On-Time and Scalable Intrusion Detection in Embedded Systems

Albert Mo Kim Cheng
Real-Time Systems Laboratory
Department of Computer Science
University of Houston, TX 77204, USA
cheng@cs.uh.edu

Abstract

Embedded systems are becoming ubiquitous and are
increasingly interconnected or networked, making them
more vulnerable to security attacks. A large class of
these systems such as SCADA and PCS has real-time and
safety constraints. Therefore, in addition to satisfying
these requirements, achieving system security emerges as
a critical challenge to ensure that users can trust these
embedded systems to perform correct operations. One
objective in a secure system is to identify attacks by
detecting anomalous system behaviors. This paper
describes the challenges in the design and
implementation of such intrusion detection capability.

To deploy a successful intrusion detection system
(IDS) especially in an embedded system (the host), we
must address (1) accuracy: the IDS identifies no or as
few false positives as the resource (time, space, power,
etc.) and/or policy constraints allow, and no or as few
false negatives as the resource and/or policy constraints
allow; (2) efficiency/timeliness: the IDS does not violate
the host embedded system’s application deadlines and
has a reasonable space overhead; (3) scalability: the
IDS can scale to work with large embedded systems; and
(4) power-awareness: the IDS does not significantly
reduce the operational period of battery-powered
embedded systems. The paper concludes with an outline
of one of several promising embedded IDS approaches
under investigation.

1. Introduction

As computer systems are embedded in more devices
and their application programs become more complex,
they are becoming more vulnerable to attacks which aim
to subvert their operations. Many of these systems are
wireless devices, making them more susceptible to
interference and attacks. It is therefore not acceptable to
only satisfy logical correctness and timing constraints in
these embedded systems, but also imperative to
guarantee a certain level of security so that such systems
can be trusted in their proper operations. Of particular
interest is to integrate an intrusion detection capability in
a PCS (Process Control System) and SCADA
(Supervisory Control And Data Acquisition), which is
the supervisory control software serving as an interface
to the controlled hardware. Also, intrusion detection is
required in a sensor network’s base station, which is
assumed to be the source of all legal messages and hence
must not be compromised if protocols for detecting

denial-of-message attacks [10] are to work properly.
*Supported in part by the Institute for Space Systems Operations.

This paper focuses on the challenges in implementing
host-based [7,14] and network-based [12] intrusion
detection systems (IDSs), whose aim is to identify
attacks which attempt to subvert processes executing in
these embedded systems. The tasks causing the
malicious events are then terminated. The remainder of
the paper is organized as follows. In section 2, we first
describe the problem of specifying legal and malicious
behaviors. In section 3, we discuss the design challenges
in building embedded IDSs. Section 4 concludes the
paper by proposing the rule-based specification and
analysis approach, one of several promising approaches
under investigation.

2. Specification of Legal Behaviors

One major problem is how to specify/represent the
execution behavior of the running processes. In one
extreme where the representation is the most accurate,
one can simply use the actual code of the running
processes. Monitoring is then performed on-the-fly
directly on the running processes. Doing so would
require prohibitive overheads in terms of time and space,
leading to process deadline violations. Also, a large part
of this actual-code representation is unnecessary since
they are not relevant to the detection of the potential
attacks. The other extreme is over-abstraction of the
execution behavior that would cause the monitoring
procedure to miss many attacks, that is, there would be
many undetected positives. Consequently, one must
consider these issues in selecting the right representation.
Current models [7,14] cannot effectively handle
recursion, path sensitivity, and events granularity, so
better representations and monitoring need to be
developed. Furthermore, different representations may be
needed for different systems and/or application domains.

A related problem is malware detection. A malware
instance is a program with malicious intent, such as a
virus, worm, or trojan [11]. In this problem, the
malicious behavior is the result of the execution of a
malware instance, and not just a sequence of system calls
deviating from a normal behavior. Therefore, it is
necessary to specify the signatures or forms of the
malware. The question is whether we can adapt or extend
the behavioral specification language developed for the
IDS to specify malicious behavior of programs that
would capture not only the form of a single malware
instance, but an entire class of related instances [6]. This
would minimize the need for constant updates of the
malware detector.



3. Design Challenges

Another key problem is how to monitor the execution
behavior once a proper representation is chosen. Overly
strict correspondence to the stored legal behavior
specification may lead to false positives, and being too
loose may lead to false negatives (attacks go undetected).
To deploy a successful intrusion detection system,
especially in an embedded environment such as SCADA,
we must address (1) accuracy, (2) efficiency/timeliness,
(3) scalability, and (4) power-awareness.

Accuracy is measured by the number of false
negatives and false positives. Ideally, the IDS should not
have false negatives and should identify no false
positives. That is, no malicious behavior goes undetected,
and every malicious behavior detected is a truly
malicious behavior. Having no false positives is
desirable since these would disrupt normal program
executions. However, there are resource constraints
including time, memory space, and power. Policy
constraints include the importance of the system
employing the IDS and the access charge of the IDS.

For example, ensuring no false positives would mean
a more detailed specification of all possible legal
behaviors, which would incur a prohibitive time, space,
and power overhead in checking the observed/monitored
behaviors against stored representations of legal
behaviors. Thus it would be more practical if the IDS
aims for as few false positives as the resource and/or
policy constraints allow. Obtaining the proper balance
among all these constraints (and quantifying it) suitable
for a specific application is a key research topic.

Efficiency is measured by the runtime overhead of
monitoring. In embedded/real-time systems, timeliness is
critical, that is, the IDS should not violate the host
embedded system or network base station’s application
deadlines and has a reasonable space overhead. How can
the schedulability analysis and scheduling [1] be
integrated with the scheduling of the host system is an
important challenge for the widespread and successful
deployment of IDSs in embedded systems.

Scalability refers to the ability of the IDS to work
with increasingly large, complex, and networked
embedded systems. Here, the challenge is to use
specifications and a monitoring procedure whose
footprint and runtime overhead grow linearly (or close to
this) proportional to the size and complexity of the
embedded applications.

Power-awareness concerns with the IDS being able to
conserve power in battery-powered embedded systems. It
is necessary for a major part of the IDS to remain in a
“sleep” mode most of the time and to be awaken
responsively when the first sign of a malicious behavior
is detected. How to design such an IDS framework is
another challenge. How to automatically vary the IDS
performance according to a given power budget is an
important research problem in embedded/sensor systems.

4. Rule-Based Approach
We have pioneered [3] an ultra-fast semantics-based
analysis technique for real-time monitoring and control

rule-based systems to determine whether their execution
times are bounded and their corresponding worst-case
execution times. We also introduced [2] the derivations
of behavioral constraint assertions called special forms to
characterize bounded behaviors of these systems. We
have applied this technique to OPS5 [5] and developed
self-stabilizing transformations to OPS5 code [4]. One of
several approaches being explored to tackle the above
issues is to automatically convert the monitored system
behavior into a rule-based program [13], which is then
analyzed using the static analysis algorithm in [3] at
runtime. We are investigating whether the rule-based
specification can model the malicious behaviors that are
not effectively modeled by existing techniques. It is
especially useful for modeling distributed behaviors [4].

The behavioral constraint assertions encode the legal
system behaviors, which are used to determine whether
the generated rule-based program deviates from the norm.
Since these assertions (special forms) are semantics-
based, one special form can cover variations of a legal
behavior, making the analysis faster. Furthermore, our
recent work on runtime rule-based optimization [8,9] can
yield very compact rule-based specifications/programs of
the changing system behavior under surveillance.

References

[1] A. M. K. Cheng, Real-time systems: scheduling, analysis and
verification, Wiley-Interscience, 2002; ond printing with updates, 2005.
[2] A. M. K. Cheng, J. C. Browne, A. K. Mok, and R. H. Wang,
“Analysis of Real-Time Rule-Based Systems with Behavioral
Constraint Assertions Specified in Estella,” IEEE Transactions on
Software Engineering, Vol.19, No.9, pp.863-885, Sept. 1993.

[3] A. M. K. Cheng and C.-K. Wang, “Fast Static Analysis of Real-
Time Rule-Based Systems to Verify Their Fixed Point Convergence,”
Proc. 5th IEEE Conf. on Computer Assurance, U.S. National Institute
of Standards and Technology, Gaithersburg, MD, pp. 46-56, June 1990.
[4] A. M. K. Cheng and S. Fujii, “Self-Stabilizing Real-Time OPS5
Production Systems,” IEEE Transactions on Knowledge & Data
Engineering, Vol. 16, No. 12, pp.1543-1554, Dec. 2004.

[5] A. M. K. Cheng and H.-Y. Tsai, “A Graph-Based Approach for
Timing Analysis and Refinement of OPS5 Knowledge-Based
Systems,” IEEE Transactions on Knowledge and Data Engineering,
Vol. 16, No. 2, pages 271-288, February 2004.

[6] M. Christodorescu et al, “Semantics-Aware Malware Detection,”
Proc. IEEE Symp. on Security & Privacy, Oakland, CA, May 2005.

[7] R. Gopalakrishna, E. H. Spafford, and J. Vitek, “Efficient Intrusion
Detection Automaton Inlining,” Proc. IEEE Symp. on Security &
Privacy, Oakland, CA, May 2005.

[8] J. A. Kang and A. M. K. Cheng, “Shortening Matching Time in
OPS5 Production Systems,” IEEE Transactions on Software
Engineering, Vol. 30, No. 7, pp. 448-457, July 2004.

[9] Y.-H. Lee and A. M. K. Cheng, “Optimizing Real-Time Equational
Rule-Based Systems,” IEEE Transactions on Software Engineering,
Vol. 30, No. 2, pp. 112-125, Feb. 2004.

[10] J. M. McCune, “Detection of Denial-of-Message Attacks on
Sensor Network Broadcasts,” Proc. IEEE Symp. on Security &
Privacy, Oakland, CA, May 2005.

[11] G. McGraw and G. Morrisett, “Attacking malicious code: a report
to the infosec research council,” IEEE Software, Vol. 17, No. 5, 2000.
[12] S. Rubin, S. Jha and B. P. Miller, “Language-Based Generation
and Evaluation of NIDS Signatures,” Proc. IEEE Symp. Security &
Privacy, Oakland, CA, May 2005.

[13] S. Sodhi and A. M. K. Cheng, “Optimizing Timing Analysis and
Verification of Embedded Systems using Rule-Based-Analytic
Techniques,” Proc. WIP Session of IEEE-CS Real-Time Systems
Symposium, Cancun, Mexico, Dec. 2003.

[14] D. Wagner and D. Dean, “Intrusion Detection via Static Analysis,”
Proc. IEEE Symp. on Security & Privacy, 2001.



