
Supporting Data Parallelism in Matcloud:
Final Report

Yongpeng Zhang, Xing Wu

1 Overview

Matcloud is an on-line service to run Matlab-like script on client’s web browser. Internally
it is accelerated by CUDA-enabled GPUs to provide better performance. For calculations
on large matrices, the performance margin is large enough to compensate forthe network
delays that do not exist on locally installed Matlab. Previous work has beenfocusing on
one-to-one mapping between a script command and a CUDA kernel or library calls. How-
ever, there are cases when it is highly inefficient to do so. One example isfor loops that
work on fine-grained matrix element at each iteration. Mapping single iterationto a CUDA
kernel is possible but it is against the massive data-parallel spirit of modern GPUs. There-
fore it is necessary to aggregate iterations into one CUDA kernel. Moreover, the latest
NVIDIA GPU (code name “fermi”) supports concurrent kernel execution. It improves the
utilization rate of GPU resource when single kernel is not in a large enoughscale to fully
exercise the all cores in GPU. This feature brings up an opportunity to accelerate operations
on smaller matrices, which are common in Matcloud.

In this project, we use compiling techniques to optimize our Matcloud framework.
Namely, our goal is to (1) build a just-in-compiler (JIT) framework to accelerateparfor loop
and (2) proposeparsection block (similar to parallel sections in OpenMP) in Matcloud to
exploit the concurrent kernel execution feature in the latest generationGPUs. The detailed
implementation is described in Section 2. In Section 3, we present some experimental
results. The task description and each person’s contribution are shownin Section 4 for
grading purpose. A few remarks about our future work can be foundin Section 5.

2 Implementation

2.1 Parfor

We have implemented the support of the parallelfor loop. User can use theparfor keyword
to indicate that a loop should be parallelized. However, user need to ensure that there is no

1

dependence between loop iterations. We parallelize theparfor loop with GPU by assigning
iterations to different CUDA threads. The following pseudo code outlines the generation
and execution of theparfor loop.

/* evaluate the memory requirements */
foreach line of parfor loop body do

if not an assignment
continue; /* non-assignment commands are simply ignored */

analyze and update the maximum index;
endfor
/* code generation */
generate the kernel code and function signature;
generate iteration mapping, boundary check, etc;
foreach line of parfor loop body do

generate code for the destination sub-tree;
generate code for the source sub-trees;

endfor
generate the host code, block/grid sizes, etc;

/* just-in-time compilation and execution */
compile as a dynamic library with nvcc
allocate memory for destination matrixes
load dynamic library at run-time

To parallelize aparfor loop, one challenge is the automatic detection of matrix dimen-
sion. In Matlab scripts, matrices are not declared before being used. Therefore, we need
to analyze the input script and allocate a proper amount of memory for the matrices in the
definition set before launching the generated kernel code. To address this problem, we pre-
walk through theparfor block to determine the maximal possible dimension sizes for the
target matrices. Under the assumption that the matrix index value is linearly correlated with
the value of the basic induction variable, we execute the matrix index expression with the
minimum and maximum induction variable values to calculate the memory requirement for
each statement. We update the memory requirement whenever a new maximum is found
until every statement inside theparfor loop is evaluated.

We then generated the CUDA host and kernel functions for theparfor loop. With
the detected maximum memory requirements, we allocate memory for each matrix in the
definition set, encapsulate the pointers and the loop specification (step, lower and upper
bounds) in a structure, and pass the structure to the generated host function. Currently, we
fix the block size to 256 and use a one dimensional block topology. We then dynamically
generate the grid size specification according to the total number of iterationsin the original

2

parfor loop. In the generated kernel code, we consider the basic induction variable, the
lower loop bound, and the step size, and map a thread to an iteration with the following
equation,

iteration_id = (threadIdx.x + blockIdx.x * blockDim.x) * step
+ lower_bound.

We further check the boundary condition in case there are more CUDA threads than the
number of iterations in theparfor loop by generating the following statement,

if(iteration_id > upper_bound) return;

In this way, we establish the mapping between CUDA threads andparfor iterations. We
then walk through the originalparfor loop again to generate the CUDA code for each
statement in the loop body. Finally, we compile the generated CUDA code as a dynamic
library with nvcc and launch it by loading the dynamic library at run-time.

2.2 Parsec

The realization of using multiple streams relies on the support from underling libraries that
we use. Fortunately, CUBLAS added an API for user to specify a streamfor any subsequent
CUBLAS library calls:

cublasStatus cublasSetKernelStream (cudaStream_t stream)

To useparsec, user needs to create a parsec block as shown in the script code below.
S5 and S6 can be run independently, therefore they can be put into a parsec block. During
run-time, Matcloud can generate two GPU streams and assign each command a stream.
The independence of commands inside aparsec block is currently guaranteed by the user.

S1 a = rand(5,4);
S2 b = rand(4,3);
S3 c = rand(4,3);
S4 parsec
S5 d = a * b;
S6 e = a * c;
S7 endsec

3 Experimental Results

We ran the following simple script on our Matcloud framework with GTX 280. Wealso
ran a similar script written in for loop on a modern dual-core laptop installed with Octave.

3

Figure 1: Matcloud vs. Octave

We varied the loop size (N) from 40,000 to 640,000 and compared their execution time,
shown in Figure 3. As we can see, the pure execution time is almost negligible comparing
to the compiling time. The total execution time in Matcloud is better than CPU version at
N greater than 12,000.

parfor i=0:1:N
a(i) = sin(i * 0.1);
b(i) = cos(i * 0.1);
c(i) = tan(i * 0.1);

endfor

Since GTX 280 is not a fermi architecture, it does not support concurrent kernel execu-
tion. We will skip the performance test forparsec.

4

4 Individual Contributions

Task Description Effort 1 Xing Wu Yongpeng Zhang

Parfor loop parsing 2 100%
Parsection loop parsing 2 100%

Launch nvcc at run-time 1 100%
Design code generation algorithm for parfor 3 50% 50%

Predict variable dimensions 3 50% 50%
Generating CUDA kernel code 3 100%

Generating CUDA host-side code 3 100%

Manage CUDA streams 2 100%
Implement matrix operators (+,/) 3 100%
Implement matrix operators (-,*) 3 100%

11: easy; 2: medium; 3: complicated

5 Future Work

There are still a lot of room to improve our implementations.

• As shown in the experiment, compiling the parfor loop takes more time than the
execution time. This is a common issue in all JIT framework. The usual approach
is to cache compiled object file and reuse it whenever the same block is encountered
again. Only by removing unnecessary compilng can the compiler time be amortized
and this approach is justified.

• Support the parallel reduction. To use parallel reduction, user only need to specify
a variable and an operator for the reduction. Compared to theparfor loop, parallel
reduction requires the generation of the reduction tree for the CUDA kernel.

• Migrate our framework to fermi GPUs to demonstrate the benefits of usingparsection
block.

6 Appendix

In the Appendix, we show the mapping of one matlab script written in parfor format (Figure
6) to the cuda code (Figure 6).

5

1 parfor i=0:1:50000
2 a(i) = sin(i∗ 0.1);
3 b(i) = cos(i∗ 0.1);
4 c(i) = tan(i∗ 0.1);
5 endfor

Figure 2: Original Parfor Matlab Script

1 #include<stdio.h>
2 #include<math.h>
3 #include<cuda.h>
4 typedef struct {
5 int numArgs;
6 void ∗∗arglist;
7 cudaStreamt stream;
8 } Args;
9 typedef floatMyKernelDataType;

10 global void mykernel(MyKernelDataType∗ a,MyKernelDataType∗ b,
MyKernelDataType∗ c)

11 {
12 int i = (threadIdx.x + blockIdx.x∗ blockDim.x)∗ 1 + 0;
13 if (i > 50000)
14 return ;
15 a[i]=sinf(i∗0.1);
16 b[i]=cosf(i∗0.1);
17 c[i]=tanf(i∗0.1);
18 }
19 extern ”C” void myparfor(Args∗args)
20 {
21 MyKernelDataType∗ a = (MyKernelDataType∗)args→arglist[0];
22 MyKernelDataType∗ b = (MyKernelDataType∗)args→arglist[1];
23 MyKernelDataType∗ c = (MyKernelDataType∗)args→arglist[2];
24 dim3 threads(256, 1, 1);
25 dim3 grids(196, 1, 1);
26 mykernel<<<threads, grids, 0, args→stream>>>(a,b,c);
27 }

Figure 3: Generated CUDA Code

6

