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1. Introduction 

Modern CPUs are equipped with SIMD instruction extensions like Intel’s MMX, SSE and ARM’s NEON. 

This means that the CPU can perform a computation on an array of data values in a single instruction 

cycle. Programs can leverage this capability by using vector instructions in their programs to gain better 

performance. 

To make use of these instructions, we developed a compiler for the pseudo language introduced 

through class assignments with auto vectorization capability. 

Following are the highlights of the compiler 

- Automatic detection of vectorizable instructions 

- Detects and vectorizes ZIV and SIV dependencies 

- Safe transformations in case of MIV and other non-linear array subscripts 

- Transforms the inner-most loop nest 

- Loop distributions when partial loop can be vectorized 

- Use LLVM backend to generate target code, which supports multiple target architectures 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



2. Implementation details 

2.1.  High Level Design 

 
 
 



2.2. Data Structures Used in Implementation 

 

 The properties of loop are stored in the data structure „loop‟ such as upper bound 
lower bound, index pointer to first instruction in the loop and so on. The data 
structure is shown below,  

 

typedef struct loop 

{ 

        char index[10]; 

        int isnormal;                

        int depth;  //depth is equivalent to level 

        int rdepth; 

        int lB,uB,step_size; 

        struct stmnt_or_loop *stmnt_start; 

        struct loop *parent_loop; 

}loop_t; 

 

 The properties of statement are stored in the data structure stmnt such as 
variable is scalar or array reference and so on.  

 
typedef struct stmnt 

{ 

        int type;               //0- arithmetic ; 2 - other 

        struct v_node *lhs;     //v_node ptr to a scalar or array variable 

        struct v_node *rhs;     //variables used in this statement 

        char *src_stat; 

        struct loop *parent_loop; 

}stmnt_t; 

 

 A very useful v_node data structure is used to represent the elements of the 
statement in the form of tree which is shown below. This data strcture forms the 
elements in the tree. Such tree is formed for each element. 

 
typedef struct v_node 

{ 

        int type;               //0-leaf 1-non-leaf 

        int subtype;            //for leaf which type of operand ; for non-leaf which operator 

        char sym[10];           //if leaf, this is the variable 

        struct v_node *left; 

        struct v_node *right; 

        struct v_node *scrpt_exprs[2];    //for arrays this is expr for max. 2 subscripts 

        double value; 

}v_node_t; 

 

 

 

 

 

 

 

 

 



 

2.3. Vector extensions and advanced pseudo compiler 
 

For intermediate representation of the instructions that are transformed, vector constructs were 
added to the pseudo language. 
 

- An array reference can be a range in the form lb:ub where „lb‟ and „ub‟ are arithmetic 
expressions which represent the lower and upper bounds respectively. So array 
references can be of the form a[10:20] or a[10*i:20*i] 
 

- Arithmetic operators for vector operands take the „range‟ in the form „op:range‟ where 
range is an integer specifying the length of the operands. For example +:16 specifies „+‟ 
operation on two operands of size 16 doubles 

 

- Assignment involving vector data must also be appended with size of data as in, 
a[11:20] :=:10 b[11:20] +:10 c[11:20] 

 
● range            aexpr : aexpr 
● vexpr            ID[range] 

                                             vexpr  ARITH_OP :INT  vexpr 
● assignment   ID[range]  :=:INT  vexpr  

 
 
The advanced compiler transforms code with normal statements + vector statements to LLVM 
IR code. In our processing sequence, it takes the intermediate .tmp file as input which is 
generated by vectorization phase and translates it into LLVM IR vector operations. LLVM IR 
supports vector operations in the form of vector data types and all the operations work on vector 
data types. More details of LLVM vector instruction are given in [1]. 
 
Abstract Syntax Tree 

The advanced pseudo compiler uses abstract syntax tree for the generation of LLVM IR. Since 

the range of a vector operation is associated with the operator and not with the operands, while 
parsing the operands this range is not known. So while parsing, all expressions are parsed into 
an AST which is transformed to LLVM IR operations later when the entire expression is parsed. 
This also facilitates generation of unnamed temporary variables in program order which is a 
requirement in LLVM IR. Abstract syntax tree also gives reusability and flexibility. 
 
 
         
 
 
 
 
 
 
 
 
 
 
 



 

 
2.4. Dependency Analysis 

 
It is a task of determining whether the statements within a loop body form data dependence with 
respect to array references. It consists of subscript analysis then followed by different tests to 
determine the dependencies within the statements. 
 
 
Subscript Analysis 

/*The array references in pseudo language are single dimensional also pseudo language does 
not perform aliasing.*/ 
In our program, the subscripts for array references are analyzed and classified as Zero Index 
Variable (ZIV), Single Index Variable (SIV). In SIV those are further classified as strong SIV 
<ai+c1, ai+c2>, weak zero SIV <ai+c1, c2>, weak crossing SIV <ai+c1,-ai+c2> and further as of 
general SIV <a1i+c1, a2i+c2>. 
Currently the indices are not classified for the Multiple Index Variable (MIV) category. 
Also, since pseudo language has single dimensional arrays, there is no need of analysis of 
coupling. 
 
Single subscript Tests 

For each subscript single subscript tests are applied such as ZIV, SIV and variants of SIV tests. 
The dependencies within statements are identified such as loop carried or loop independent 
dependencies. Also the distance and direction within subscripts of the array reference is 
obtained. 
 
The dependency graph is generated with statements in the loop as vertices and dependencies 
as edges. The properties of edge are - Loop carried (with level) or loop independent along with 
direction and distance vectors. 
 
 

2.5. Vector code generation 
 

This phase operates on the loop data structures and the dependence graph generated in previous 

pass. It analyses the dependences within the statements in the loops by applying the 'codegen' 

algorithm discussed in class. 

 

These are the steps performed: 

- Find strongly connected components and sort them in topological order 

- Analyze each SCC, if its cyclic emit out the k-level FOR loop. 

  and remove k-level dependencies and analyze further. 

- If statement is not cyclic generate vector statement. 

 
 
 
 
 
 



 

3. Test cases 
 

 Testing is divided into two parts: 
 
1. We first test whether vectorizable instructions are identified and are correctly 
transformed into vector instructions. 
2. Then we test whether the .tmp file generated(which contains vector additions) is 
correctly transformed to LLVM IR(.ll file) 
 
1. For the 1st part, following are some of the test cases been tested and their outcomes. 
Other test cases with more complicated array references and statements are provided in a 
separate file 
 

Functionality 
tested 

Input source code(.psd) Expected output Generated .tmp file 

ZIV subscripts FOR i:=1 TO 10 DO 
        a[j] := b[i] + c[1]; 
        c[j] := a[1] + a[j-1]; 
ENDFOR; 

FOR i:=1 TO 10 DO 
    a[j] := b[i] + c[i]; 
    c[i] := a[1] + a[j - 1]; 
ENDFOR; 

FOR i:=1 TO 10 DO 
   a[j] := b[i] + c[i]; 
   c[i] := a[1] + a[j - 1]; 
ENDFOR; 

Strong SIV FOR i:=1 TO 32 DO 
        a[i] := a[i-1] + c[i]; 
ENDFOR; 

FOR i:=1 TO 32 DO 
      a[i] := a[i - 1] + c[i]; 
ENDFOR; 

FOR i:=1 TO 32 DO 
     a[i] := a[i - 1] + c[i]; 
ENDFOR; 

Strong SIV 
('d' > loop- 
bounds) 

FOR i:=1 TO 32 DO 
        a[i] := a[i+32] + c[i]; 
ENDFOR; 

a[1:32] :=:32 a[1+32:32+32] +:32 
c[1:32]; 

a[1:32] :=:32 a[1+32:32+32] 
+:32 c[1:32]; 

Strong SIV(non-
integer 'd') 

FOR i:=1 TO 32 DO 
   a[3*i+1] := a[3*i+32] + c[i]; 
ENDFOR; 

a[3*1+1:3*32+1] :=:32 
a[3*1+32:3*32+32] +:32 c[1:32]; 

a[3*1+1:3*32+1] :=:32 
a[3*1+32:3*32+32] +:32 c[1:32]; 

Strong SIV 
 

FOR i:=1 TO 32 DO 
a[3 * i + 1] := a[3 * i + 61] + 
c[i]; 
ENDFOR; 

FOR i:=1 TO 32 DO 
a[3 * i + 1] := a[3 * i + 61] + c[i]; 
ENDFOR; 

FOR i:=1 TO 32 DO 
a[3 * i + 1] := a[3 * i + 61] + c[i]; 
ENDFOR; 

Weak zero SIV FOR i:=1 TO 32 DO 
        a[i] := a[i] + c[i]; 
        d[i] := a[10] + c[i]; 
ENDFOR; 

FOR i:=1 TO 32 DO 
a[i] := a[i] + c[i]; 
d[i] := a[10] + c[i]; 
ENDFOR; 

FOR i:=1 TO 32 DO 
a[i] := a[i] + c[i]; 
d[i] := a[10] + c[i]; 
ENDFOR; 

Weak zero SIV 
('d' outside 
array bounds) 

FOR i:=1 TO 32 DO 
        a[i] := a[i] + c[i]; 
        d[i] := a[80] + c[i]; 
ENDFOR; 

a[1:32] :=:32 a[1:32] +:32 c[1:32]; 
FOR i:=1 TO 32 DO 
d[i] := a[80] + c[i]; 
ENDFOR; 

FOR i:=1 TO 32 DO 
d[i] := a[80] + c[i]; 
ENDFOR; 
a[1:32] :=:32 a[1:32] +:32 
c[1:32]; 

Weak zero SIV 
('d' not an 
integer) 

FOR i:=1 TO 32 DO 
        a[2*i] := a[2*i] + c[i]; 
        d[i] := a[9] + c[i]; 
ENDFOR; 

a[2*1:2*32] :=:32 a[2*1:2*32] +:32 
c[1:32]; 
FOR i:=1 TO 32 DO 
d[i] := a[9] + c[i]; 

FOR i:=1 TO 32 DO 
d[i] := a[9] + c[i]; 
ENDFOR; 
a[2*1:2*32] :=:32 a[2*1:2*32] 



ENDFOR; +:32 c[1:32]; 

Weak crossing 
SIV('d' is 
integer) 

FOR i:=1 TO 32 DO 
        a[-2*i+1] := a[2*i+13] + 
c[i]; 
ENDFOR; 

FOR i:=1 TO 32 DO 
a[-2 * i + 1] := a[2 * i + 13] + c[i]; 
ENDFOR; 

FOR i:=1 TO 32 DO 
a[-2 * i + 1] := a[2 * i + 13] + c[i]; 
ENDFOR; 

Weak crossing 
SIV('d' is 
integer+1/2) 

FOR i:=1 TO 32 DO 
        a[-2*i+1] := a[2*i+15] + 
c[i]; 
ENDFOR; 

FOR i:=1 TO 32 DO 
a[-2 * i + 1] := a[2 * i + 15] + c[i]; 
ENDFOR; 

FOR i:=1 TO 32 DO 
a[-2 * i + 1] := a[2 * i + 15] + c[i]; 
ENDFOR; 

Weak crossing 
SIV('d' outside 
loop bounds) 

FOR i:=1 TO 32 DO 
        a[-2*i+1] := a[2*i+257] 
+ c[i]; 
ENDFOR; 

a[-2*1+1:-2*32+1] :=:32 
a[2*1+257:2*32+257] +:32 
c[1:32]; 

a[-2*1+1:-2*32+1] :=:32 
a[2*1+257:2*32+257] +:32 
c[1:32]; 

Weak crossing 
SIV('d' not a 
integer or 
int1/2) 

FOR i:=1 TO 32 DO 
        a[-2*i+1] := a[2*i+14] + 
c[i]; 
ENDFOR; 

a[-2*1+1:-2*32+1] :=:32 
a[2*1+14:2*32+14] +:32 c[1:32]; 

a[-2*1+1:-2*32+1] :=:32 
a[2*1+14:2*32+14] +:32 c[1:32]; 

General SIV FOR i:=1 TO 32 DO 
        a[2*i+1] := a[3*i+15] + 
c[i]; 
ENDFOR; 

a[2*1+1:2*32+1] :=:32 
a[3*1+15:3*32+15] +:32 c[1:32]; 

a[2*1+1:2*32+1] :=:32 
a[3*1+15:3*32+15] +:32 c[1:32]; 

General SIV FOR i:=1 TO 32 DO 
        a[2*i+15] := a[3*i+1] + 
c[i]; 
ENDFOR; 

FOR i:=1 TO 32 DO 
a[2 * i + 15] := a[3 * i + 1] + c[i]; 
ENDFOR; 

FOR i:=1 TO 32 DO 
a[2 * i + 15] := a[3 * i + 1] + c[i]; 
ENDFOR; 

 
2. For the 2nd part, we test whether the .tmp files are correctly translated by our advanced 
pseudo compiler to LLVM IR using vector instruction. These test cases are provided in the file 
test_adv_pseudo.tmp 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



4. Performance Analysis 
 
We tested our auto vectorizing compiler on sparcv9(with VIS) and x86 (with SSE) platforms. 
According to theoretical analysis, for intel SSE, two instructions on double values execute in one 
clock cycle, which should ideally give double or 100% speed up. But the presence of serial 
components and also optimizations performed by llvm compiler (with and without vectorization) 
makes performance evaluation difficult. Still for our simple test case we noticed a performance 
gain. 
In our simple benchmark code, there is a simple FOR loop with 100000 iterations containing 
single statement of addition which could be vectorized, and there are 2 FOR loops of 100 
iterations to initialize and write respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The time in seconds for execution of vectorized and non-vectorized benchmark program for the 
two SIMD architectures are as shown below, 

 

  
 
 
Thus considering the serial or non vectorizable component in the program and the also other 
optimizations applied by LLVM compiler, we found a speed up of 25.5% 
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FOR i:=0 TO 999 DO 
        b[i]:=i; 
        c[i]:=i; 
ENDFOR; 
 
FOR i:=0 TO 99999 DO 
        a[i]:=b[i]+c[i]; 
ENDFOR; 
 
FOR i:=0 TO 999 DO 
        WRITE(a[i]); 
ENDFOR; 

 



5. Task Division 
Vivek Deshpande Kishor Kharbas 

Phase 1 

 Studying and understanding LLVM 
IR, tools 

 Abstract syntax tree generation and 
evaluation. 

 Action associated with “for loop” of 
parser 

 Study of dependence analysis and 
vectorization theory 

Phase 1 

 Studying and understanding LLVM 
IR, tools 

 Implementing actions associated 
with rules in parser(except for loop) 

 Study of dependence analysis and 
vectorization theory 

Phase 2 

 Implementation of Dependency 
analysis and graph generation. 

 Abstract Syntax Tree and grammar 
for vector constructs in Pseudo 
compiler. 

 Implementation of Actions and for 
Array access in pseudo compiler 

 Performance Analysis and Testing 

Phase 2 

 Implementation of basic compiler 
for loop scanning and data 
structure creation. 

 Implementation of Vectorization 
Algorithm, along with graph 
analysis and graph operations such 
as finding SCC and topological 
sorting. 

 Implementation of productions, 
grammar for vector constructs in 
pseudo compiler 

 Testing and Performance Analysis 
 

 
 
 

6. Open Issues and Future Work 
 

● Handle dependency tests for references having MIV subscripts. 
● Vectorization with loop transformations. 
● Currently innermost loop is considered for vectorization; this could be extended for 

arbitrary loop nest. 
● The pseudo language could be extended for more than one dimension arrays and such 

array references could be analyzed. 
● Few tests resulted in segmentation faults, because of issues with the memory alignment 

required for vector instructions. 
 

7. Conclusion: 

 
Successfully implemented an auto-vectorizing compiler for pseudo language with the help of 
LLVM backend. 
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