
Secure Processing On-Chip

Hsien-Hsin S. Lee Santosh Pande

School of Electrical and Computer Engineering College of Computing
Georgia Institute of Technology Georgia Institute of Technology

Atlanta, GA 30332-0250 Atlanta, GA 30332-0280
leehs@ece.gatech.edu santosh@cc.gatech.edu

ABSTRACT
Providing security in embedded systems is in urgent needs while
there are many challenges in both software and hardware sides that
require further research to understand their implications. This pa-
per discusses microarchitectural and compiler support to address
a variety of vulnerabilities due to physical tampering, program be-
havior exploits, and digital rights management issues. We also ad-
vocate the need for protecting intellectual properties programmed
in the growing number of FPGA-based embedded systems.

1. INTRODUCTION
While embedded computing is becoming more pervasive and

invisible, the ways users communicate and operate data on these
devices, however, are becoming more vulnerable to malicious ex-
ploits. When these data, either sensitive or insensitive, are manip-
ulated in a way they are not intended for, some dire consequence
may ensue. For example, crackers can reverse-engineer the crypto-
graphic keys of a multimedia system or game console to duplicate
and distribute illegal copies of proprietary software [1].Another
example described in [2] shows that well-resourced crackers can
invade one’s privacy by monitoring the thermostat to determine if
one is at home or not. Even worse, malicious attackers can change
the setting of the thermostat through Internet and damage pipes or
kill pets during winter times.

To provide reliable security for these devices to combat against
various types of attacks remain a major challenge to both hardware
and software designers. The reality is that embedded systemde-
signers can no longer consider security as an afterthought as many
robust security features require shrewd and thorough consideration
at the very early design stage. In this paper, we discuss potential
security breach from a system’s perspective at the microarchitec-
ture level and the compiler level. We hope our advocates willraise
the consciousness of building security as an indispensablepart in
the embedded system design flow.

2. PHYSICAL TAMPERING
One of the greatest concerns on embedded devices is regarding

malicious exploits via physical tampering of the devices when ad-
versaries gain full physical access to the hardware and reveal sensi-
tive data or intellectual property (IP) algorithms employed in these
compromised devices. Obviously, secrets inside these devices must
be protected against these physical attacks. However, the issue be-
comes even more challenging when both IP protection requirement
and real-time constraint need to be met for these embedded applica-
tions. To guarantee both criteria, hardware-based encryption sup-
port is generally implemented to provide satisfactory performance
while caution must be made to not adding too much cost to the sys-
tems. Nevertheless, employing encryption alone is not sufficient to
avoid new types of attacks via other new breed of attacks suchas

using side channels [3, 4, 5]. Vulnerability can be exploited by an-
alyzing information leaked through these channels. For example,
the absolute and relative locations of the program code are not al-
tered during instruction fetch. In other words, addresses are issued
on the bus as plaintext and can be probed by crackers to reconstruct
the control-flow graph of a program. Such a vulnerability is partic-
ularly pronounced in embedded processors, which typicallydo not
employ cache hierarchies for the requirement of predictable tim-
ing. Even with the presence of an instruction cache, a cracker can
still easily circumvent the cache by turning off the cache orflush-
ing the cache to force instruction addresses shown on the external
bus. In some cases, such information leakage can lead to the reve-
lation of critical information such as encryption keys or passwords
of the compromised systems. Another example of the same typeof
exploits is differential power analysis (or DPA). As shown in pre-
vious studies, a well-equipped and motivated cracker can perform
non-invasive power (or current) analysis by using oscilloscope on
an embedded device such as Smart Cards to retrieve secrets. The
idea is based on the observation that power dissipation is strongly
correlated to different program behavior on a processor, which can
then be used as a signature to compromise secrets. Furthermore, the
growing application of low-power techniques such as clock gating
makes such attacks even easier.

To combat such issues, effective and efficient obfuscation tech-
niques must be considered, in particular, building them directly into
the hardware at the microarchitectural and circuit levels.Funda-
mentally, obfuscation is aimed to randomize any trace or signa-
ture exhibited from address stream or measurable power or current
consumption, making distinctive computation operations indistin-
guishable. A solution demonstrated by [6] uses an on-chip shuf-
fle buffer to perform randomization for the address footprint. The
shuffle buffer, essentially an extended small memory array but ex-
clusive to the memory, was designed to reorder all addressesto the
memory, obfuscating the address recurrences. Addresses that are
ready to be evicted from the shuffle buffer due to a conflict will
swap their locations between the shuffle buffer and the main mem-
ory. As such, the same address request will appear differently on
the bus every time and the goal to evenly distributing the observed
addresses can be achieved. Several other literature [7, 8] also inves-
tigated such address leakage issues for different system platforms.

3. CONTROL FLOW VULNERABILITY
Exploits such as buffer overruns that alter the program behavior

by injecting malicious codes or manipulating high-privileged users
inputs represent another major concern. The latter often interacts
with input channels such as keyboard or network connection and
changes the intended program flow to accomplish their illegitimate
actions. Note that a pure software countermeasure can be slow and
incapable of detecting such violation. To make the softwaremore
robust and evident to such attacks, anomaly detection mechanisms



need to be established. An anomaly system is aimed to monitor
program execution and raise an alarm whenever there is a detected
abnormal program behavior such as program is redirected to unin-
tended or undefined program paths.

An effective mechanism requires to enforce the control-flowaware-
ness via compiler’s analysis and microarchitectural support to en-
able the protection with high efficiency and high accuracy. For in-
stance, an Infeasible Path Detection System (IPDS) proposed in [9]
explores the synergy of compiler and microarchitecture to counter-
act such memory tampering attacks causing invalid program con-
trol flow. In the proposed system, the compiler analyzes correla-
tions among conditional branches to realize illegal program flow
changes. Then the collected information is made available to the
runtime system. The runtime system, with the support of small
hardware tables, will detect dynamic violation of infeasible pro-
gram paths based on the static information.

4. DIGITAL RIGHTS MANAGEMENT
With the emergence of online commerce on virtual properties

such as 3D game characters or arts, to protect these intellectual
property on embedded devices and to restrict their usage have be-
come a new design challenge. The recent incident of hacking Xbox [1]
furthers the urgent need to include native hardware supportfor pro-
viding a more robust digital rights management (DRM) to enable
a tamper-proof embedded platform. To integrate such protection
scheme into media processing systems more seamlessly and se-
curely without compromising performance, it requires thatsecurity
experts and embedded hardware and software designers to align
their tasks together. A DRM-enabled 3D graphics processor was
demonstrated in [10]. It consists of two components, a crypto-
graphic unit that decrypts protected IP data, and a license verifi-
cation unit that authenticates the license of these data. Similar to
digital rights licenses used in other content protection scenarios,
the graphics digital rights licenses released by their providers spec-
ify and designate the desired usage of the graphics data. Under
this system, exploits are prevented by restricting the otherwise arbi-
trary bindings among geometry input, textures and shaders through
the licenses that define the legal bindings of these objects.Dur-
ing rendering, the binding context consisting of decryption keys
and digests of protected data will be checked and verified in the
cryptographic hardware units. Additionally, such a DRM-enabled
graphics system also protects the Z-buffer, i.e. the depth informa-
tion, to prevent crackers from reconstructing a 3D geometrymodel
by dumping out the Z-buffer values.

5. IMPLICATIONS OF FPGA-BASED DE-
SIGN

More recently, due to the substantial improvement in FPGA tech-
nology, digital designs using FPGA is no longer simply for early
prototype or proof-of-concept. In fact, products are beingimple-
mented using FPGA for its efficiency (design turnaround time), re-
configurability, and flexibility. FPGA is also an attractivesolution
for implementing cryptographic applications to adapt the needed
changes and enhancements in security policies. An example is
set-top boxes which use FPGA to encrypt and decrypt the media
stream for pay-per-view movies. Even though the above applica-
tions seem to fall into two different groups, yet their demands in
security are almost identical — i.e., how to protect the contents im-
plemented and configured in the FPGA? The contents from the first
category are related to the IP (i.e. the algorithms) issues of a pro-
prietary design, while the contents from the second category will
contain critical secrets such as the cryptographic keys. Similar to
what we described earlier, FPGA-based designs suffer from physi-
cal tampering — from IP theft by simply reading bitstream outof

the FPGA to DPA side-channel attacks. To address such vulner-
abilities, new ideas are needed for both FPGA chip vendors and
synthesis tools and algorithms to protect the contents programmed
on the gate arrays.

6. CONCLUSION
We are entering an interesting time for embedded designers to

(re)consider security as a top design priority at the early design
stage. The problem is multi-faceted, involving all layers in a de-
sign including the system software (OS and compiler), architecture,
microarchitecture, and circuits. Several challenges are lying ahead
and a holistic solution across the stack is in need.

In this paper, we are advocating to integrate inherently high secu-
rity hardware and system support to embedded processors. These
schemes typically require dedication of on-chip hardware resources
being used to achieve high efficiency and be effective. Neverthe-
less, any additional hardware feature for cost-constrained embed-
ded systems must be carefully evaluated and justified. Another
challenge of integrating security solutions in embedded systems
is power consumption, which is already a constraint for battery-
powered devices. It will become worse when obfuscation tech-
niques are applied to randomize and disguise program behavior.
Adding security to both compiler and hardware levels could also
procrastinate the design turnaround time, a critical cost and com-
petitiveness concerns given the short time-to-market cycles of these
products. All these trade-offs need to be deliberately balanced in
the design of future embedded systems to enable highly security
processing.

7. REFERENCES
[1] Andrew Huang.Hacking the Xbox: An Introduction to Reverse

Engineering. No Starch Press, 2003.
[2] Philip Koopman. Embedded System Security.IEEE Computer, pages

95 – 97, July 2004.
[3] P.C. Kocher, J. Jaffe, and Jun B. Differential Power Analysis. In

Proceedings of Advances in Cryptology, Crypto 1999, 1999.
[4] Weidong Shi, Hsien-Hsin S. Lee, Chenghuai Lu, and Mrinmoy

Ghosh. Towards the Issues in Architectural Support for Protection of
Software Execution.SIGARCH Computer Architecture News,
33(1):6–15, 2005.

[5] Weidong Shi and Hsien-Hsin S. Lee. Authentication Control Point
and its Implications for Secure Processor Design. InProceedings of
the 39th Annual International Symposium on Microarchitecture,
pages 103–112, 2006.

[6] Xiaotong Zhuang, Tao Zhang, Hsien-Hsin S. Lee, and Santosh
Pande. Hardware Assisted Control Flow Obfuscation for Embedded
Processors. InProceedings of the 2004 International Conference on
Compilers, Architectures, Synthesis on Embedded Systems, pages
292–302, Washington D.C., 2004.

[7] Lan Gao, Jun Yang, Marek Crobak, Youtao Zhang, San Nguyen, and
Hsien-Hsin S. Lee. A Low-Cost Memory Remapping Scheme for
Address Bus Protection. InIn Proceedings of International
Conference on Parallel Architectures and Compilation Techniques,
pages 74–83, September 2006.

[8] Xiaotong Zhuang, Tao Zhang, and Santosh Pande. HIDE: An
Infrastructure for Efficiently Protecting Information Leakage on the
Address Bus. Inthe 11th International Conference on Architectural
Support for Programming Languages and Operating Systems, pages
72–84, 2004.

[9] Xiaotong Zhuang, Tao Zhang, and Santosh Pande. A Low-Cost
Memory Remapping Scheme for Address Bus Protection. InIn
Proceedings of the 39th International Symposium on
Microarchitecture, pages 113–122, September 2006.

[10] Weidong Shi, Hsien-Hsin S. Lee, Richard M. Yoo, and Alexandra
Boldyreva. A Digital Rights Enabled Graphics Processing System. In
In Proceedings of the ACM SIGGRAPH/Eurographics Workshop of
Graphics Hardware, pages 17–26, 2006.


