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Final Report 

In an exercise to demonstrate and explore the possibilities of integrating GPU technologies into existing 

compiler frameworks, a simple pseudo language compiler framework has been developed and enhanced 

to include PTX code generation for simple parallel for loop constructs.  As described below this effort 

demonstrates both the feasibility and profitability of adding data parallelism via GPU support to even to 

a simple and limited language.  The intent of such an exercise is to explore the issues and benefits of 

integrating such code generation into an existing compiler framework.   This report contains a final 

description of the compiler framework, a basic analysis of some simple performance tests and some 

concluding remarks concerning the state of the industry.   

Completed Framework 

While it may be desirable to utilize several open source compiler tools to manage PTX module 

generation, the current state of these tools and LLVM add-ons are not such that they can be integrated 

in a project with a short development cycle.  Instead the tools included with the CUDA SDK have been 

utilized to generate the PTX modules via output from the compiler front end.  The compiler front end 

has been separated into two parts: the first pass generates the host code, and the second generates a 

.cu module.  This .cu source is then used to generate a .ptx module.  Figure 1 demonstrates the process 

of code generation and shows which tools are referenced.   

 

Figure 1  Pseudo language compilation framework 



This design minimizes the number modules generated for each pseudo language program and also limits 

the tool requirements to a manageable set.  One limitation which should be noted in the current version 

is that the number of PTX modules (and therefore the number of parallel loops) for each program is 

limited to one.  This limitation is easily resolved by numbering the parallel loops and then generating the 

corresponding PTX modules; however, not having this functionality does not prevent the validation of 

these concepts. 

At run time, a pre-compiled native library is accessed by the host byte code whenever a parallel for loop 

is encountered.  This native library then loads the ptx module dynamically and invokes the device 

function.  A key feature of this design is that the native method can be implemented with a completely 

generic interface and thus not recompiled for each pseudo language program.  The parameters for this 

interface include the data, the iteration boundaries and the PTX module name.    Figure 1 below shows 

the run time framework used by the pseudo language programs.   

 

Figure 2 Runtime framework for pseudo language programs 

In this design, the native library (indicated by “x86 Shared Library”) and the CUDA Host module are both 

pre-compiled and not modified with each pseudo language programs.  The only property contained 

within these modules is the thread block size.  The number of blocks is then a function of the thread 

block size and the number of iterations in the loop (Max/Thread Blocks).  Prior to module invocation, the 

data for each pseudo language program is copied to a 2D Java array which is then copied again to a 

linear C array.  This C array contains the host memory which is then copied to the GPU device prior to 

launching the device function.  The PTX module references these data values using offsets based on the 

specified size of each array within the pseudo language program.  The frontend compiler has been 

modified to take the maximum array size as a parameter which is used for both copying data as well as 

specifying the data offsets in the PTX module.  After the device function is complete, the data is then 

copied back in reverse order to the original pseudo language variables. 

 



Results and Discussion 

In order to test and compare the performance of programs compiled using the enhanced pseudo 

language framework a simple program with a number of computations contained a test for loop is 

implemented using both the traditional FOR loop and also the PARALLELFOR loop.  These programs were 

then organized and compiled with an increasing number of loop iterations (and data elements) to 

compare/analyze the execution time as a function of elements/(loop size).   The CUDA access library 

mentioned above was compiled with a hard-coded thread block size of 100 specified in a linear block 

definition so the loops smaller than 100 load a number of threads greatly exceeding those needed.   

These tests have been compiled and executed using test sizes ranging from 10 to 100000 and the results 

are illustrated in the chart below.   

 

Figure 1 Comparison of execution times for serial and parallel programs 

The figure above graphically shows the execution time for both the serial (baseline) and parallel 

execution modes.  From the chart, one can easily see that the serial execution time is linearly 

proportional to the number of data elements/iterations, where as the parallel execution are essentially 

constant.  It is important to note here that the pseudo language has no support for outputting the 

system time so the time markers used are outside the execution of the java VM within the test script 

itself.  Because of this, the java loading overhead is included in the execution times for both the serial 

and parallel execution results.  Also, the parallel versions incur a one-time overhead for loading the 

shared libraries.  This overhead should not be too significant, but it should be noted in the results.  In 

any event, the parallel execution mode demonstrates good performance compared to t he serial 
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versions.   Considering the lack of optimizations and a somewhat inefficient data movement design this 

is quite remarkable.  Therefore, had the purpose of this effort been to optimize the performance results, 

these figures could have been drastically improved.  

Conclusion 

Once again, the feasibility and profitability of implementing a PTX backend for even the simplest of 

programming languages has been demonstrated and validated with the results from this development 

effort.   While not all programs require large loops with tightly coupled data parallelism, the focus of this 

study are the language compilers which are used to generate a variety of programs structures.   

Likewise, the ever increasing popularity of hybrid programming environments requiring the ability to 

take advantage of data parallelism shows that this type of effort can be valuable even in commercial 

environments.  Such additions as those described in this report can greatly expand access to many fine 

grained parallelism constructs without requiring drastic development efforts or changes to existing 

programs.  Further enhancements to the framework developed herein should include improvements in 

the data movement process, PTX optimizations, and support for multiple parallel loops.  If the author’s 

expectations hold true, these and other additions, could only show further speed ups in the 

performance comparisons, which are only valuable for those readers that are still skeptical. 

 


