Compiling Fortran D for MIMD Distributed-Memory Machines

Seema Hiranandani

Ken Kennedy Chau-Wen Tseng

Department of Computer Science

Rice University
Houston, TX 77251-1892

Abstract

Fortran D, a version of Fortran extended with
data decomposition specifications, is designed to pro-
vide a machine-independent data-parallel program-
ming model. This paper describes analysis, optimiza-
tion, and code generation algorithms employed in the
Fortran D compiler. The compiler first partitions pro-
grams using the owner computes rule. It then per-
forms communication analysis, followed by communi-
cation and parallelism optimizations based on data de-
pendence. Finally, the Fortran D compiler generates
message-passing programs that can execute efficiently
on MIMD distributed-memory machines.

1 Introduction

Parallel computing represents the only plausible way to
continue to increase the computational power available
to scientists and engineers. However, parallel comput-
ers are not likely to be widely successful until they are
easy to program. A major component in the success
of vector supercomputers is the ability of scientists to
write Fortran programs in a “vectorizable” style and
expect vectorizing compilers to automatically produce
efficient code [8, 35]. The resulting programs are eas-
ily maintained, debugged, and ported across different
vector machines.

Compare this with the current situation for program-
ming parallel machines. Scientists wishing to use such
machines must rewrite their programs in an extension
of Fortran that explicitly reflects the architecture of the
underlying machine. Multiple-instruction, multiple-
data (MIMD) shared-memory machines such as the
Cray Research C90 are programmed with explicit syn-
chronization and parallel loops found in Parallel Com-
puter Forum (PCF) Fortran [24]. Single-instruction,
multiple-data (SIMD) machines such as the Thinking
Machines CM-2 are programmed using parallel array
constructs found in Fortran 90 [3].

MIMD distributed-memory machines such as the In-
tel Paragon provide the most difficult programming
model. Users must write message-passing Fortran 77
programs that deal with separate address spaces, syn-
chronizing processors, and communicating data using
messages. The process is time-consuming, tedious, and
error-prone. Significant blowups in source code size are
not only common but expected.

Because parallel programs are extremely machine-
specific, scientists are discouraged from utilizing paral-
lel machines because they risk losing their investment
whenever the program changes or a new architecture
arrives. We propose to solve this problem by devel-
oping the compiler technology needed to establish a
machine-independent programming model. It must be
easy to use yet perform with acceptable efficiency on
different parallel architectures, at least for data-parallel
scientific codes.

The question is whether any existing Fortran dialect
suffices. PCF Fortran is undesirable because it is easy
to inadvertently write programs with data races that
produce indeterminate results. Message passing For-
tran 77 is portable but difficult to use. Fortran 90 is
promising but may not be sufficiently flexible. What
all these languages lack is a way to specify the decom-
position and placement of data in the program.

We find that selecting a data decomposition is one
of the most important intellectual steps in developing
data-parallel scientific codes. Though many techniques
have been developed for automatic data decomposi-
tion, we feel that the compiler will not be able to choose
an efficient data decomposition for all programs. To be
successful, the compiler needs additional information
not present in vanilla Fortran. However, most parallel
programming languages provide no support for data
decomposition [27].

For these reasons, we have developed an enhanced
version of Fortran that introduces data decomposition
specifications. We call the extended language For-
tran D, where “D” suggests data, decomposition, or
distribution. As shown in Figure 1, we believe that if
a Fortran D program is written in a data-parallel pro-
gramming style with reasonable data decompositions,
it can be implemented efficiently on a variety of par-
allel architectures. We should note that our goal in
designing Fortran D is not to support the most gen-
eral data decompositions possible. Instead, our intent
is to provide data decompositions that are both pow-
erful enough to express data parallelism in scientific
programs, and simple enough to permit the compiler
to produce efficient programs.

An essential part of the research program is demon-
stration of a compiler technology capable of achieving
both expressive power and efficiency in the generated

Sequential

Message
Fortran 90 Passing
Fortran 77
SIMD MIMD
Distributed Distributed
Memory Memory
MIMD
Shared
Memory

Figure 1: Fortran Dialects and Machine Architectures

code. To that end, we have embarked on a program to
implement Fortran D for several different architectures.
The most mature implementation, which we have been
pursuing for over two years, is for MIMD distributed-
memory machines. In this paper we describe the design
of that compiler. Its goal is to automate the task of
deriving node programs based on the data decomposi-
tion. For these machines, it is particularly important
to reduce both communication and load imbalance. We
present a code generation strategy based on the con-
cept of data dependence [23] that unifies and extends
previous techniques.

The rest of this paper presents the data decomposi-
tion specifications in Fortran D, basic compiler analy-
sis and code generation algorithms, and compiler op-
timizations to reduce communication cost and exploit
pipeline parallelism. We conclude with a comparison
with related work and description of the current status
of the compiler.

2 Fortran D Language

The data decomposition problem can be approached
by considering the two levels of parallelism in data-
parallel applications. First, there is the question of
how arrays should be aligned with respect to one an-
other, both within and across array dimensions. We
call this the problem mapping induced by the structure
of the underlying computation. It represents the min-
imal requirements for reducing data movement for the
program given an unlimited number of processors, and
is largely independent of any machine considerations.
The alignment of arrays in the program depends on
the natural fine-grain parallelism defined by individual
members of data arrays.

Second, there is the question of how arrays should
be distributed onto the actual parallel machine. We

call this the machine mapping caused by translating
the problem onto the finite resources of the machine.
It is affected by the topology, communication mecha-
nisms, size of local memory, and number of processors
in the underlying machine. The distribution of arrays
in the program depends on the coarse-grain parallelism
defined by the physical parallel machine.

Fortran D provides data decomposition specifica-
tions for these two levels of parallelism using DECOM-
POSITION, ALIGN, and DISTRIBUTE statements. A de-
composition is an abstract problem or index domain,;
it does not require any storage. Each element of a
decomposition represents a unit of computation. The
DECOMPOSITION statement declares the name, dimen-
sionality, and size of a decomposition for later use.

The ALIGN statement is used to map arrays onto de-
compositions. Arrays mapped to the same decomposi-
tion are automatically aligned with each other. Align-
ment can take place either within or across dimensions.
The alignment of arrays to decompositions is specified
by placeholders in the subscript expressions of both the
array and decomposition. Perfect alignment results if
no subscripts are used. In the example below,

REAL A(N,N)
DECOMPOSITION D(N,N)
ALIGN A(I,J) with D(J-2,I+3)

D is declared to be a two dimensional decomposition
of size N x N. Array A is then aligned with respect
to D with the dimensions permuted and offsets within
each dimension.

After arrays have been aligned with a decompo-
sition, the DISTRIBUTE statement maps the decom-
position to the finite resources of the physical ma-
chine. Distributions are specified by assigning an inde-
pendent attribute to each dimension of a decomposi-
tion. Predefined attributes are BLOCK, cycLIc, and
BLOCK_cycLIC. The symbol “” marks dimensions
that are not distributed. Choosing the distribution for
a decomposition maps all arrays aligned with the de-
composition to the machine. Scalars and unaligned
arrays are replicated, i.e., owned by all processors.

In the following example, distributing decomposition
D by (:,BLOCK) results in a column partition of arrays
aligned with D. Distributing D by (cycLic,:) parti-
tions the rows of D in a round-robin fashion among
processors. These sample data alignment and distri-
butions are shown in Figure 2.

DECOMPOSITION D(N,N)
DISTRIBUTE D(:,BLOCK)
DISTRIBUTE D(CYCLIC,:)

Note that data distribution does not subsume align-
ment. For instance, the DISTRIBUTE statement alone
cannot specify that one 2D array be mapped with the
transpose of another.

Many previous researchers have supplied data de-
composition extensions [7, 22, 28, 30, 32, 37]. Because

DECOMPOSITION D(N,N) REAL A(N,N)

P1
P2
. . . P3
g | i Pa
| Pe | o P1
Lo Pa P2
: P3
P4

B

DISTRIBUTE D(:,BLOCK) DISTRIBUTE D(CYCLIC,:)

ALIGN A(I,J) with D(J-2,I+3)

Figure 2: Fortran D Data Decomposition Specifications

its goal is to support both SIMD and MIMD architec-
tures, Fortran D is the first language to implement both
alignment and distribution specifications. Fortran D
also provides a FORALL loop, irregular data distribu-
tion, and dynamic data decomposition, i.e., changing
the alignment or distribution of a decomposition at any
point in the program. The complete language is de-
scribed in detail elsewhere [10].

3 Fortran D Compiler

The two major steps in writing a data-parallel program
are selecting a data decomposition and using it to de-
rive node programs with explicit data movement. We
leave the task of selecting a data decomposition to the
user or automatic tools. The Fortran D compiler au-
tomates the second step by generating node programs
with explicit communication for a given data decom-
position.

The main goal of the compiler is to exploit paral-
lelism and reduce communication cost. It translates
Fortran D programs into single-program, multiple-data
(SPMD) form with explicit message-passing that exe-
cute directly on the nodes of the distributed-memory
machine. The compiler partitions the program using
the owner computes rule, by which each processor com-
putes values of data it owns [7, 28, 37]. The compiler
is subdivided into three major phases—program anal-
ysis, program optimization, and code generation. The
structure of the compiler is shown in Figure 3.

3.1 Program Analysis
3.1.1 Dependence Analysis

Dependence analysis is the compile-time analysis of
control flow and memory accesses to determine a state-
ment execution order that preserves the meaning of the
original program. A data dependence between two ref-
erences R; and Rj indicates that they read or write a
common memory location in a way that requires their
execution order to be maintained [23]. We call R; the
source and Rs the sink of the dependence if R; must
be executed before Ry. If Ry is a write and Ry is a
read, we call the result a true (or flow) dependence.
Dependences may be either loop-independent or

loop-carried. Loop-independent dependences occur on
the same loop iteration; loop-carried dependences oc-
cur on different iterations of a particular loop. The
level of a loop-carried dependence is the depth of the
loop carrying the dependence [1]. Loop-independent
dependences have infinite depth. The number of loop
iterations separating the source and sink of the loop-
carried dependence may be characterized by a depen-
dence distance or direction [34].

Dependence analysis is vital to shared-memory vec-
torizing and parallelizing compilers. We show that it
is also highly useful for guiding compiler optimizations
for distributed-memory machines. The prototype For-
tran D compiler is being developed in the context of
the ParaScope programming environment and incor-
porates the following analysis capabilities [6, 21].

Scalar dataflow analysis Control flow, control de-
pendence, and live range information are computed
during the scalar dataflow analysis phase. In addition,
scalar and array variables are labeled private with re-
spect to a loop if their values are used only within the
current loop iteration; this is useful for eliminating un-
necessary computation and communication.

Symbolic analysis Constant propagation, auxiliary
induction variable elimination, expression folding, and
loop invariant expression recognition are performed
during the symbolic analysis phase of the Fortran D
compiler. The goal of symbolic analysis is to provide
a simplified program representation for the Fortran D
compiler that improves program analysis and optimiza-
tion. Consider the example below:

do ij = 1,1len
F(ij,n) = (F(ij,n)-TOT(ij)) / B(n)
enddo

If constant propagation is able to produce a constant
value for n, or if n is identified as a loop-invariant
expression, the Fortran D compiler can communicate
B(n) with an efficient broadcast preceding the loop.
Symbolic analysis also recognizes reductions, opera-
tions such as suMm, MIN, or MAX that are both com-
mutative and associative. Once identified, reductions

1. Program analysis
(a) Dependence analysis
(b) Data decomposition analysis
(¢) Partitioning analysis
(d) Communication analysis

2. Program optimization
(a) Message vectorization
(b) Collective communications
(¢) Runtime processing
(d) Pipelined computations
3. Code generation
(a) Program partitioning
(b) Message generation
(¢) Storage management

Figure 3: Fortran D Compiler Structure

may be executed locally in parallel and the results com-
bined efficiently using collective communication rou-
tines. Reduction operations are tagged during sym-
bolic analysis for later use.

Dependence testing Dependence testing deter-
mines the existence of data dependences between array
references by examining their subscript expressions.
Dependences found are characterized by their depen-
dence level, as well as by distance and direction vectors.
This information is used to guide subsequent compiler
analysis and optimization.

3.1.2 Data Decomposition Analysis

The Fortran D compiler requires a new type of program
analysis to generate the proper program—it must de-
termine the data decomposition for each reference to a
distributed array.

Reaching decompositions Because data access
patterns may change between program phases, For-
tran D provides dynamic data decomposition by per-
mitting executable ALIGN and DISTRIBUTE statements
to be inserted at any point in a program. This compli-
cates the job of the Fortran D compiler, since it must
know the decomposition of each array.

We define reaching decompositions to be the set of
decomposition specifications that may reach an array
reference aligned with the decomposition; it may be
calculated in a manner similar to reaching definitions.
The Fortran D compiler will apply both intra- and
interprocedural analysis to calculate reaching decom-
positions for each reference to a distributed array. If
multiple decompositions reach a procedure, runtime or
node splitting techniques such as cloning may be re-
quired to generate the proper code for the program.

3.1.3 Partitioning Analysis

After data decomposition analysis is performed, the
program partitioning analysis phase of the Fortran D
compiler divides the overall data and computation

among processors. This is accomplished by first parti-
tioning all arrays onto processors, then using the owner
computes rule to derive the functional decomposition of
the program. We begin with some useful definitions.

Iteration & index sets, RSDs An iteration set is
simply a set of loop iterations—it describes a section
of the work space. An index set is a set of locations
in an array—it describes a section of the data space.
In many cases, the Fortran D compiler can construct
iteration or index sets using regular section descrip-
tors (RSDs), a compact representation of rectangular
sections (with some constant step) and their higher di-
mension analogs [14]. The union and intersection of
RSDs can be calculated inexpensively, making them
highly useful for the Fortran D compiler.

In this paper we will write RSDs as [{;:u;:s4,...],
where [;, u;, and s; indicate the lower bound, upper
bound, and step of the ith dimension of the RSD, re-
spectively. A default unit step is assumed if not explic-
itly stated. In loop nests or multidimensional arrays,
the leftmost dimension of the RSD corresponds to the
outermost loop or the leftmost array dimension. The
other dimensions are listed in order.

Global vs. local indices Because the Fortran D
compiler creates SPMD node programs, all processors
must possess the same array declarations. This forces
all processors to adapt local indices. For instance, con-
sider the following program and the node program pro-
duced when array A is block-distributed across four
processors.

{* Original program *} {+* SPMD node program *}

REAL A(100) REAL A(25)
doi=1, 100 doi=1, 25

A(i) = 0.0 A(i) = 0.0
enddo enddo

The local indices for A on each processor are all [1:25],
even though the equivalent global indices for A are
[1:25], [26:50], [51:75], and [76:100] on processors 1
through 4, respectively. A similar conversion of loop
indices may also occur, with the global loop indices
[1:100] translated to the local loop indices [1:25].

Local index sets As the first step in partitioning
analysis, the Fortran D compiler uses the Fortran D
statements associated with the reaching decomposition
to calculate the local indez set of each array—the local
array section owned by every processor. This creates
the data partition used in the program.

We illustrate the analysis required to partition the
Jacobi code in Figure 4. For this and all future exam-
ples we will be compiling for a four processor machine.
In the example, both arrays A and B are aligned iden-
tically with decomposition D, so they have the same
distribution as D. Because the first dimension of D
is local and the second dimension is block-distributed,
the local index set for both A and B on each processor
(in local indices) is [1:100,1:25].

Local iteration sets Once the local index set for
each array has been calculated, the Fortran D com-
piler uses it to derive the functional decomposition of
the program. We define the local iteration set of a ref-
erence R on a processor to be the set of loop iterations
that cause R to access data owned by the processor. It
can be calculated by applying the inverse of the array
subscript functions to the local index set of R, then
intersecting the result with the iteration set of the en-
closing loops.

The calculation of local index and iteration sets is
vital to the partitioning analysis of the Fortran D com-
piler. When applying the owner computes rule, the set
of loop iterations on which a processor must execute an
assignment statement is exactly the local iteration set
of the left-hand side ({hs). The Fortran D compiler can
thus partition the computation by assigning iteration
sets to each statement based on its lhs.

To demonstrate the algorithm, we will calculate the
local iteration set for the assignment statement Sp in
the Jacobi example. Remember that the local index set
of A is [1:100,1:25]. First we apply to it the inverse of
the subscript functions of the lhs, A(4,j). This yields
the unbounded local iteration set [:,1:25,1:100]. The
first entry is “:” since all iterations of the k loop access
local elements of A. The inverse subscript functions
cause the j and i loops to be mapped to [1:25] and
[1:100], respectively.

Next we intersect the unbounded iteration set with
the actual bounds of the enclosing loops, since these are
the only iterations that actually exist. The iteration set
of the loop nest (in global indices) is [1:time,2:99,2:99].
Converting it into local indices for each processor and
performing the intersection yields the following local
iteration sets for each processor (in local indices):

Proc(l) = [1:time, 2:25,2:99]
Proc(2:3) = [1l:time, 1:25,2:99]
Proc(4) = [1:time, 1:24,2:99]

Similar analysis produces the same local iteration sets
for statement Sy. Note how the local indices calculated
for the local index set of each array have been used to
derive the local indices for the local iteration set. The
calculation of local index and iteration sets is described
in greater detail elsewhere [17].

Handling boundary conditions Because align-
ment and distribution specifications in Fortran D are
fairly simple, local index sets and their derived itera-
tion sets may usually be calculated at compile time. In
fact, in most regular computations local index and it-
eration sets are identical for every processor except for
boundary conditions. When boundary conditions for
each array dimension or loop are independent, as in
the Jacobi example, the Fortran D compiler can store
each boundary condition separately. This avoids the
need to calculate and store a different result for each
processor.

REAL A(100,100), B(100,100)
DECOMPOSITION D(100,100)
ALIGN A, B with D
DISTRIBUTE D(:,BLOCK)

do k = 1,time

do j = 2,99
do i = 2,99
Si o A(i,3) = (B(i,j-1)+B(i-1,j)+
B(i+1,j)+B(i,j+1))/4
enddo
enddo
do j = 2,99
do i = 2,99
Sa B(i,j) = A(i,j)
enddo
enddo
enddo

Figure 4: Jacobi

We may summarize independent boundary condi-
tions for iteration or index sets as pre, mid, and post
sets for each loop or array dimension. The mid set
describes the interior uniform case. The pre and post
iteration sets describe the boundary conditions encoun-
tered and their positions. These sets are represented
in the Fortran D compiler by augmented iteration sets.
Instead of a single section, each dimension of the aug-
mented iteration set contains three component sections
for the pre, mid, and post sets as well as their positions.

Because boundary conditions for iteration and index
sets can be handled in the same manner, we will just
discuss an example case for iteration sets. When par-
titioning the Jacobi example, the following pre, mid,
and post iteration sets are calculated by the Fortran D
compiler:

pre =[2:25] @p;
[1:tim6,{mid:[l:25] },2:99]

post =[1 : 24] @py

In the augmented RSD representing the pre, mid, and
post iteration sets, “@” indicates the position for each
pre or post set. If an interior processor is causing a
boundary condition, processors between it and the edge
will not be assigned loop iterations. A pre or post iter-
ation set may also be empty if that boundary condition
does not exist.

The iteration set for each processor is calculated by
taking the Cartesian product of the pre, mid, and post
iteration sets for each dimension of the augmented it-
eration set. Unfortunately not all boundary conditions
may be succinctly represented by augmented iteration
sets. In the worst case the Fortran D compiler is forced
to derive and store an individual index or iteration set
for each processor.

Private variables & reductions Statements per-
forming assignments to scalar and replicated array
variables present a special challenge for the Fortran D
compiler. Naive application of the owner computes rule

do 1l = 1,time
do j = 2,6
do k = 2,n
S1 QA = ZA(k,j+1)*ZR(k,j) + ...
So ZA(k,j) = ZA(k,j)+.175%(QA-ZA(k,]))
enddo
enddo
enddo

Figure 5: Livermore Kernel 23

would cause every processor to execute the assignment
on all iterations. However, often the assignment can be
partitioned because its value is used only in the cur-
rent loop iteration. These cases are readily recognized,
since the variable being assigned will have been labeled
private during dependence analysis.

To partition statement S, the Fortran D compiler
calculates the union of the iteration sets of all state-
ments that use S. These statements can be identified
by tracking all true dependence edges with S as its
source. This union becomes the iteration set for S.
The process is simplified if the iteration sets are calcu-
lated in reverse order for statements in each loop nest.

For instance, consider the loop in Figure 5. Be-
cause QA is a replicated scalar, the owner computes
rule would assign all loop iterations as the iteration set
for statement S;. However, since the only use of QA
occurs in the same loop iteration, it is classified as a
private variable. The Fortran D compiler can thus as-
sign S7 the same iteration set as S,, the only statement
containing a true dependence with S as its source.

In other cases, a statement or group of statements
will be marked during dependence analysis as perform-
ing a reduction. To parallelize the reduction, an iter-
ation set that partitions the computation across pro-
cessors should be selected. To reduce data movement,
the Fortran D compiler may partition the computation
using the local iteration set of a variable on the right-
hand side (rhs). Communication will be later inserted
to accumulate the partial results.

3.1.4 Communication Analysis

Once partitioning analysis determines how data and
work are partitioned across processors, communication
analysis determines which variable references cause
nonlocal data accesses.

Computing nonlocal index sets In this phase, all
rhs references to distributed arrays are examined. For
each rhs, the Fortran D compiler constructs the in-
dex set accessed by each processor. The index set is
computed by applying the inverse subscript functions
of the rhs to the local iteration set assigned to the
statement. The local index set is subtracted from the
resulting RSD to check whether the reference accesses
nonlocal array locations. If only local accesses occur,
the rhs reference may be discarded. Otherwise the
RSD representing the nonlocal index set accessed by
the rhs is retained.

If boundary conditions exist for the local iteration
set of the statement, the Fortran D compiler must com-
pute the index set for each group of processors assigned
different iteration sets. In the worst case the index set
for each processor must be calculated separately.

We show how index sets are computed for the Jacobi
example. We first consider the four rhs references to B
in statement S;. The iteration set boundary conditions
cause processors to be separated into three groups. The
group of interior processors, Proc(2:3), have the local
iteration set [1:time,1:25,2:99]. This derives the follow-
ing index sets:

B(i,j—1) = [2:99,0:24]
B(i—1,j) = [1:98, 1:25]
B(i+1,j) = [3:100,1:25]
B(i,j+1) = [2:99, 2:26]

Since the local index set for B is [1:100,1:25],
B(i—1,j) and B(i+1,) cause only local accesses and
may be ignored. However, B(i,j — 1) and B(i,j + 1)
access nonlocal locations [2:99,0] and [2:99,26], respec-
tively. Both references are marked and their nonlocal
index sets stored.

Computing the index sets using the local iteration
sets for the other two groups, Proc(l) and Proc(4),
does not yield additional nonlocal references. Exami-
nation of the index sets for the rhs reference to A(i, j)
in statement S» show that only local accesses occur.

3.2 Program Optimization

The program optimization phase of the Fortran D com-
piler utilizes the results of program analysis to improve
program performance. Its two primary goals are to ex-
ploit parallelism and reduce communication overhead.
Most computations are fully data-parallel; parallelism
is discovered and utilized during partitioning analysis.
More advanced optimizations are required to exploit
parallelism for pipeline computations. We defer their
discussion to Section 3.4.

In this section, we concentrate on optimizations
to reduce communication overhead. It is particu-
larly useful to consider cross-processor dependences—
dependences whose endpoints are executed by different
processors.

3.2.1 Message Vectorization

A naive but workable algorithm known as runtime res-
olution inserts guarded send and/or recv operations di-
rectly preceding each nonlocal reference [7, 28, 37]. Un-
fortunately, this simple approach generates many small
messages that prove extremely inefficient due to com-
munication overhead [18, 28].

The most basic communication optimization per-
formed by the Fortran D compiler is message vector-
1zation. It uses the level of loop-carried data depen-
dences to calculate whether communication may be
legally performed at outer loops. This replaces many
small messages with one large message, reducing both

message startup cost and latency.

Algorithm We use the following algorithm from Bal-
asundaram et al. and Gerndt to calculate the appro-
priate loop level to insert messages for nonlocal refer-
ences [4, 12]. We define the commlevel for loop-carried
dependences to be the level of the dependence. For
loop-independent dependences we define it to be the
level of the deepest loop common to both the source
and sink of the dependence.

To vectorize messages for a rhs reference R with a
nonlocal index set, we examine all cross-processor true
dependences with R as the sink. The deepest comm-
level of all such dependences determines the loop level
at which the message may be vectorized. If the deepest
commlevel is for a dependence carried by loop L, we
insert a message tag for R marked carried at the header
for loop L. This tag indicates that nonlocal data ac-
cessed by R must be communicated between iterations
of loop L.

Otherwise the deepest commlevel is for a loop-
independent dependence with loop L as the deepest
loop enclosing both the source and sink. We insert a
tag for R marked independent at the header of the next
deeper loop enclosing R at level L 4+ 1, or at R itself
if no such loop exists. This tag indicates that nonlo-
cal data accessed by R must be communicated at this
point on each iteration of loop L. Additionally, the
Fortran D compiler may move this tag to any state-
ment in loop L between the source and the sink of the
dependence in order to combine messages arising from
different references.

Example 1: Jacobi We illustrate the message vec-
torization algorithm with three examples. First we ex-
amine the Jacobi code in Figure 4. In the communica-
tion analysis phase, we have already determined that
for the given data decomposition only the rhs refer-
ences B(i,j—1) and B(¢,j+1) from S; access nonlocal
locations. The only cross-processor true dependences
incident on these references are from the definition to
B in S;. These dependences are carried on the k& loop,
so we insert their tags (labeled carried) at the header of
the k loop. The code generation phase will later insert
messages for those references inside the k& loop.

Example 2: Successive over-relaxation (SOR)
In the code for SOR in Figure 6, communication anal-
ysis discovers that the rhs references A(i + 1,5) and
A(i—1,7) have nonlocal index sets. Dependence anal-
ysis shows that the reference A(i + 1,7) has a cross-
processor true dependence carried on the k& loop, so
we insert its tag (labeled carried) at the k loop header.
The deepest loop-carried true dependence for reference
A(i—1,j) is carried on the ¢ loop, so we insert its tag
(also labeled carried) at the ¢ loop header.

Example 3: Red-black SOR In the code in Fig-
ure 7, communication analysis discovers that all rhs
references except V(4,j) possess nonlocal index sets.

REAL A(100,100)
DECOMPOSITION D(100,100)
ALIGN A, B with D
DISTRIBUTE D(BLOCK,:)
do k = 1,time
do j = 2,99
do i = 2,99
A(i,§) = (w/&)*(A(4,j-1)+A(i-1,j)+
AGi+1,§)+A(, 3+ D) +(1-w)*A(i,)
enddo
enddo
enddo

Figure 6: Successive Over-Relaxation (SOR)

REAL V(N,N)
DECOMPOSITION D(N,N)
ALIGN V with D
DISTRIBUTE D(BLOCK,BLOCK)
do k = 1,time
{* compute red points *}
do j = 3,N-1,2
do i = 3,N-1,2
S1 V(i,j) = (w/8)*(V(i,j-1)+V(i-1,3)+
V(i,j+1)+V(i+1,)+ (1-w)*v(i,)
enddo
enddo
do j = 2,N-1,2
do i = 2,N-1,2
S V(i,j) = (w/8)*(V(i,j-1)+V(i-1,3)+
V(i,j+1)+V(i+1,)+ (1-w)*v(i,)
enddo
enddo
{* compute black points *}
do j = 3,N-1,2
do i = 2,N-1,2
Ss V(i,j) = (w/48)*(V(i,j-1)+V(i-1,3j)+
V(i,j+1)+V(i+1,)+ (1-w)*v(i,)
enddo
enddo
do j = 2,N-1,2
do i = 3,N-1,2
Sy V(i,j) = (w/8)*(V(i,j-1)+V(i-1,37)+
V(i,j+1)+V(i+1,)+ (1-w)*v(i,)
enddo
enddo
enddo
Figure 7: Red-black SOR

However, dependence analysis shows that the only
cross-processor true dependences incident on the rhs
references for statements S; and S, are carried on the
k loop from S3 and S;. The tags for these references
(labeled as carried) are inserted at the header of the k
loop. During code generation phase they will generate
messages in the & loop.

For statements Ss and Si, dependence analysis
shows that the only cross-processor true dependences
incident on their rhs references are loop-independent
dependences from S; and S;. Their commlevel is set
to the k loop because it is the deepest loop enclosing

both the source and sink of these dependences. We
insert tags (labeled independent) for all rhs references
in S3 at its enclosing j loop, since it is the next loop
deeper than k enclosing Ss.

Similar analysis causes us to insert tags (labeled in-
dependent) for all rhs references in Sy at its enclosing
j loop. As an additional optimization, we can move
these tags to the j loop enclosing Ss to combine these
messages. This is legal since we are moving tags to a
statement that is at the same loop level and between
the source and sink of the dependence. In the code
generation phase these tags will cause vectorized mes-
sages to be generated before the j loop, to be executed
on each iteration of the k loop.

3.2.2 Communication Selection

Message vectorization determines where communica-
tion should be inserted, but the Fortran D compiler
also needs to select an efficient communication mecha-
nism. We do this by comparing the subscript expres-
sion of each distributed dimension in the rhs with its
aligned dimension in the lhs reference.

Consider the following example. Message vectoriza-
tion determines that communication can be extracted
from both the ¢ and j loops. The arrays A and B
are aligned identically and both dimensions are dis-
tributed, so we need to compare the first dimensions
with each other, then the second.

DECOMPOSITION D(N,N)
ALIGN A, B with D
DISTRIBUTE D(BLOCK,BLOCK)

do j = 2,N
do i=2,N
S1 A(i,j) = B(4,j-1)+B(i-1,3)
Sy A(i,3) = B(c,j)+B(j,1)
Ss A(i,3) = B(f(1),3)
enddo
enddo

In Sy, the aligned dimensions of both the {hs and rhs
references contain constant offsets to the same loop in-
dex variable. For these stencil computations, individ-
ual calls to send and recv primitives are very efficient.
This is the case for the Jacobi, SOR, and Red-black

SOR examples previously discussed.

Collective Communication More complicated
subscript expressions indicate the need for collective
communication [25]. For example, the loop-invariant
subscript for B(e,j) in Sy can be efficiently commu-
nicated using broadcast. Collective communication is
also useful in performing transposes for differing align-
ments between [hs and rhs references, or accumulating
partial results for reductions. Collective communica-
tion is selected because these communication patterns
are not well-described by individual messages, and can
be performed significantly faster using special purpose
routines. The Fortran D compiler applies techniques
pioneered by Li and Chen [25].

Runtime Processing A third type of communica-
tion is needed to communicate the values needed by
by B(f(i),7) in S3. Because f is an irregular function

e.g., an index array), the Fortran D compiler can-
not precisely determine at compile-time what commu-
nication is required. However, inspectors and executors
may be created during code generation to combine mes-
sages at runtime [22, 26].

3.2.3 Additional Optimizations

The Fortran D compiler performs other communication
optimizations. Message coalescing combines messages
for different references to the same array. Message ag-
gregation combines messages from different arrays to
the same processor, at the expense of copying them to
a single contiguous buffer.

A number of optimizations seek to hide communi-
cation overhead by overlapping messages with compu-
tation. Message pipelining attempts to hide message
transit time by separating send and recv primitives
for element messages; vector message pipelining does
the same for vectorized messages. Iteration reordering
extracts local loop iterations to increase the amount
of computation that can be overlapped. Nonblocking
messages rely on architectural support to hide message
copy times. These optimizations are discussed in detail
elsewhere [18, 22, 28].

Communication may also be optimized by consider-
ing interactions between all the loop nests in the pro-
gram. Intra- and interprocedural dataflow analysis of
array sections can show that an assignment to a vari-
able is live at a point in the program if there are no
intervening assignments to that variable. This array
kill information may be used to eliminate redundant
messages. Relaxing the owner computes rule may also
improve communication.

3.3 Code Generation

Once program analysis and optimization is complete,
the code generation phase of the Fortran D compiler
utilizes information concerning local index and itera-
tion sets, RSDs, and collective communication to cre-
ate the actual SPMD node program.

3.3.1 Program Partitioning

During partitioning analysis, the Fortran D compiler
applied the owner computes rule to calculate the local
iteration set for each statement. One of the goals for
code generation is to modify the program to ensure
that each processor only executes a statement on loop
iterations in its local iteration set.

Loop bounds reduction and guard introduction are the
two program transformations used to instantiate the
computation partition. The Fortran D compiler first
reduces the loop bounds so that each processor only
executes iterations in the unioned local iteration sets
of all statements in the loop. It then inserts code to
calculate boundary conditions, as shown the bounds
generated for the j loop in Figure 8.

With multiple statements in the loop, the local iter-

REAL A(100,25), B(100,0:26)

if (Poear = 1) 1by = 2 else 1b; = 1

if (Plocqr = 4) ub; = 24 else ub; = 25

do k = 1,time
if (Plocar > 1) send(B(2:99,1), Pleft)
if (Proear < 4) recv(B(2:99,26), Pright)
if (Procar < 4) send(B(2:99,25), Pright)
if (Ploear > 1) recv(B(2:99,0), Pleft)
do J = lbl,ubl

do i = 2,99
A(i,j) = (B(i,j-1)+B(i-1,j)+
B(i+1,j)+B(i,j+1))/4
enddo
enddo
do J = lbl,ubl
do i= 2,99
B(i,j) = A(i,j)
enddo
enddo
enddo

Figure 8: Generated Jacobi

ation set of a statement may be a subset of the reduced
loop bounds. For these statements the compiler needs
to add explicit guards based on membership tests for
the local iteration set of the statement [7, 17, 28, 37].

3.3.2 Message Generation

The Fortran D compiler uses information calculated in
the communication analysis and optimization phases
to guide message generation. Non-blocking sends and
blocking receives are inserted for the following types of
messages:

Loop-independent messages For messages tagged
at loop headers for loop-independent cross-processor
dependences, the Fortran D compiler inserts calls to
send and recv primitives preceding the loop header.
For messages tagged at individual references, the For-
tran D compiler inserts send and recvin the body of the
loop preceding the reference. All messages are guarded
so that the owners execute send and recipients execute
recv. To calculate the data that must be sent, the For-
tran D compiler builds the RSD for the reference at
the loop level that the message is generated. This rep-
resents data sent on each loop iteration. This strategy
is used to generate messages preceding the loop nests

enclosing S3 and S for Red-black SOR in Figure 7.

Loop-carried messages The situation is more com-
plex for messages representing loop-carried depen-
dences. To calculate the data that must be commu-
nicated, we build the RSD for each rhs reference at
the level of the loop L carrying the dependence. If
iterations of L are executed by all processors, the For-
tran D compiler inserts calls to send and recv primi-
tives inside the loop header for L, at the beginning of
the loop body. If the iterations of L are be partitioned
across processors, loop-carried messages represent data
synchronization. The compiler inserts calls to recv pre-
ceding loop L, since they occur before the local itera-

REAL A(0:26,100)
if (Plocal =1) 1bs
if (Plocal = 4) ubs
do k = 1,time
if (Procar > 1) send(A(1,2:99), Pleft)
if (Procar < 4) recv(A(26,2:99), Pright)
do j = 2,99
if (Poca > 1) TeCU(A(O’j): Pleft)
do i = lbg, ubz
8(1,3) = (w/@)*(A(L,j-1)+A(i-1,7)+
A+,)+ACE, J+1))+(1-w)*A (4, §)
enddo
if (Poca < 4) 5€nd<A(25,j)’ Pright)
enddo
enddo

2 else 1by = 1
24 else ubs; = 25

Figure 9: Generated SOR

tions of L. Similarly, calls to send are inserted after L,
since they are executed after the local iterations of L.

We illustrate message generation for two examples.
For the Jacobi code in Figure 4, recall that k loop
carries true dependences for the rhs references in Sj.
These messages were tagged at the k& loop header as
carried. We first compute RSDs for the data that need
to be communicated. Boundary conditions cause three
RSDs to be generated for each rhs reference. Below
are the RSDs for the reference B(i,j+ 1) at the k loop
level.

Proc(l) = [2:99,3:26]
Proc(2:3) = [2:99,2:26]
Proc(4) = [2:99,2:25]

We subtract the local index set from these RSDs to de-
termine the RSDs for the nonlocal index set. The non-
local RSDs for Proc(l) and Proc(2:3) are both [2:99,
26] and are therefore combined. The RSD for Proc(4)
consists of only local data and is discarded.

The sending processor is determined by computing
the owners of the section [2:99,26] @ Proc(1:3), re-
sulting in Proc(2:4) sending data to their left pro-
cessors. To compute the data that must be sent, we
translate the local indices of the receiving processors
to that of the sending processors, obtaining the section
[2:99,26—25] = [2:99,1]. Since loop k is executed by all
processors, the messages are inserted at the beginning
of the loop body. Messages for B(i, j—1) are calculated
in a similar manner. The communication generated is
shown in Figure 8.

Now consider the SOR code depicted in Figure 6.
Dependences for A(i + 1, j) are carried on the & loop,
causing vectorized messages to be inserted at the begin-
ning of the & loop body as in Jacobi. The compilation
of A(i — 1,7) is more complicated. Boundary condi-
tions and dependences carried by the ¢ loop cause the
following three RSDs to be generated at the level of
the i loop.

Proc(l) = [1:24,7]
Proc(2:3) [0:24, 5]
Proc(4) = [0:23, 7]

The local index set is subtracted from these RSDs to
determine the RSDs for the nonlocal index set, pro-
ducing the empty set for Proc(1). The nonlocal RSDs
for both Proc(2:3) and Proc(4) are [0,5] and are com-
bined. This shows that processors 2 through 4 require
data from their left neighbor. Iterations of the i loop
are partitioned, alerting the Fortran D compiler to the
fact that the send for A(¢ — 1,) occurs after the last
local 7 loop iteration, and the recv occurs before the
first local i loop iteration. It thus inserts the recv be-
fore the ¢ loop and the send after the i loop, resulting
in the code shown in Figure 9.

Collective Communication During communica-
tion optimization, opportunities for reductions and col-
lective communication have been marked separately.
Instead of individual calls to send and recv, the For-
tran D compiler inserts calls to the appropriate collec-
tive communication routines. Additional communica-
tion is also appended following loops containing reduc-
tions to accumulate the results of each reduction.

Runtime Processing Runtime processing is ap-
plied to computations whose nonlocal data require-
ments are not known at compile time. An inspector
[26] is constructed to preprocess the loop body at run-
time to determine what nonlocal data will be accessed.
This in effect calculates the receive index set for each
processor. A global transpose operation between pro-
cessors is then used to calculate the send index sets.
Finally, an ezecutor is built to actually communicate
the data and perform the computation.

An inspector is the most general way to gener-
ate send and receive sets for references without loop-
carried true dependences. Despite the expense of addi-
tional communication, experimental evidence from sev-
eral systems show that it can improve performance by
grouping communication to access nonlocal data out-
side of the loop nest, especially if the information gen-
erated may be reused on later iterations [22, 26].

The inspector strategy is not applicable for unan-
alyzable references causing loop-carried true depen-
dences. In this case the Fortran D compiler inserts
guards to resolve the needed communication and pro-
gram execution at runtime [7, 28, 37].

3.3.3 Storage Management

One of the major responsibilities of the Fortran D com-
piler is to select and manage storage for all nonlo-
cal array references. There are three different storage
schemes.

Overlaps Overlaps are expansions of local array sec-
tions to accommodate neighboring nonlocal elements
[12]. For programs with high locality of reference, over-
laps are useful for generating clean code. However,
they are permanent and specific to each array, and thus
may require more storage.

Buffers Buffers avoid the contiguous and permanent
nature of overlaps. They are useful when storage for

10

nonlocal data must be reused, or when the nonlocal
area is bounded in size but not near the local array
section.

Hash tables Hash tables may be used when the set
of nonlocal elements accessed is sparse, as for many
irregular computations. They also provide a quick
lookup mechanism for arbitrary sets of nonlocal val-

ues [19].

The extent of all RSDs representing nonlocal ac-
cesses produced during message generation are exam-
ined to select the appropriate storage type for each ar-
ray. If overlaps have been selected, array declarations
are modified to take into account storage for nonlocal
data. For instance, array declarations in the generated
code in Figures 8 and 9 have been extended for over-
lap regions. If buffers are used, additional buffer array
declarations are inserted. Finally, all nonlocal array
references in the program are modified to reflect the
actual data location selected.

3.4 Parallelism Optimizations

This section describes how the Fortran D compiler ex-
ploits parallelism found in pipelined computations. We
begin by describing some program transformations.

3.4.1 Program Transformations

Shared-memory parallelizing compilers apply program
transformations to expose or enhance parallelism in sci-
entific codes, using dependence information to deter-
mine their legality and profitability [1, 21, 23, 34]. Pro-
gram transformations are also useful for distributed-
memory compilers. The legality of each transforma-
tion is determined in exactly the same manner, since
the same execution order must be preserved in order to
retain the meaning of the original program. However,
their profitability criteria are now totally different.

Loop Distribution Loop distribution separates in-
dependent statements inside a single loop into multiple
loops with identical headers. Loop distribution may
be applied only if the statements are not involved in a
recurrence and the direction of existing loop-carried
dependences are not reversed in the resulting loops
[21, 23]. It can separate statements in loop nests with
different local iteration sets, avoiding the need to eval-
uate guards at runtime. Loop distribution may also
separate the source and sink of loop-carried or loop-
independent cross-processor dependences, allowing in-
dividual messages to be combined into a single vector
message.

Loop Fusion Loop fusion combines multiple loops
with identical headers into a single loop. It is legal if
the direction of existing dependences are not reversed
after fusion [23, 34]. Loop fusion can improve data
locality, but its main use is to enable loop interchange
and strip-mine.

Loop Interchange Loop interchange swaps adjacent
loop headers to alter the traversal order of the itera-

tion space. It may be applied only if the source and
sink of each dependence are not reversed in the result-
ing program. This may be determined by examining
the distance or direction vector associated with each
dependence [1, 34].

Strip Mining Strip mining increases the step size
of an existing loop and adds an additional inner loop.
The legality of applying strip-mine followed by loop
interchange is determined in the same manner as for
unroll-and-jam [21]. The Fortran D compiler may ap-
ply strip mining in order to reduce storage require-
ments for computations. It may also be used with loop
interchange to help exploit pipeline parallelism, as dis-
cussed in the next section.

3.4.2 Pipelined Computations

In loosely synchronous computations all processors ex-
ecute SPMD programs in a loose lockstep, alternating
between phases of local computation and synchronous
global communication [11]. These problems achieve
good load balance because all processors are utilized
during the computation phase. For instance, Jacobi
and Red-black SOR are loosely synchronous. The For-
tran D compilation strategy presented so far is well-
suited to compiling such programs, since it identifies
and inserts efficient vector or collective communication
at appropriate points in the program.

However, a different class of computations contain
loop-carried cross-processor data dependences that se-
quentialize computations over distributed array dimen-
sions. Synchronization is required and processors are
forced to remain idle at various points in the compu-
tation, resulting in poor load balance. We call these
computations, such as SOR, pipelined. They present
opportunities for optimization to exploit partial paral-
lelism through pipelining, enabling processors to over-
lap computation with one another (hence the name).

Cross-Processor Loops The Fortran D compiler
identifies pipelined computations using cross-processor
loops. We classify loops in numeric computations as
either time-bound or space-bound. Time-bound loops
correspond to time steps in the computation, with each
iteration accessing much or all of the data space. They
are usually outermost loops that need to be executed
sequentially. In comparison, space-bound loops iter-
ate over the data space, with each iteration accessing
part of each array. These loops are usually parallel in
data-parallel computations, but may be sequential if
they cause a computation wavefront to sweep across
the data space.

The Fortran D compiler labels loops as cross-
processor if they are sequential space-bound loops
causing computation wavefronts that cross processor
boundaries (i.e., sweep over the distributed dimensions
of the data space). Cross-processor loops may be cal-
culated by considering all pairs of array references that
cause loop-carried true dependences. If non-identical
subscript expressions occur in a distributed dimension

11

InpPUT:
Loop nest {L1,..., Ly} with index variables {I,...
List of all loop-carried true dependences
Data decomposition of all distributed arrays in loop nest

,In}

OurtpuUT:
Loops = Set of cross-processor loops

ALGORITHM:
Loops — 0
for each loop-carried true dependence between
references A(f1,..., fm) and A(g1,...,g9m) do
for each distributed dimension &k of A do
{* fr and g are subscripts in dimension k *}
if fi # g or fi is not of form al; 4+ § then
for each index variable [; in either fr or gx do
if L; encloses both references to A then
Loops — Loops U {L;}
endif
endfor
endif
endfor
endfor

Figure 10: Finding Cross-Processor Loops

of the array, index variables appearing in the subscript
expressions belong to cross-processor loops. The al-
gorithm is shown in Figure 10. In most cases, cross-
processor loops are loops carrying true dependences
whose iterations have been partitioned across proces-
sors.

Figure 11 illustrates cross-processor dependences
and loops. We denote cross-processor loops as dox.
All loops in the example are space-bound loops that
sweep the data space. In Loop 1, the ¢ loop is cross-
processor because the computation wavefront sweeps
the i dimension across processors. There are no cross-
processor loops in Loop 2 because the computation
wavefront is internalized and does not cross processor
boundaries. In Loop 3 both the ¢ and j loops are cross-
processor because the computation wavefront sweeps
across processors in both dimensions.

These examples make it clear how cross-processor
loops may be used to classify computations. Computa-
tions such as Loop 2 that do not possess cross-processor
loops are loosely synchronous, since all processors may
execute in parallel. Computations such as Loops 1 &
3 that do possess cross-processor loops are pipelined,
since processors must wait in turn for computation to
be completed.

Exploiting Pipeline Parallelism Parallelism may
be exploited in pipelined computations through mes-
sage pipelining—sending a message when its value is
first computed, rather than waiting until its value is
needed [28]. Rogers and Pingali applied this optimiza-
tion to a Gauss-Seidel computation (a special case of
SOR) that is distributed cyclically. However, more so-
phisticated approaches are usually required.

Loop 1

DECOMPOSITION A(N,N)

DECOMPOSITION A(N,N)

Loop 2 Loop 3

DECOMPOSITION A(N,N)

Data REAL X(N,N) REAL X(N,N) REAL X(N,N)
Decomposition ALIGN X(I,J) with A(I,J) ALIGN X(I,J) with A(I,J) ALIGN X(I,J) with A(I,J)
DISTRIBUTE A(BLOCK, :) DISTRIBUTE A(:,BLOCK) DISTRIBUTE A(BLOCK,BLOCK)
do*x i = 2,N do i = 2,N do*x i = 2,N
Loop Nest do j = 1,N do j = 1,N do* j = 2,N
X({i,j) = X(i-1,3) X({i,j) = X(i-1,j) X({i,j) = X(i-1,j)+X(E,j-1D
Cross-Processor enddo enddo enddo
Loops enddo enddo enddo
e
2 1
> B pEDIDED; n N
£, £ /TN
Data Space 2
& \ \ 7 P2 Pa Pa \ \ \ \
Cross-Processor Z P Z Y/ Z Z
Dependences ~ ~ /TN
7 Z P m
P /TN

Figure 11: Examples of Cross-Processor Dependences and Loops

Figure 12 illustrates the tradeoffs between commu-
nication and parallelism that must be considered when
compiling pipelined computations. It presents the pro-
gram text, data space traversal order, and a processor
trace for three versions of the computation. In the pro-
cessor trace, elapsed time proceeds from left to right.
The computation for each processor is represented as
a solid line, and messages are shown as dashed lines
between processors.

In the original program execution order, message
vectorization minimizes communication overhead but
sequentializes the computation. Applying message
pipelining alone is insufficient, since only the compu-
tation for the last row will be pipelined. The key
observation is that for some pipelined computations,
the program execution order must also be changed.
We present two optimizations to exploit pipeline par-
allelism. Fine-grain pipelining interchanges cross-
processor loops as deeply as possible to maximize par-
allelism. This is a major improvement over sequential-
ized computation, but incurs the most communication
overhead since a message is sent for every nonlocal ar-
ray element.

Coarse-grain pipelining strip-mines all loops enclosed
by cross-processor loops, then interchanges the strip-
mined loops outside. A message is sent for each block of
nonlocal data, decreasing communication overhead at
the expense of some parallelism. Selecting an efficient
block size depends on the data decomposition, proces-
sor topology, and ratio of communication to computa-
tion cost for the underlying machine. A detailed al-
gorithm is presented elsewhere [18]. Empirical results

12

show that exploiting pipeline parallelism is important
for common scientific computations such as tridiagonal
solvers.

4 Related Work

We view the Fortran D compiler as a second-generation
distributed-memory compiler that integrates and ex-
tends analysis and optimization techniques from many
other research projects. It is related to other
distributed-memory compilation systems such as AL
[33], CM FoRTRAN [32], C* [29], DATAPARALLEL
C [13], DiNvo [30], MIMDIzER [15], PANDORE [2],
ParaGON [9], and SpoT [31], but mostly builds on the
following research projects.

SUPERB is a semi-automatic parallelization tool that
supports arbitrary user-specified contiguous BLOCK
distributions [12, 37]. It originated overlaps as a means
to both specify and store nonlocal data accesses. Ezsr
statements are inserted in the program to communi-
cate overlap regions. Data dependence information is
then used to apply loop distribution and vectorize these
statements, resulting in vectorized messages. SUPERB
also performs interprocedural analysis and code gener-
ation.

CarLraaaN & KENNEDY propose distributed-
memory compilation techniques based on data depen-
dence [7]. User-defined distribution functions are used
to specify the data decomposition for Fortran pro-
grams. The compiler inserts load and store state-
ments to handle data movement, then applies numer-
ous program transformations to optimize guards and
messages.

Data Decomposition

Original Order

DECOMPOSITION A(N,N)
ALIGN X(I,J) with A(I,J)
DISTRIBUTE A(BLOCK, :)

Fine-grain Pipelining

Coarse-grain Pipelining

{recv row from P.s:} do j = 1,0 do jj = 1,N,Bk
Cross-Processor do* i = 1,N/P {recv element from P} {recv block from Pi.s:}
do j =1,N do* i = 1,N/P do* i = 1,N/P
Loops & X(i,j) = X(i-1,3) X(i,j) = X(i-1,3) do j = jj,jj+Bk-1
Communication enddo enddo X(i,j) = X(i-1,j)
enddo {send element to Prign:} enddo
{send row to Prign:} enddo enddo
{send block to Prign:}
enddo
J—=
) —
! ” ” fedlel
Data Space ' ' '

& p—
Traversal Order
—

J 41

Processor Trace » N
2

p3

W 2 222

WITY |

2222

RN
U

Figure 12: Examples of Pipelined Computations

Ip NoUVvEAU is a functional language enhanced with
BLOCK and cycLIc distributions [28]. Initially, send
and receive statements are inserted to communicate
each nonlocal array access. Message vectorization is
applied to combine messages for previously written ar-
ray elements. Loop jamming (fusion) and strip mining
are used when writing array elements. Analysis is con-
siderably simplified through the use of write-once ar-
rays called I-structures. Global accumulate (reduction)
operations are supported. Unlike other systems, pro-
gram partitioning produces distinct programs for each
node processor.

CRYSTAL is a high-level functional language com-
piled to distributed-memory machines using both au-
tomatic data decomposition and communication gen-
eration [25]. Program analysis and optimization are
different because it targets a purely functional lan-
guage. CRYSTAL pioneered the strategy of identify-
ing collective communication opportunities used in the
Fortran D compiler.

AsSPAR is a Fortran compiler that performs simple
dependence analysis of using A-lists to detect parallel
loops [20]. Loop iterations are then partitioned and
used to automatically derive data decompositions. A
micro-stencil based on the computation is used to gen-

erate a macro-stencil, identifying communication re-
quirements. Collective communications are also gener-
ated.

KaLl is the first compiler that supports both regu-
lar and irregular computations on MIMD distributed-
memory machines [22]. Since dependence analysis is
not provided, programmers must declare all parallel
loops. Instead of deriving a parallel program from the
data decomposition, KALI requires that the program-
mer explicitly partition loop iterations onto processors
using an on clause.

ARF is a compiler that automatically generates in-
spector and ezecutor loops for runtime preprocessing
of programs with BLOCK, cYCLIC, and user-defined ir-
regular distributions [36]. It was motivated by PARTI,
a set of runtime library routines that support irregu-
lar computations on MIMD distributed-memory ma-
chines. PARTI is the first to propose and implement
user-defined irregular distributions [26] and a hashed
cache for nonlocal values [19].

4.1

The Fortran D compiler integrates more compiler op-
timizations than the first generation research systems
described, and in addition possesses two main advan-

Comparison with Fortran D

13

P

D2

p3

tages. First, dependence analysis enables the com-
piler to exploit parallelism without relying on single-
assignment semantics (e.g., CRYSTAL, ID NOUVEAU)
or explicitly parallel programs (e.g., KALI, ARF). Pre-
cise analysis also allows the compiler to perform more
optimizations. Most systems vectorize messages by ex-
tracting communication out of parallel regions, but sys-
tems such as SUPERB or Fortran D can also vectorize
messages in sequential regions such as those found in
SOR.

Second, the Fortran D compiler performs its analysis
up front and uses the results to drive code generation,
unlike transformation-based systems (e.g., CALLAHAN
& KENNEDY, ID NoUVEAU, SUPERB) that begin by
inserting guards and element-wise messages, then ap-
ply program transformations and partial evaluation in
order to produce more efficient code. This approach is
simpler and provides greater flexibility. For instance,
the Fortran D compiler may apply program transfor-
mations without the possibility of introducing deadlock
due to message reordering.

5 Conclusions

A usable yet efficient machine-independent parallel
programming model is needed to make large-scale par-
allel machines useful for scientific programmers. We
believe that Fortran D, a version of Fortran enhanced
with data decompositions, provides such a portable
data-parallel programming model. Its success will de-
pend on the effectiveness of the compiler, as well as
environmental support for automatic data decomposi-
tion and static performance estimation [4, 5, 16].

The current prototype of the Fortran D compiler per-
forms message vectorization, collective communication,
fine-grain pipelining, and several other optimizations
for block-distributed arrays. Though significant work
remains to implement other optimizations presented in
this paper, preliminary results lead us to believe that
the Fortran D compiler will generate efficient code for a
large class of data-parallel programs with only minimal
user effort.

6 Acknowledgements

The authors wish to thank Vasanth Balasundaram,
Geoffrey Fox, Marina Kalem, and Ulrich Kremer for
inspiring many of the ideas in this work. We are
also grateful to the ParaScope and Fortran D research
groups for their assistance in implementing the For-
tran D compiler. This research was supported by
the Center for Research on Parallel Computation, a
National Science Foundation Science and Technology
Center.

References

[1] J. R. Allen and K. Kennedy. Automatic translation of
Fortran programs to vector form. ACM Transactions
on Programming Languages and Systems, 9(4):491-
542, October 1987.

[2] F. André, J. Pazat, and H. Thomas. Pandore: A sys-

14

[10]

[11]

(12]

(13]

[14]

[15]

[16]

(17]

tem to manage data distribution. In Proceedings of the
1990 ACM International Conference on Supercomput-
ing, Amsterdam, The Netherlands, June 1990.

ANSI X3J3/5S8.115. Fortran 90, June 1990.
V. Balasundaram, G. Fox, K. Kennedy, and U. Kre-

mer. An interactive environment for data partitioning
and distribution. In Proceedings of the 5th Distributed
Memory Computing Conference, Charleston, SC, April
1990.

V. Balasundaram, G. Fox, K. Kennedy, and U. Kre-
mer. A static performance estimator to guide data par-
titioning decisions. In Proceedings of the Third ACM
SIGPLAN Symposium on Principles and Practice of
Parallel Programming, Williamsburg, VA, April 1991.

D. Callahan, K. Cooper, R. Hood, K. Kennedy, and
L. Torczon. ParaScope: A parallel programming envi-
ronment. The International Journal of Supercomputer
Applications, 2(4):84-99, Winter 1988.

D. Callahan and K. Kennedy. Compiling programs for
distributed-memory multiprocessors. Journal of Su-
percomputing, 2:151-169, October 1988.

D. Callahan, K. Kennedy, and U. Kremer. A dy-
namic study of vectorization in PFC. Technical Report
TR89-97, Dept. of Computer Science, Rice University,
July 1989.

C. Chase, A. Cheung, A. Reeves, and M. Smith.
Paragon: A parallel programming environment for sci-
entific applications using communication structures. In
Proceedings of the 1991 International Conference on
Parallel Processing, St. Charles, IL, August 1991.

G. Fox, S. Hiranandani, K. Kennedy, C. Koelbel,
U. Kremer, C. Tseng, and M. Wu. Fortran D lan-
guage specification. Technical Report TR90-141, Dept.
of Computer Science, Rice University, December 1990.

G. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon,
and D. Walker. Solving Problems on Concurrent Pro-
cessors, volume 1. Prentice-Hall, Englewood Cliffs,

NJ, 1988.
M. Gerndt. Updating distributed variables in local
computations. Concurrency: Practice & Experience,

2(3):171-193, September 1990.
P. Hatcher, M. Quinn, A. Lapadula, B. Seevers, R. An-

derson, and R. Jones. Data-parallel programming on
MIMD computers. IEFEFE Transactions on Parallel and
Distributed Systems, 2(3):377-383, July 1991.

P. Havlak and K. Kennedy. An implementation
of interprocedural bounded regular section analysis.
IEEE Transactions on Parallel and Distributed Sys-
tems, 2(3):350-360, July 1991.

R. Hill. MIMDizer: A new tool for parallelization.
Supercomputing Review, 3(4):26-28, April 1990.

S. Hiranandani, K. Kennedy, C. Koelbel, U. Kremer,
and C. Tseng. An overview of the Fortran D program-
ming system. In Proceedings of the Fourth Workshop
on Languages and Compilers for Parallel Computing,
Santa Clara, CA, August 1991.

S. Hiranandani, K. Kennedy, and C. Tseng. Com-
piler support for machine-independent parallel pro-

18]

[19]

[20]

(21]

[22]

[23]

[24]

(23]

[26]

[27]

(28]

[29]

(30]

gramming in Fortran D. In J. Saltz and P. Mehrotra,
editors, Compilers and Runtime Software for Scalable
Multiprocessors. Elsevier, Amsterdam, The Nether-
lands, 1992.

S. Hiranandani, K. Kennedy, and C. Tseng. Evalua-
tion of compiler optimizations for Fortran D on MIMD
distributed-memory machines. In Proceedings of the
1992 ACM International Conference on Supercomput-
ing, Washington, DC, July 1992.

S. Hiranandani, J. Saltz, P. Mehrotra, and H. Berry-
man. Performance of hashed cache data migration
schemes on multicomputers. Journal of Parallel and
Distributed Computing, 12(4), August 1991.

K. Ikudome, G. Fox, A. Kolawa, and J. Flower. An
automatic and symbolic parallelization system for dis-
tributed memory parallel computers. In Proceedings
of the 5th Distributed Memory Computing Conference,
Charleston, SC, April 1990.

K. Kennedy, K. S. MCKinley, and C. Tseng. Analysis
and transformation in the ParaScope Editor. In Pro-
ceedings of the 1991 ACM International Conference on
Supercomputing, Cologne, Germany, June 1991.

C. Koelbel and P. Mehrotra. Compiling global name-
space parallel loops for distributed execution. IEEFE
Transactions on Parallel and Distributed Systems,
2(4):440-451, October 1991.

D. Kuck, R. Kuhn, D. Padua, B. Leasure, and M. J.
Wolfe. Dependence graphs and compiler optimiza-
tions. In Conference Record of the Fighth Annual
ACM Symposium on the Principles of Programming
Languages, Williamsburg, VA, January 1981.

B. Leasure, editor. PCF Fortran: Language Definition,
version 3.1. The Parallel Computing Forum, Cham-
paign, IL, August 1990.

J. Li and M. Chen. Compiling communication-
efficient programs for massively parallel machines.
IEEE Transactions on Parallel and Distributed Sys-
tems, 2(3):361-376, July 1991.

R. Mirchandaney, J. Saltz, R. Smith, D. Nicol, and
K. Crowley. Principles of runtime support for parallel
processors. In Proceedings of the Second International
Conference on Supercomputing, St. Malo, France, July
1988.

C. Pancake and D. Bergmark. Do parallel languages
respond to the needs of scientific programmers? /EFE
Computer, 23(12):13-23, December 1990.

A. Rogers and K. Pingali. Process decomposition
through locality of reference. In Proceedings of the
SIGPLAN °89 Conference on Program Language De-
stgn and Implementation, Portland, OR, June 1989.

J. Rose and G. Steele, Jr. C*: An extended C language
for data parallel programming. In L. Kartashev and
S. Kartashev, editors, Proceedings of the Second Inter-
national Conference on Supercomputing, Santa Clara,

CA, May 1987.
M. Rosing, R. Schnabel, and R. Weaver. The DINO

parallel programming language. Journal of Parallel
and Distributed Computing, 13(1):30-42, September

15

(31]

(32]

[33]

[34]

(33]

(36]

37]

1991.

D. Socha. Compiling single-point iterative programs
for distributed memory computers. In Proceedings of
the 5th Distributed Memory Computing Conference,
Charleston, SC, April 1990.

Thinking Machines Corporation, Cambridge, MA. CM
Fortran Reference Manual, version 5.2-0.6 edition,
September 1989.

P.-S. Tseng. A parallelizing compiler for distributed
memory parallel computers. In Proceedings of the SIG-
PLAN 90 Conference on Program Language Design
and Implementation, White Plains, NY, June 1990.

M. J. Wolfe. Optimizing Supercompilers for Supercom-
puters. The MIT Press, Cambridge, MA, 1989.

M. J. Wolfe. Semi-automatic domain decomposition.
In Proceedings of the 4th Conference on Hypercube
Concurrent Computers and Applications, Monterey,

CA, March 1989.

J. Wu, J. Saltz, S. Hiranandani, and H. Berryman.
Runtime compilation methods for multicomputers. In
Proceedings of the 1991 International Conference on
Parallel Processing, St. Charles, IL, August 1991.

H. Zima, H.-J. Bast, and M. Gerndt. SUPERB: A
tool for semi-automatic MIMD/SIMD parallelization.
Parallel Computing, 6:1-18, 1988.

