Supporting Parallelism in Mat-Cloud

Yongpeng Zhang
Xing Wu

1 Problem Description

This project is an important step to realize an efficient and full-fledged matlab
cloud service on GPUs. Based on our previous work that supports coarse-
grained matlab scripting, the focus of this project is to efficiently execute fine-
grained parallel for loops and sections on GPUs.

The major work of this project includes:

e Parfor: Parfor is a keyword in Matlab that allows user to write a loops
for a statement or block of code that executes in parallel.

e Parallel Section: Parallel Section is a pragma that indicates there is no
dependency between multiple code blocks and therefore these blocks can
be executed concurrently. This pragma is not available in native Matlab
script. But we think it worths to add to MatCloud to further exploit the
computation power of GPUs.

2 Approaches

The support of loop structure, the premise of the proposed work, is missing in
the current MatCloud implementation. Therefore, the first task of the work is
to enhance the existing parser and the Abstract Syntax Tree (AST) traversal
algorithm to correctly handle the loop structure inside the user script.

Once loop is supported, user can replace the for keyword with parfor when-
ever there is no dependency between loop iterations. In the simplest case, it
is the responsibility of the user to guarantee that loops are dependency-free.
To parallelize the loop structure, we can assign each iteration of the loop to a
single GPU thread. The operand matrices will be stored in the global memory
of the device, so that each thread can easily access the data pertaining to the
iteration assigned to it. During the code generation, the data placement and
memory allocation should be carefully designed such that frequently accessed
data is placed in the low-latency shared memory and temporary automatic vari-
able is also created whenever necessary to take advantage of the fast on-chip
registers. Furthermore, we also propose to implement the detection of loop de-
pendency, which, in the first place, enables us to warn the user of any abuse



of the parfor keyword, and moreover, helps us to automatically detect any po-
tential parallelism in the input script. The dependency detection can be done
by analyzing each loop, constructing direction vector and distance vector to
identify any RAW/WAR/WAW dependencies between iterations.

Besides the support of the basic parallel for style loop parallelism, we also
propose to support the reduction across loop iterations, e.g., the accumulation
of the results of each iteration. In order to use this feature, user should specify
the way the reduction is done, including at least the operation and the tar-
get variable. The challenge of reduction over the aforementioned simple loop
parallelizing is the generation of the reduction algorithm. A carefully designed
reduction algorithm can be several times faster than a naive one. An even larger
challenge of reduction is the detection of the reduction logic. We eventually wish
to combine the automatic detection of loop parallelism and reduction logic, so
that the users can write their script without explicitly specifying the parallelism
inside their implementation.

The acceleration of Parallel Section comes from the multi-stream feature in
the latest generation of graphic card (fermi) in nVidia. Our idea is to map
independent section blocks to multiple stream objects in CUDA. It involves
certain amount of code generation and run-time support. Care must be taken
to handle synchronizations between streams to guarantee data readiness after
the parallel sections. This benefits the most when each section block is relatively
small and cannot consume all computation resource by itself alone. Inside the
parfor loop, we need to consider the case when any use of coarse-grained library
call is used inside iteration. Those library calls are mapped into kernels already.
Because we cannot call another kernel inside CUDA thread, we will map this
kind of for loops into multiple streams if possible.

Finally, for all the proposed topics above, we need to investigate the tech-
nique to launch cuda compiler on-the-fly and load binaries dynamically. We
think this can be done by compiling CUDA into dynamic library.

3 Milestones

) For YZ
For /while loop While Toop | YZ Oct. 31
Detect Reduction | XW Nov. 12
Code Generation | XW Nov. 21
Code Generation | YZ Nov. 12
Run-time support | YZ Nov. 21
Dependence Detection XW YZ Nov. 30

Demo XW YZ Dec. 3

Parfor

Parallel Section




