
CSC791A Final Project Report 2 
Todd Gamblin & Prachi Gauriar 

 
Milestones 
 
We had two main goals for this phase of the project.  First, we wanted to find a parallel 
code for which both OpenMP and MPI versions exist.  We wanted to find code that could 
serve as an example for the transformations that we plan to write in SUIF.  Second, we 
wanted to familiarize ourselves with the SUIF framework and set up a development 
environment for writing SUIF passes. 
 
1. Selected model program from NAS benchmarks for parallelization 
 
We looked at the NAS Parallel Benchmarks for parallel code representative of the 
transformation we wish to write.  Essentially, we want to modify SUIF’s parallelizing 
framework to find coarser grain parallelism and to insert communication calls in MPI to 
synchronize data between iterations of loops, rather than simply inserting OpenMP 
pragmas and assuming shared memory.  The NAS Benchmarks are simplified versions 
real-world computational fluid dynamics code. They are well-suited for our purposes, as 
for many of the benchmarks sequential, OpenMP, and MPI code is provided.  This gives 
us an idea of the coarseness of parallelism necessary for shared and distributed memory 
implementations, and of how we will need to modify SUIF’s parallelizing code. 
 
We have looked through all of the NAS benchmarks and selected MG (a Multigrid 
solver) to work from.  It contains four key routines: a smoother (psinv), a residual 
calculator (resid), a residual projection (rprj3), and an interpolation routine (interp).  
These routines all perform some computation, and then synchronize data values between 
the memories of different processors with communication routines. 
 
In the case of the OpenMP version, the main compute loops of these four routines are 
parallel, while in the MPI version they are sequential.  This is a good example of fine vs. 
coarse-grained parallelism: the designers felt that in the MPI version it was not worth it to 
execute the compute loops in parallel, while in the OpenMP version the processors are 
tightly coupled enough to get some benefit from this.  The communication between 
processors in the MPI version comes in the communication wrapper routines, where data 
is synchronized between processors for the next stage of the multigrid method.  In our 
next phase we will look into converting these high-level observations into formal analysis 
and integrating them into SUIF. 
 
 
2. Built SUIF 
We have successfully compiled and tested SUIF 2 on Red Hat Enterprise Linux 3.  This 
was nontrivial, as SUIF development stopped in 2000.  The most recent version of SUIF 
is incompatible with current compilers, and requires that many nonstandard libraries be 
compiled in addition to the basic SUIF install.  To complicated matters, many of these 
libraries exhibit incompatibilities with current compilers as well.  To build successfully 



on our system, we had to downgrade to gcc version 2.96, and then painstakingly modify 
portions of SUIF and the Omega dependence analysis library. 
 
Once we built SUIF, we were able to successfully compile a nontrivial C file into SUIF 
code.  Now that we have a stable environment, we should be able to move quickly to the 
development stages of the project. 
 
 
3. Learned to write SUIF Passes 
Despite the complexity of building SUIF, it is extensively documented and has a modular 
architecture. Modifications to SUIF are written as passes, and Prachi read over the 
documentation for creating these and created a summary that we can work from in the 
next phase.  We include it in our report here to provide an idea of what we have learned 
about SUIF so far. 
 
 Since our last progress report, I have been studying the SUIF2 Infrastructure 

documentation in order to identify the most essential classes and methods for adding MPI 
to SUIF.   In particular, I was interested in what classes were required to operate on 
functions independently, insert code, and modify control flow. 

 SUIF provides two options for those that want to extend SUIF.  One may either create a 
pass, which operates on code using the existing intermediate representation defined by 
SUIF, or one may extend the intermediate representation itself due to the fact that the 
existing representation is inadequate.  As it is highly unlikely that we will need to extend 
the current IR, I focused on what was required to create a pass. 

 Creating a pass itself in SUIF is fairly straightforward.  Since we won't be doing any 
interprocedural analysis, we need only subclass the PipelinablePass class, which 
would allow us to apply our transformations on each procedure independently.  As our 
strategy will most likely analyze each procedure definition, we will probably override the 
do_procedure_definition, and perform some analysis on the code in the 
specified ProcedureDefinition object.  This object contains all the information 
relevant to representing a procedure, including its symbol, parameters, body, local 
definitions, and symbol table for the procedure scope.  Of these, the most important is the 
code in the body, an object of class ExecutionObject that contains the code for the 
body of the procedure. 

 The ExecutionObject has two major subclasses: Statement and Expression.  
A Statement represents code that does not return a value, whereas an Expression 
does have a return value.  Both of these classes have a variety of subclasses for the 
different types of statements and expressions.  Of particular interest for us will be the 
high-level control flow statements, such as IfStatement, WhileStatement, and 
ForStatement, as well as LoadVariableStatement, 
StoreVariableStatement, CallStatement, EvalStatement, 
UnaryExpression, and BinaryExpression.  Each of these classes contain 
information specific to the code they represent.  For example, a WhileStatement 
contains the iteration condition, loop body, and labels for continuing or breaking. 

 
 
 



Open Problems & Future Steps 
 

1. Learn more about the SUIF dependence framework 
We will need to look at SUIF’s dependence analysis framework in-depth to 
determine how loops are parallelized and OpenMP calls are inserted into SUIF 
output.  Moreover, we will need to determine whether this analysis can be 
modified in-place to suit our needs, or whether we need to write an entirely new 
pass.  I see two possible outcomes here, and we’ll need to decide on one in the 
next phase: 
 

a. SUIF’s analysis is not sufficient, and we’ll need to add our own pass to 
detect more coarse-grained parallelism, in addition to a pass to insert valid 
MPI calls. 

b. SUIF’s analysis will detect the kind of parallelism we need for MPI 
communications, and we can devise a way to use this information in our 
own pass to insert MPI calls. 
 

2. Write simpler versions of the Sequential, MPI, and OpenMP versions of MG in C 
The multigrid code we have looked at is long and will be cumbersome to use for 
testing with SUIF.  We will need to extract the important loops and make test 
programs to feed to SUIF.  We can start with the sequential version, compile it, 
and see what kind of OpenMP code SUIF produces.  We can then compare this to 
the OpenMP versions of the multigrid code, and devise a mapping to MPI. 
 

3. Start developing SUIF code 
Once we have devised a plan as per steps 1 and 2 above, we can begin developing 
with SUIF.  We hope to be ready to start by the end of the next project phase. 
 

 


