
David Fiala
Nov. 14, 2010

CSC 766 Class Project
Report #2

My Project
Build PTX backend for pseudo language from HW2 and implement a new construct for loop parallelism
(PARALLELFOR construct)

Overview of Work to Date
Early on I identified a few key pieces that would be the foundation of this project and were a critical
stepping stone to creating PTX code and debugging it. Namely, I needed to design a host application that
would load, run, monitor, and support the GPU PTX code that is generated from my PSEUDO-to-PTX
compiler. Additionally, it would be necessary early on for me to be able to debug my PTX code so I also
decided that implementing READ/WRITE functionality was an imperative task.

At this point I have designed and implemented a generic host application that will run my compiled PTX
code. Furthermore, a specialized circular buffer has been designed to allow communication between the
host and the GPU application. I will describe the techniques used in the following section.

Solved Issues
Host Application
Unlike traditional CUDA programs, the host application for this project required the ability to
dynamically load a GPU kernel and perform asynchronous streaming operations. The regular CUDA
Programming API does not allow dynamic loading of PTX code or compiled CUBIN code so it was
necessary to drop to a lower level and use the CUDA Driver API (cu). Using the driver API I am able to
dynamically load PTX from an external file or directly embed the PTX code in to the produced binary
thereby allowing my PSUEDO compiler produce (generate code, compile) a single executable with all
functionality built in. Additionally this allows me to lose my dependency on nvcc and compile with only
the NVIDIA libraries and cuda include files. Gcc can be used for the entire compilation process.

IO Communication between Host and GPU
The pseudo language itself provides two commands to read a number from STDIN and then write a
number back to STDOUT. Since the GPU itself has no way to access the host’s IO functionality, it was
necessary to implement robust communication functionality in both the host and the generated PTX
code itself. Neither the GPU nor CPU have direct access to each other’s memory, but the CPU can copy
to and from the GPU’s global memory via the driver API. This provided me the option to store two
buffers (one for input, one for output) on the GPU’s global memory that could then be updated by
either the GPU or the CPU. Special care had to be taken to ensure that both the CPU and GPU code
cooperated with each other to ensure that no synchronization problems are introduced.

For each communication buffer I used a circular array to mitigate many synchronization problems. Since
there is no way to ensure any synchronization between the host and GPU, I modify the circular buffer
only in ways that would prevent a synchronization problem by only allowing the CPU and GPU to write
to exclusive data elements. However, overlapping reads will pose no problems due to ordering.

David Fiala
Nov. 14, 2010

CSC 766 Class Project
Report #2

Allowing Parallel IO with a Running Kernel
Since each circular buffer has a fixed maximum size, it is necessary to allow both the host and GPU to
write and extract data from the buffers while the GPU kernel is still running. To allow for this, I had to
parallelize the host CPU application (OpenMP was used) to run a separate thread that reads data from
STDIN and communicated it back to the GPU thread so that it can be pushed on to the GPU’s input
circular array. Likewise, the CPU host code has to constantly check the GPU’s output array for any new
data and extract it (print it to stdout on host). A final consideration was to deal with instances where
either the input or output buffer get full. Eg: The host provides data to the GPU faster than it can
process it, or the GPU provides data faster than the CPU can extract it.

This part of the project proved especially time consuming to implement as there needed to be heavy
cooperation between the host (code written in C, but depends off of the ability to read data from the
GPU in a asynchronous fashion) and the PTX code that also reads and writes the global buffers. To allow
the host to copy data while the kernel itself is still running, an additional GPU stream had to be created
and all IO operations where asynchronously run from this stream in order to not block waiting for the
kernel to finish. (The kernel may not finish if it is waiting on new IO! Quite a chicken-egg problem.)

Despite the complications of the IO, I have implemented robust CPU and corresponding PTX code that
can perform IO flawlessly. Additionally, I have written special test cases to ensure that filling a host
buffer or a GPU buffer does not break the applications. The host side will continue to try to add a
outstanding data to the buffer if it is full, and on the GPU side the write function will also continue to try
to put data in the buffer until the host has freed up a spot.

The PTX read/write code is written as PTX functions (They themselves are simply included in the
generated code and are callable in PTX assembly.)

Pseudo Language Modifications
The pseudo language has been modified to add the PARALLELFOR construct as outlined.
An additional modification has been made to allow variables to be declared prior to use. This allows the
compiler to allocate memory needed for variables without the need of two passes or dynamic
generation.

Open Problems
READ/WRITE code can not be executed from within a PARALLELFOR block. There are a couple
workarounds, but I do not see the advantage:

1. One workaround is to have all threads return the same value when a READ is called.
Unfortunately there is no equivalent for the WRITE command.

2. Require that each READ/WRITE be run as a critical section. Unfortunately this type of problem
has received much discussion on NVIDIA forums and is generally frowned down upon; the
answer is to seemingly never try to perform these types of critical sections on a GPU. (Bad
outcomes/deadlock can occur)

My recommendation is to simply perform all READs and WRITEs in the sequential areas.

David Fiala
Nov. 14, 2010

CSC 766 Class Project
Report #2

Another problem detected is that a GPU kernel has a timeout of several seconds. (Perhaps 10?) After
this time the kernel will forcibly exit. This should only be a problem with programs that are human
interactive. Otherwise the code should finish before the timeout occurs!

The memory problem: To allow more than 512 threads, global memory is being utilized to mitigate any
synchronization/shared-memory-copy problems. For each thread to have some “private” memory that
gets copied in to faster shared memory during a parallel for loop I’ll need to somehow calculate how
much memory is available, and if we can actually permit all threads to allocate enough shared memory
to honor the user’s request.

Remaining Milestones
November 19th: Finish implementing all basic PSUEDO-language commands in PTX.
November 26th: Fully implemented PARALLELFOR (eg: handles shared/private data flawlessly)
December 3rd: (date?) Present final project.

	Host Application
	IO Communication between Host and GPU
	Allowing Parallel IO with a Running Kernel
	Pseudo Language Modifications

