercomputing� Cologne�
Germany� June �����

���	 K� Kennedy and U� Kremer� Automatic data layout for high performance Fortran� In Proceedings of
Supercomputing ��
� San Diego� CA� December �����

�

