Supporting Data Parallelism in Matcloud:
Project Report I

Tasks Completed:

Up to now we have finished several prerequisite tasks in our Matlcloowefrerk, such
as designing and implementing the for/parfor node for the abstract syatpatrd finalized
our algorithm to generate code for parfor blocks. We are in the middle of mgiéng the
parfor block code generation. Tasks being finished include:

e Parsing for/parfor blocks and convert them into AST trees. (XW)

e Adding code to launch nvcc and load dynamic libraries at run-time. (YZ)
e Designing code generation algorithms for parfor blocks. (XW & YZ)

e Generating host-side CUDA code. (XW & YZ)

Challenges and Solutions:

The biggest challenges come from analyzing the code inside parfor bidaffeanerate
CUDA source code for them. Though Matlab data types can only be mathegsdimen-
sions do not need to be declared before usage. Therefore we needvi@lk through the
parfor block to determine the maximum possible dimension of variables on ttieatiEs
set and pre-allocate them before launching the CUDA kernel calls. ¥eon@e, for the
parfor code section below, take the first statement as an example, wéressbciate the
induction variable i of vector a with its maximum value 100 to determine the memory re-
quirement of vector a is 100 float/double numbers. However, for thengestatement, the
maximum index of vector a is seen when i equals its minimum value 0. Theré&orsch
assignment, we need to correlate the induction variable with its minimum and maximum
values and execute the AST of the vector index expression to determinexiraunapos-
sible memory requirement. Moreover, we further need to walk througly statement in
the parfor body and compare their memory requirement, so that we cantallmwaugh
memory for every statement. For the example below, only after the third statearente
determine the maximum memory required is 10,000 when i equals 100.

parfor i=0:2:100
a(i) =1i;

a(100-i) i
a(ixi) =
endf or

0;

Based on above considerations, we finalized our algorithm to geneded@oparfor
blocks, shown with the pseudo code below. We first find the loop indexethé parfor
loop (“i” in the previous example). We then analyze the memory requiremediseasssed
above, and generate code for each statement. In the prototype, foteysanfor loop, we
creates a grid of blocks with fixed size 256. Each GPU threads repseses valid value
of the induction variable in the loop. To map the thread Id into loop indexes energte
code in the following template

int gid = threadl dx.x + bl ockldx.x * bl ockD m x;
int i = starting_value + gid * step_size;

where startingvalue and stesize are 0 and 2 extracted fram= 0 : 2 : 100.

As for the host function signature, we need to pass all buffer pointéhetdestination
and source variables appeared in the block, as well as their dimensian $tzese sizes
are used for address calculation for multi-dimensional matrixes.

find | oop i ndexes and their ranges
foreach |ine of code do

if not an assignnent

continue; // non-assignnent conmmands are ignored

anal yse the nmaxi mum i ndex;
generate code for the destination sub-tree;
generate code for the source sub-trees;
endf or

generate the host code;

conpile as a dynanmic library with nvcc
all ocate nmenory for destination nmatrixes
| oad dynamic library at run-tine

call generated function

