Supporting Data Parallelism in Matcloud:
Final Report

Yongpeng Zhang, Xing Wu

1 Overview

Matcloud is an on-line service to run Matlab-like script on client’s web beswisiternally
it is accelerated by CUDA-enabled GPUs to provide better performararecafculations
on large matrices, the performance margin is large enough to compenstte fatwork
delays that do not exist on locally installed Matlab. Previous work has fueeising on
one-to-one mapping between a script command and a CUDA kernel onylitaiis. How-
ever, there are cases when it is highly inefficient to do so. One examfue l®ops that
work on fine-grained matrix element at each iteration. Mapping single iterati@aCUDA
kernel is possible but it is against the massive data-parallel spirit of md@gleUs. There-
fore it is necessary to aggregate iterations into one CUDA kernel. Mergthwe latest
NVIDIA GPU (code name “fermi”) supports concurrent kernel exemu It improves the
utilization rate of GPU resource when single kernel is not in a large enscajk to fully
exercise the all cores in GPU. This feature brings up an opportunity &bexate operations
on smaller matrices, which are common in Matcloud.

In this project, we use compiling techniques to optimize our Matcloud framework.
Namely, our goal is to (1) build a just-in-compiler (JIT) framework to ac@tarfor loop
and (2) proposgarsection block (similar to parallel sections in OpenMP) in Matcloud to
exploit the concurrent kernel execution feature in the latest gene@is. The detailed
implementation is described in Section 2. In Section 3, we present some exp@itime
results. The task description and each person’s contribution are sho8ection 4 for
grading purpose. A few remarks about our future work can be fauSection 5.

2 Implementation

2.1 Parfor

We have implemented the support of the pardtieloop. User can use thmarfor keyword
to indicate that a loop should be parallelized. However, user need toeethstithere is no

dependence between loop iterations. We parallelizgdhier loop with GPU by assigning
iterations to different CUDA threads. The following pseudo code outlineg#neration
and execution of thparfor loop.

/* evaluate the nmenory requirements x/
foreach Iine of parfor |oop body do
if not an assignnent
conti nue; /* non-assi gnnment comrands are sinply ignored */
anal yze and update the nmaxi mum i ndex;
endf or
/* code generation x/
generate the kernel code and function signature;
generate iteration nmapping, boundary check, etc;
foreach |ine of parfor |oop body do
generate code for the destination sub-tree;
generate code for the source sub-trees;
endf or
generate the host code, block/grid sizes, etc;

/* just-in-time conpilation and execution =*/
conpile as a dynamc library with nvcc

al l ocate nmenory for destination natrixes

| oad dynanmic library at run-tine

To parallelize goarfor loop, one challenge is the automatic detection of matrix dimen-
sion. In Matlab scripts, matrices are not declared before being usexieféhe, we need
to analyze the input script and allocate a proper amount of memory for theesaim the
definition set before launching the generated kernel code. To adkthieproblem, we pre-
walk through theparfor block to determine the maximal possible dimension sizes for the
target matrices. Under the assumption that the matrix index value is linearlyated®ith
the value of the basic induction variable, we execute the matrix index eiqgmesgh the
minimum and maximum induction variable values to calculate the memory requirement fo
each statement. We update the memory requirement whenever a new maximumdis fo
until every statement inside thparfor loop is evaluated.

We then generated the CUDA host and kernel functions forpxéor loop. With
the detected maximum memory requirements, we allocate memory for each matrix in the
definition set, encapsulate the pointers and the loop specification (step, dodeipper
bounds) in a structure, and pass the structure to the generated raigiffuCurrently, we
fix the block size to 256 and use a one dimensional block topology. We theandgally
generate the grid size specification according to the total number of iteratitvesoriginal

parfor loop. In the generated kernel code, we consider the basic inductiaablarthe
lower loop bound, and the step size, and map a thread to an iteration with theirfigilo
eqguation,

iteration_id = (threadldx.x + blockldx.x * blockDimx) * step
+ | ower bound.

We further check the boundary condition in case there are more CUDAd#than the
number of iterations in thparfor loop by generating the following statement,

if(iteration_id > upper_bound) return;

In this way, we establish the mapping between CUDA threadsparfdr iterations. We
then walk through the origingbarfor loop again to generate the CUDA code for each
statement in the loop body. Finally, we compile the generated CUDA code asaanity
library with nvcc and launch it by loading the dynamic library at run-time.

2.2 Parsec

The realization of using multiple streams relies on the support from underlirzgitls that
we use. Fortunately, CUBLAS added an API for user to specify a stfeaamy subsequent
CUBLAS library calls:

cubl asSt at us cubl asSet Kernel Stream (cudaStreamt strean)

To useparsec, user needs to create a parsec block as shown in the script code below.
S5 and S6 can be run independently, therefore they can be put intsexdock. During
run-time, Matcloud can generate two GPU streams and assign each comniaeana s
The independence of commands insid®esec block is currently guaranteed by the user.

S1 a = rand(5, 4);
S2 b = rand(4, 3);
S3 c = rand(4, 3);
4 par sec

S5 d =a~* b;
S6 e = a * C;

S7 endsec

3 Experimental Results

We ran the following simple script on our Matcloud framework with GTX 280. &\o
ran a similar script written in for loop on a modern dual-core laptop installed withve.

=g==Cctave =fll=PNatcloud(Total) == Ilatcloud | Computation)

65536

—F
16384 %
g 209 #4’* = —
]
E 1024
o
~ 256
2 64
i i — ik
—
b
-
1 T T T T : : T
0 10 20 30 40 50 (=1h} 70

Iteration Count (M)

Figure 1: Matcloud vs. Octave

We varied the loop size (N) from 40,000 to 640,000 and compared theiugxedime,
shown in Figure 3. As we can see, the pure execution time is almost negligihfeacimg

to the compiling time. The total execution time in Matcloud is better than CPU version at
N greater than 12,000.

parfor i=0:1:N

a(i) =sin(i = 0.1);

b(i) = cos(i * 0.1);

c(i) =tan(i = 0.1);
endf or

Since GTX 280 is not a fermi architecture, it does not support coantikernel execu-
tion. We will skip the performance test fparsec.

4 Individual Contributions

] Task Description

| Effort* | Xing Wu | Yongpeng Zhang

Parfor loop parsing 2 100%
Parsection loop parsing 2 100%
Launch nvcc at run-time 1 100%
Design code generation algorithm for parfor 3 50% 50%
Predict variable dimensions 3 50% 50%
Generating CUDA kernel code 3 100%
Generating CUDA host-side code 3 100%
Manage CUDA streams 2 100%
Implement matrix operators (+,/) 3 100%
Implement matrix operators (-,*) 3 100%

11: easy; 2: medium; 3: complicated

5 Future Work

There are still a lot of room to improve our implementations.

e As shown in the experiment, compiling the parfor loop takes more time than the
execution time. This is a common issue in all JIT framework. The usual agiproa
is to cache compiled object file and reuse it whenever the same block isreeiml
again. Only by removing unnecessary compilng can the compiler time be amortized

and this approach is justified.

e Support the parallel reduction. To use parallel reduction, user omg teespecify
a variable and an operator for the reduction. Compared tpdHer loop, parallel
reduction requires the generation of the reduction tree for the CUDAekern

e Migrate our framework to fermi GPUs to demonstrate the benefits of psirsgction

block.

6 Appendix

In the Appendix, we show the mapping of one matlab script written in parfardo(Figure

6) to the cuda code (Figure 6).

g b W N -

© 0 N O g b W NP

=
o

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

parfor i=0:1:50000
a(i) = sin(ix 0.1);
b(i) = cos(ix 0.1);
c(i) =tan(i* 0.1);
endfor

Figure 2: Original Parfor Matlab Script

#include <stdio.h>
#include <math.h>
#include <cuda.h>
typedef struct {
int numArgs;
void s*arglist;
cudaStreant stream;
} Args;
typedef float MyKernelDataType;
__global _ void mykernel(MyKernelDataType a,MyKernelDataType b,
MyKernelDataTypex)
{

int i = (threadldx.x + blockldx.x blockDim.x) x 1 + O;
if (i > 50000)
return;
a[i]=sinf(ix0.1);
b[i]=cosf(ix0.1);
c[i]=tanf(ix0.1);
}
extern”C” void myparfor(Args«args)
{
MyKernelDataTyper a = (MyKernelDataType)args—arglist[O];
MyKernelDataTypex b = (MyKernelDataType:)args—arglist[1];
MyKernelDataTyper ¢ = (MyKernelDataType)args—arglist[2];
dim3 threads(256, 1, 1);
dim3 grids(196, 1, 1);
mykernek < <threads, grids, 0, argsstrean>>>(a,b,c);

Figure 3: Generated CUDA Code

