
Adding MPI Parallelization to SUIF

CSC791A Final Project
Todd Gamblin & Prachi Gauriar

http://www4.ncsu.edu/~pgauria/csc791a/

Introduction
For our final project, we intend to modify Stanford’s SUIF Parallelizing Compiler
framework to generate MPI code. MPI is the de-facto standard for distributed-memory
multiprocessing. While SUIF’s optimizations are currently designed for shared-memory
multiprocessors, we would like to show that with some changes they can be retargeted for
distributed memory while maintaining acceptable performance.

The SUIF Compiler Framework
The Stanford University Intermediate Form (SUIF) Compiler is a parallelizing,
optimizing compiler. It can take programs in Fortran, C, or Java and compile them into
C, Alpha assembler, or x86 assembler code. This code is linked with a runtime library
that facilitates communication between processes through shared memory.

In contrast to parallelizing compilers for vector processors, which search for fine-grained
parallelism over individual data elements, SUIF’s optimizations attempt to find coarse,
loop-level parallelism. This is necessary because finer granularity would result in too
much communication over the memory bus, slowing down the system.

We believe that SUIF is a good candidate for modification because it is modular. SUIF is
extensively documented, and modifications are encapsulated into passes. The researcher
need only design a pass specifying the transformations to be carried on the SUIF code,
and he can focus on his algorithm rather than complicated integration details.

MPI
The majority of today’s parallel scientific codes are written using the Message Passing
Interface, or MPI. MPI is designed for distributed-memory machines, and rather than
referencing common memory locations, processes using MPI specify communication
explicitly. MPI provides calls specifying what communication is to take place, and the
implementation takes care of how the communications occur. Typically, messages are
transferred between processors over the network.

Because communication must be specified explicitly, distributed-memory interfaces like
MPI are generally considered more difficult to program with than shared-memory
systems. Compiler automation of distributed-memory parallelization would help to solve
this problem.

Parallelizing Loop Optimizations
Hiranandani et al. have addressed the subject of distributed-memory parallelization
extensively in their work on the Fortran D compiler [3]. Fortran D is a predecessor to the
modern High Performance Fortran (HPF). Hiranandani shows that nested DO loops for a

number of scientific computations can be parallelized through four phases of program
analysis: dependence, data decomposition, partitioning, and communication. The parallel
loops generated contain send and receive communication calls for distributed-memory
environments.

Goumas , et al. [1] have revisited the loop tiling problem, and they have shown that
selecting properly sized parallelopiped tiles instead of simple squares can yield optimal
performance with respect to communication cost or idle processor time.

Project Plan
We have divided our project plan into the following phases:

1. Select a simple tiling example from either the Haranandani or Goumas paper, and

examine it in its optimized and unoptimized form.

2. Become familiar with SUIF’s runtime parallel library, and determine how well it
maps onto MPI. For now we will go with the most straightforward mapping, without
concern for granularity of parallelism.

3. Get our simple tiling example working as a SUIF Pass with the modified runtime
library. This may be inefficient due to overly fine-grained parallelism.

4. Become familiar with SUIF’s analysis passes, and modify them so that we detect
coarser-grained parallelism. Re-run the pass from step 3, and compare performance.

5. Time permitting, extend our passes to include more complicated tiling schemes and
Goumas, et al.’s parallelopiped tiles.

Works Cited
1. G. Goumas, N. Drosinos, M. Athanasaki, N. Koziris. Automatic Parallel Code

Generation for Tiled Nested Loops. In Proceedings of the 2004 ACM Symposium
on Applied Computing.

2. M.W. Hall, J. Anderson, S. Amarasinghe, B. Murphy, S-W. Liao, E. Bugnion, and M.
Lam. Maximizing Multiprocessor Performance with the SUIF Compiler. In
Computer volume 29 number 12.

3. S. Hiranandani, K. Kennedy, C.-W. Tseng. Compiling Fortran D for MIMD
Distributed-Memory Machines. In Communications of the ACM: vol 35, number 8.
1992.

