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ABSTRACT
Noisy Intermediate-Scale Quantum (NISQ) devices fail to produce
outputs with sufficient fidelity for deep circuits with many gates
today. Such devices suffer from read-out, multi-qubit gate and cross-
talk noise combined with short decoherence times limiting circuit
depth. This work develops a methodology to generate shorter cir-
cuits with fewer multi-qubit gates whose unitary transformations
approximate the original reference one. It explores the benefit of
such generated approximations under NISQ devices. Experimen-
tal results with Grover’s algorithm, multiple-control Toffoli gates,
and the Transverse Field Ising Model show that such approximate
circuits produce higher fidelity results than longer, theoretically
precise circuits on NISQ devices, especially when the reference
circuits have many CNOT gates to begin with. With this ability to
fine-tune circuits, it is demonstrated that quantum computations
can be performed for more complex problems on today’s devices
than was feasible before, sometimes even with a gain in overall
precision by up to 60%.

KEYWORDS
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1 INTRODUCTION
Contemporary quantum computing devices are commonly referred
to as Noisy Intermediate-Scale Quantum (NISQ) computers as they
are fraught by a multitude of device, systemic, and environmental
sources of noise that adversely affect results of computations [1]. A
number of factors contribute to noise, or errors, experienced during
the execution of a quantum program. These include

• noise related to limits on qubit excitation time and program
runtime due to decoherence;

• noise related to operations, i.e., gates performing transfor-
mations on the states of one or more qubits;

• noise related to interference from (crosstalk with) other
qubits; and
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• noise subject to the process of measuring the state of a qubit
via a detector when producing a program’s output.

Efforts to reduce — or otherwise mitigate — noise are at the front
of the effort to create better, more practical quantum computers to-
day [1–15]. Our work builds upon and complements these previous
efforts.

All of these sources of noise have a common characteristic in that
noise becomes worse with circuit depth, i.e., the more sequential
gates a quantum circuit has, as quantum states (particularly excited
states) decohere over time. Today’s NISQ devices feature qubits
with relatively short coherence times — the longer an excited state
has to be maintained, the more noise is introduced, to the point
where eventually noise dominates and the original state become
unrecoverable. Current devices also suffer from noisy or imprecise
gates, which add imprecision to a circuit each time a gate is applied,
i.e., qubit state diverges slightly from the expected state with the
application of each transformation (rotation). Depending on the
type of gate, noise varies significantly: Gates operating on two
qubits are an order of magnitude more noisy than single qubit gates.
Two qubit gates also experience more cross-talk, due to interference
with other qubits in close vicinity. Finally, measurement of state
(read-outs) is also subject to considerable noise, on par with cross
talk and two qubit gates, as opposed to said single qubit noise.

A quantum program expressed as a circuit of gates operating
on virtual qubits needs to be translated into a sequence of pulses
directed at physical qubits. This translation step (a.k.a. transpila-
tion) offers optimization opportunities to reduce noise. Besides
translation of pulses, quantum compilers consider secondary, noise-
related objectives to generate optimized quantum programs, e.g.,
by mapping virtual qubits to less noisy physical qubits (in terms of
readouts) [3, 9, 11] and their connections (for two qubit gates) [3, 10],
or even by increasing the distance to reduce cross-talk between
qubits for a given device layout [6, 16, 17].

Another angle to address noise is to reduce the depth of circuits.
By reducing the number of gates in a circuit, especially the number
of two-qubit gates, the depth of the circuit, i.e., the span of time
during which qubits remain in excited states, is shortened, which
lowers the effect of decoherence. In fact, this may well bring long
circuits within reach of short decoherence times that otherwise
could not finish on a NISQ device before losing their states. One
promising way to reduce the number of gates is to create an ap-
proximate circuit [18–20], i.e., a circuit which does not provide an
exact (theoretically perfect) transformation for a target unitary but
rather a “close” fit for the unitary. (One could make a comparison
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to fixed precision arithmetic in classical computation here, which
often relies on converging calculations as an approximation of exact
numerical results.) On a NISQ device, an exact quantum circuit is
prone to develop large error with increasing circuit depth. In con-
trast, a near-equivalent approximate quantum circuit with shorter
depth, even though subject to a slightly incorrect transformation,
may have the potential to yield a result that is closer to the noise-
free (theoretically) desired output. This opens up an interesting
trade-off between longer-depth theoretical precision with more
noise vs. shorter-depth approximation with less noise. It is this
trade-off this work aims to assess and quantify.

The task of finding an approximate circuit is similar to the pro-
cess of circuit synthesis [21, 22]. Circuit synthesis is another avenue
that attempts to reduce circuit depth. Synthesis here refers to the
process of what can be considered design space exploration: Given
a quantum program, expressed as an exact circuit or an equivalent
unitary matrix, other circuits are systematically constructed and
then evaluated in a search for an equivalent, shorter depth quan-
tum circuit with the same unitary. If found, such a target circuit
can be transpiled to a specific machine layout and set of gates with
shorter execution time, which may be within the given decoherence
threshold of a NISQ device.

The main difference between circuit synthesis and searching for
an approximate circuit is that instead of searching for an equiva-
lent (functionally indistinguishable) circuit, the latter searches for
an approximate circuit of a shorter depth with a slightly different
unitary. While this leads to inferior results on a noise-free machine,
the intuition is that due to noisy gates, shorter, approximate circuits
have the potential to outperform longer, more precise circuits.

There are many different metrics which can be used to deter-
mine whether two circuits are equivalent. Quantum synthesis com-
pilers [21, 22] typically use distance metrics between “process”
representations of the program, such as the Hilbert-Schmidt (HS)
distance between the associated unitary matrices, or the diamond
norm [23, 24]. In the process view, two programs are deemed equiv-
alent when at distance “zero”.

In the context of this work aiming at approximation, synthesis
is used to find a circuit exceeding a distance of zero relative to the
original program so that, when run on a NISQmachine, its output is
expected to be close to that of the original program. One challenge
with using approximate circuits is that of finding a suitable metric
to assess the appropriateness of a set of approximate circuits. One
potential option is a process distance, such as HS, within a certain
range (threshold). Another is to instead consider output-related
metrics, such as the Jensen-Shannon Divergence or Total Variation
Distance [25]. This remains an open question.

The novelty of this work is in its focus on the analysis of a partic-
ular use-case of approximate circuits, namely by considering a set of
approximate circuits created by quantum synthesis software. When
these offered an unworkable number of circuits, we constrained
which ones we used by a given HS distance as a threshold. We never
choose an HS threshold of less than 0.1, which still results in a wide
range of approximate circuits. With a large selection of circuits we
can investigate the behavior of many approximate circuits in the
presence of different noise levels.

With this work, we make the following novel contributions to
the broader aim of searching for approximate circuits:

• We demonstrate how to obtain a wide range of approximate
circuits from custom modified circuit synthesis tools.

• We provide a proof-of-concept that approximate circuits can
outperform exact circuits on NISQ devices for small, well
known algorithms — Grover’s Algorithm and the Multiple-
control Toffoli gate — as well as a specific physics application,
namely the three-four qubit Transverse Field Ising Model
(TFIM).

• We show how the results of approximate circuits change rel-
ative to the noise induced by two-qubit errors. Specifically,
we assess the effect of two-qubit errors of lower-depth cir-
cuits with different approximation thresholds vs. that of the
exact, longer circuit. Experiments indicate improvements
in overall precision for shorter approximate circuits over
longer precise ones by up to 60%.

2 PROBLEM STATEMENT AND OBJECTIVES
This work seeks to assess if approximate circuits can outperform
exact circuits on today’s NISQ devices. Utilizing approximate cir-
cuits ultimately comes with challenges posing four fundamental
questions:

(1) How can approximate circuits be generated?
(2) Can the search for or generation process of approximate

circuits be constrained and, if so, how?
(3) Will the resulting approximate circuits outperform their

equivalent original ones?
(4) Can algorithms be designed to make circuit synthesis and

the search of resulting circuits scalable?
Before investigating these problems, however, a more funda-

mental question should be asked: Is there any value in approximate
circuits to begin with? In other words, can any approximate circuit
actually outperform the original circuit at all? It is this line of rea-
soning that our work is trying to answer — before we can explore
the more general challenges posed by the four questions above.

In this work, we show that there is potential value in approxi-
mate circuits: They can outperform theoretically perfect circuits
on today’s NISQ hardware. We also confirm that any method of
selecting appropriate approximate circuits will need to take the
noise/error levels of target devices into account.

3 DESIGN
One way to find approximate circuits is to look at approximate
circuits generated by the intermediate steps of circuit synthesis
programs. These programs do not typically scale to a level which
would make them an ideal way to create large approximate circuits
in practice, but are an easy way to create them as a proof of concept.
Synthesis programs typically look for the shortest circuit they can
find with a distance of some kind at “zero”. As these programs are
interested in finding as short a circuit as possible, they tend to
investigate many shorter circuits before finding their target; these
circuits are already nearly optimized for their layout, making them
ideal approximate candidates.

Before utilizing synthesis software to generate approximate cir-
cuits, we typically need to alter the synthesis tools to produce as
output, besides a single circuit, additional circuits that are farther
away from the target. These tools already generate and test many
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Figure 1: Generic workflow of using approximate circuits. The example is an approximation of the first timestep of the TFIM
circuit.

circuits during the search for an equivalent circuit, which allows
our enhancements to integrate naturally with the existing flow
within synthesis tools.

Figure 1 shows the workflow of our process. We first need to
obtain our target unitary. Quantum operations can be represented
by matrices, and the target unitary is the result of multiplying
these transforming matrices of a circuit (or subcircuit) that is to be
approximated. In IBM’s Qiskit python interface [26], the unitary
of a circuit can be obtained with the following command on the
target QuantumCircuit object 𝑐𝑖𝑟𝑐𝑢𝑖𝑡 :

𝑚𝑎𝑡𝑟𝑖𝑥 = 𝑞𝑖𝑠𝑘𝑖𝑡 .𝑞𝑢𝑎𝑛𝑡𝑢𝑚_𝑖𝑛𝑓 𝑜.𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟 (𝑐𝑖𝑟𝑐𝑢𝑖𝑡) .𝑑𝑎𝑡𝑎

The second step is to use our altered synthesis software to gen-
erate approximate circuits for our target matrix.

Third, given the the enhanced synthesis software that outputs
every circuit it checks, we need to select which approximate circuits
we want to check. How to perform this selection is still an open
question. For our analysis, we intend to compare a large number
of circuits, so we select many circuits with little to no filter for
pre-selecting the most accurate ones.

Finally, the selected circuits need to be run on a quantummachine
or simulator. For our study, we then compare the results with the
expected output, either a known value or our original circuit run
on a simulator with no errors.

4 IMPLEMENTATION
For our exploration of approximate circuits, we use two different
synthesis tools, QSearch and QFast, both of which are part of the
Berkeley Quantum Synthesis Toolkit (BQSkit).

The QSearch [21] optimal depth circuit synthesis tool builds a
sequence of circuits of increasing length and decreasing HS dis-
tance until it finds the first circuit with a distance of “zero”, a value
which can be specified but which defaults to less than 1e-10. It does
this by following the A* algorithm. Specifically, it explores different
branches of the circuit space by adding on blocks of three gates.
Certain machine layouts can be taken into account by restricting

these blocks to only being placed between connected qubits. These
blocks are made up of one two qubit controlled NOT (CNOT) gate
and two single qubit U3 gates on each of the same qubits. The U3
parameters are optimized using one of a number of different numer-
ical optimizers, including COBYLA and BFGS, provided by SciPy
1.20, and reoptimized after each step. This optimization ensures
that, for this specific layout of CNOT and U3 gates, this circuit is
the closest possible to the target. Because it considers each option,
this is guaranteed to be depth optimal with respect to two-qubit
gates.

The QFast [22] synthesis tool likewise builds a sequence of cir-
cuits of increasing length, but it has a more complicated algorithm
for finding circuits of increasingly higher quality. QFast is not guar-
anteed to be optimal and gives less of a choice of approximate
circuits, but handles circuits with more qubits than QSearch within
acceptable search times.

In our work we enhance the QSearch software such that instead
of saving only the final circuit, it also saves every intermediate cir-
cuit during its search.We then select a portion of the circuits, always
with a maximum HS distance threshold of at least 0.1, in order to
have a wide range of circuits but none which differ entirely from the
target circuit. QFast requires no source code alteration, but it needs
to be given a dictionary with the key of “partial_solution_callback”
pointing to a function to output these solutions. This dictionary is
used by calling QFast with the keyword “model_options”.

These circuits are then executed in three different methods.
First, they are executed on the IBM Qiskit [27] simulator using
hardware specific (ibmq_ourense, ibmq_toronto, ibmq_manhattan,
ibmq_rome, ibmq_santiago) noise models. These noise models are
created using error data collected from IBM’s own physical ma-
chines, creating a noisy simulator.

Second, they are executed on noise level sweeps. These use the
ibmq_ourense noise model as a base, but change the two-qubit gate
noise level during a sensitivity study in order to observe the effect
of different types and levels of noise.

Finally, The approximate circuits are also executed on the ibmq_
manhattan, ibmq_toronto, and ibmq_rome physical machines.
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5 EXPERIMENTAL FRAMEWORK
We selected three different algorithms for the evaluation. We start
with circuits generated [28, 29] for the time-dependent Transverse
Field Ising Model (TFIM). The TFIM is a quintessential model for
studying various condensed matter systems, and its time-dependent
manifestation shows promise for revealing new information about
non-equilibrium effects in materials. Current algorithms for design-
ing quantum circuits for the simulation of such models, however,
produce circuits that increase in depth with the growing number of
time-steps; circuits quickly grow beyond the NISQ fidelity budget,
placing tight limits on the number of time-steps that can be simu-
lated. This class of circuits, therefore, stands to greatly benefit from
shorter, approximate circuits. In addition, the output for these cir-
cuits can be condensed to a single number to easily be compared to
the output of the approximate circuits, allowing for an easy target
for the approximate circuits.

We next study Grover’s algorithm [30] followed by the multi-
control Toffoli gate [31] to demonstrate the general capability of
our method.

We decided to focus on small circuits for this work due to NISQ
and synthesis limitations. We use the three and four qubit execution
of the circuits for most of our experiments, and scale up to five
qubits with the multi-control Toffoli gate. For TFIM, we assess at
the first 21 time steps of 3ns. This results in 21 different circuits for
different times in the evolution of the magnetization. All of these
circuits are related, but they can also be investigated individually.

IBM Machine Num. qubits Av. CNOT err.

Manhattan 65 .01578
Toronto 27 .01377
Santiago 5 .01131
Rome 5 .02965

Ourense 5 .00767
Table 1: Average CNOT errors on a selection of IBM physical
machines as of 2021/01/18

Table 1 provides a snapshot of typical CNOT error rates at the
time of writing. they give a contemporary view of the types of
CNOT errors that we compare against and reflect the constant
changes of NISQ devices with different error rates on different
qubit connections even on the same device.

For our experiments using simulators we transpile under IBM’s
optimization level 1 with mappings to qubits 0, 1, 2, 3, and 4. Our
experiments on physical machines are transpiled under optimiza-
tion level 3, which at the time of writing allows IBM to map virtual
qubits to the best available physical qubits. All work is performed
with Python 3.8.2 and Qiskit 0.18.3, Qiskit-aer 0.5.1, Qiskit-ibmq-
provider 0.6.1, and Qiskit-terra 0.13.0. Our QSearch enhancements
are based on search_compiler version 1.2.1, and we used QFast
version 2.1.0.

6 RESULTS
We first report experimental results for simulations under given
noise models of contemporary quantum devices subject to NISQ

constraints. We then perform a sensitivity study on the effect of
noise levels, including both smaller (future) and larger (past) noise
levels than seen on the reference device, still using simulation. This
is followed by experiments on IBM Q devices with approximate
circuits under default transpilation with full optimization. Finally,
we perform a sensitivity study investigating the effect of how ap-
proximate circuits are mapped to qubits on hardware devices with
respect to noise level, particularly of CNOT gates.

6.1 Noise Model Simulations
We first investigate the noise and approximation quality of our
approach. Figure 2 depicts results for a 3-qubit TFIM problem under
the Toronto (IBM Q) noise model with magnetization (y-axis) over
time steps (x-axis) in 21 intervals of 3ns each. Series “Noise free
reference” shows the result for the circuit generated by the TFIM
domain generator and simulated on the ideal hardware. This is the
target for the other circuits; the closer they are to these results,
the better they are. Series “Noisy reference” shows the behavior of
the same circuits when simulated with the hardware specific noise
model. “Noisy reference” behavior quickly diverges from the ideal
as circuits become more complex with increasing timesteps. Series
“Minimal HS” shows the behavior of the synthesized circuits when
using process metrics (HS) as the quality indicator. As these are
much shorter (six CNOTs versus tens of CNOTs for the reference
circuit) than the baseline implementation, their results are typically
closer to the ideal results.

Figure 2: Magnetization over 21 timesteps of selected
(best/minimal HS) approximate circuits for the 3-qubit
TFIM using the Toronto error model.

The potential of approximate circuits is depicted by Series “Best
approximate”, where we select the circuits with “best” output be-
havior. Their CNOT depth is always shorter than the HS=0 circuits,
and so even though the process distance is greater they provide
a result closer to the noise free reference. This was also observed
across other noise models.

Observation 1: Short approximate circuits can outperform
long circuits with a lower process distance in simulation un-
der device noise models.

Let us investigate the range of solutions generated by approx-
imate circuits in more detail. Figure 3 shares the noise free and
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noisy reference data series with Figure 2, but it additionally in-
cludes dots representing each approximate circuit. The colors of
the dots indicate how many CNOTs were used in the approximate
circuits; in this case, red dots represent two CNOTs and blue dots
represent six. It can be seen that while there was a wide difference
in accuracy over the different approximate circuits, nearly all of
them performed better than the noisy reference.

Figure 3:Magnetization over 21 timesteps of all approximate
circuits for the 3-qubit TFIM using the Toronto error model.

We next investigate the impact of circuit width (in qubits) and
depth (in CNOT gates) for the same TFIM application. Figure 4
represents the four qubit TFIM circuit with the same line graphs
again. The number of CNOTs in an individual circuit in this case can
range from 1 to 48, which illustrates the wide range of approximate
circuits, many of which are closer to the noiseless reference than
the noisy reference is.

Figure 4: Magnetization over 21 timesteps of approximate
circuits for 4 qubit TFIM sing the Santiago noise model.

We now turn our investigation to the impact of circuit approxi-
mation for different algorithms and circuits, first with Grover and
then with Toffoli. Figure 5 depicts results for Grover’s algorithm
with a search target of ’111’ over eight boxes, where each dot repre-
sents a circuit. The blue dots each indicate an approximate circuit,

while the orange dot and the line represent the output circuit of
the hand-coded reference implementation with nine CNOTs. Fig-
ure 5 shows the quality of the circuits as the probability of selecting
the correct box (y-axis), where higher probability is better. Here,
CNOT count is shown on the x-axis rather than indicated by color
coding. This shows a wide array of approximate circuits, many of
which outperform the reference; only a smaller fraction (below the
dashed line) underperform. The challenge here is to select a “good”
approximate circuit from the wide array of possible candidates. We
observe and investigate this challenge with different metrics but
its solution is ultimately beyond the scope of this paper.

Observation 2: To capitalize on the potential of approx-
imate circuits, a selection method and an associate metric
are required to ensure superior performance under noise.

Figure 5: Probability of correct result over CNOT count of
approximate circuits for 3 qubit Grover’s algorithm using
the Toronto noise model. Reference circuit in red.

We further perform experiments for the Toffoli gate with differ-
ent numbers of qubits. Figure 6 shows the results for four qubit
Toffoli gate—that is, three control qubits to one target qubit. We use
the Jensen Shannon (JS) distance[25] to analyze these circuits (y-
axis), as the Toffoli gate can be programmed to represent a variety
of functions, each with different (but known) output. We test each
approximate circuits for a subset of such functions and parameters
since a given circuit results in different probabilities for correct out-
put. The JS distance provides a composite metric to reflect accuracy
(lower is better in this case).

The four qubit results indicate that low-depth approximate cir-
cuits outperform those with high CNOT depth. The orange dot
on the dashed line represents Qiskit’s multiple-control Toffoli gate
without any ancilla bits while the red dot indicates QFast’s default
result of an equivalent circuit. The JS metric indicates that the
former (orange) outperforms the latter (red). Furthermore, many
deeper approximate circuits perform worse than Qiskit’s Toffoli
without ancilla while shorter approximations (below the line) can
provide even better results than Qiskit. This implies that there is
room for improvement even over the reference implementation of
given circuits on today’s noisy machines.

Observation 3: Approximate circuits generated from syn-
thesis can outperformdiscrete reference circuits under noise.
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Figure 6: Jensen Shannon (JS) distance over CNOT count of
approximate circuits for 4 qubit Toffoli compared to the ref-
erence circuit using the Manhattan noise model. Qiskit (or-
ange) and QFast (red) circuits are outperformed by other ap-
proximate circuits.

Figure 7 depicts results for a five qubit Toffoli gate, again without
any ancilla qubits for either the reference or approximate circuits.
These results reinforce the earlier four qubit results: The JS distance
of the reference circuit is higher for five qubits, but some approxi-
mate circuits have a distance even closer to zero than the best of
those for the four qubit Toffoli gate. The correlation of shorter cir-
cuits performing better is evident, but outliers exist. As the number
of CNOTs increases to the hundreds, the JS values approach 0.465.
This is significant because, in this implementation, random noise
(an equal number of results of 00000 as 00001 as 00010 and so on)
results in a JS distance from the target of 0.465.

Figure 7: JS distance over CNOT count of approximate cir-
cuits for 5 qubit Toffoli compared to the reference circuit
using the Manhattan noise model.

We also performed experiments for a 3-qubit Toffoli gate. In this
case, the 3-qubit approximate circuits performed poorly compared
to the optimized hand-crafted Toffoli gate commonly used, which
uses only 6 CNOTs (graph omitted). This illustrates that simple,
short circuits provide little benefit for approximations via QSearch

or QFast whereas deeper and more complex ones can benefit sig-
nificantly for today’s noisy quantum hardware. It also presents a
challenge for synthesis tools as wider circuits (beyond 6-8 qubits)
with corresponding depth results in excessive search cost.

Observation 4: The benefit of using approximate circuits
increases with the depth of the reference circuit.

6.2 Error Sensitivity Studies
We assess the sensitivity of approximate circuits to noise. To this
end, we use the Ourense noise model as a base but change the
CNOT error rate to assess how the performance of circuits changes
results in response. Figures 8, 9, and 10 present the approximate
circuits with increasing noise. Circuits are again color coded using
their depth, with red circuits consisting of two CNOTs and blue cir-
cuits of six. The lines of these colors represent the best performing
approximate circuits for that number of CNOT gates.

Figure 8 depicts simulations for a CNOT noise level of zero. It
illustrates the spread of circuits with different noise sources (with
the exception of CNOT noise), and shows that CNOT depth is not
closely correlated to the quality of results with no CNOT noise.

Figure 8: Magnetization over 21 timesteps of approximate
circuits for 3-qubit TFIM using the Ourense noise model
with no CNOT error.

Figure 9 shows the simulation for a CNOT error of 0.12, similar
to that of today’s lowest quality physical devices, and assesses the
impact on performance. Note that the increase in CNOT error is
accompanied by a decrease in the observed average magnetization.
Many of the longer circuits in blue or purple, which were covered
up by the red dots, become visible showing that a diverse number
of approximate circuits react differently under CNOT noise.

Figure 10 depicts simulations for a CNOT error of 0.24, which is
worse than many current IBM machines and reinforces this trend.
These results are promising. We clearly see that some individual
circuits improve, i.e., more closely approximate the error free refer-
ence, with an increase in two-qubit error. We also see that deeper
circuits are more affected by CNOT error than shallower circuits.
With a low two-qubit error, many of the deeper circuits lie on
the line corresponding to the error free reference. As this error
increases, these deep circuits quickly decline in quality, and the
shallower circuits perform relatively better. This is seen as the best

6



Figure 9: Magnetization over 21 timesteps of approximate
circuits for 3-qubit TFIM using the Ourense noise model
with a simulated CNOT error of 0.12.

of the longest circuits perform worse than the best of the shortest
circuits for all timesteps; but without CNOT noise, this is not nec-
essarily true. Some of these circuits actually benefit from the noise
and more closely approximate the error free reference.

Figure 10: Magnetization over 21 timesteps of approximate
circuits for 3-qubit TFIM using the Ourense noise model
with a simulated CNOT error of 0.24.

The takeaway from this trend is that different approximate cir-
cuits should be chosen based on the error levels of the physical
machine. A program can afford to use a long circuit on machines
with low error, but a noisier machine will benefit from a shorter,
approximate circuit.

Observation 5: Beyondmerely being less affected by noise
than the reference circuit, some approximate circuits per-
form better in the presence of noise. This performance in-
crease is dependent on the noise parameters of the system.

Figure 11 further supports this by depicting the depth of the
best performing circuit for different noise levels. A trend can be
seen: the worse the error (the more red the line), the shallower the
circuits with the highest performance in general, but not under all

circumstances. A similar trend is seen with our other algorithms
(figures omitted).

Figure 11: CNOT depth over 21 timesteps of approximate cir-
cuits for TFIM showing the best approximate circuits for se-
lect CNOT errors.

These results generally support the initial conjecture: as the
amount of noise in the models increases, the output quality of
deeper circuits deteriorates more quickly than that of the shallower
circuits. This causes some of the shallower circuits to produce re-
sults that are closer to the ideal results than the deeper circuits,
even though the deeper circuits would perform better on an ideal,
noise-free machine. This is most noticeable with circuits that con-
tain many CNOTs and on noisier models. It is less noticeable with
circuits which are already short or simulated on models of low
noise.

Observation 6: The greater the level of two-qubit noise on
the target machine, the more benefit is gained from short
approximate circuits.

6.3 Results on IBM Q Hardware
Figures 12 and 13 depict results from running the three and four
qubit TFIM circuits on contemporary IBM quantum hardware de-
vices. These results provide insight on how much can be gained
from using approximate circuits in practice today. We observe that
almost all of the approximate circuits in Figure 12 and the large
majority of the approximate circuits in Figure 13 perform better
than the default circuits.

We also observe that the approximate circuits here are distributed
similarly to Figure 9, showing that the earlier constructed noise
models are not far off from actual noise on hardware today.

Observation 7:Approximate circuits canperformwell com-
pared to reference circuits on real quantum hardware de-
vices as well as on noisy simulators.

Figure 14, similar to Figure 5, depicts results from experiments
with the 3 qubit implementation of Grover’s algorithm. As before,
many (but not all) of the approximate circuits perform better than
the reference circuit. There is a minor bias to shorter circuits per-
forming better, but not a significant one. It should be noted that
the reference circuit here had more than 50 CNOTs and is thus
omitted from the figure. The line is still at the performance level of
the reference circuit.
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Figure 12: Magnetization over 21 intervals of approximate
circuits for 3 qubit TFIM on the Manhattan physical ma-
chine.

Figure 13: Magnetization over 21 timesteps of approximate
circuits for 4 qubit TFIM on the Manhattan physical ma-
chine.

Figure 15 shows the result of the 4 qubit Toffoli and its approx-
imates on a real machine. At first, the result looks similar to the
distribution in Figure 6. However, while the best approximate cir-
cuits do have a much lower JS score (by 78%) than the reference
circuit (orange), the reference circuit and many of the approximate
circuits actually perform worse than random noise (as mentioned
in the context of discussing Figure 7, random noise has a distance
of 0.465).

This indicates that even the approximate circuits are still too
noisy to run on the physical machines, but we expect them to
perform better than the reference circuit when run on less noisy
devices.

Observation 8: Trends indicate a continuing potential of
approximate circuits to outperform reference circuits in the
near future, even as noise levels in physical machines de-
cline.

Figure 14: Probability of correct results over CNOT count of
approximate circuits for 3 qubit Grover’s Algorithm on the
Rome physical machine.

Figure 15: JS distance over CNOT count of approximate cir-
cuits for 4 qubit Toffoli on theManhattan physicalmachine.

6.4 Sensitivity to Qubit Mappings on IBM Q
Hardware

We further investigate the impact of mapping circuits to specific
qubits with CNOT resonance channels of different noise levels
for the IBM Toronto physical quantum device using the 4 qubit
Toffoli. The qubit connectivity of this machine is shown in Figure 16,
as reported by IBM on the day of experimentation. The nodes
represent different qubits, and their color indicates the readout
error in the range depicted on the upper heatmap index to the left.
The edges represent the connection between the qubits, and their
color indicates the CNOT error level on the lower heatmap index.

Experiments are conducted with four different (manual) map-
pings for the approximate circuits plus one (automatic) mapping
using Qiskit’s transpiler at optimization level 3. We depict only the
circuits with the best and worst results here.

Figure 17 shows results for circuits mapped onto the qubits
within the blue circle in Figure 16. These results exhibit the shortest
JS distance of ≈0.4 (best), and about a third of the circuits lie below
the reference of ≈0.47.
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Figure 16: Noise report from IBM for their Torontomachine at the time of study. Different circles represent differentmappings.

Figure 17: JS distance over CNOT count of approximate cir-
cuits for 4 qubit Toffoli on the Toronto physical machine
showing the best performing mapping.

Figure 18 depicts the results for mappings into the red circle,
which provided the worst results with higher JS distance (reference:
JS≈ 0.485, approximate circuits start at JS≈0.45) than that of any
other mapping. Other mappings (not depicted) lie in between these
results.

Figure 19 shows the results of transpiling the same approximate
circuits with Qiskit under level three optimizations. As each ap-
proximate circuit was mapped individually and automatically by
Qiskit, no single mapping can be reported. The green circle shows
the mapping for the best performing circuit within that run, and
yellow indicates that of the reference circuit. Fewer circuits have a
lower JS than the reference (≈ . 0.46) but they start as JS≈0.42.

These results are interesting when considering the noise levels
in Figure 16. The yellow reference circuit (with results in Figure 19)
chooses two connections with relatively high noise and utilizes
about 40 CNOTs, but qubits have relatively high readout fidelity.

Figure 18: JS distance over CNOT count of approximate cir-
cuits for 4 qubit Toffoli on the Toronto physical machine
showing the worst performing mapping.

Nonetheless, it performs better than than the reference circuit in Fig-
ure 18, which has relatively good connections and only 30 CNOTs.
The results indicate that CNOT error cannot be the only source of
noise influencing results.

Likewise, the blue mapping has one bad connection, but it pro-
vides the best performing circuits (Figure 17) with about the same
readout fidelity as for yellow. The worst results (Figure 18) con-
tribute few (if any) good circuits, yet benefit from relatively good
connections but lower readout fidelity according to IBM’s noise
data.

We know from Observation 6 that increasing CNOT error pro-
vides additional opportunities for approximate circuits. Our map-
ping study is an indication that other noise sources contribute as
well, particularly read-out errors (as depicted in Figure 16) as well
as cross-talk (not reported by IBM but also known to be of the same
magnitude). This aspect requires further investigation.

9



Figure 19: JS distance over CNOT count of approximate cir-
cuits for 4 qubit Toffoli on the Toronto physical machine
showing mappings generated by Qiskit with optimization
level 3.

Observation 9: Sources other than CNOT error appear to
contribute to the performance of approximate circuits.

6.5 Roadmap and Future Work
Noisy gates enable and encourage circuit approximations. We plan
to extend this study and correlate circuit behavior with commonly
accepted hardware evaluation metrics, such as gate, read-out, and
cross-talk fidelity, and also “quantum volume” [32]. This will allow
us to project the potential of approximations in the face of con-
tinuous hardware evolution and decreasing noise. Metrics such as
quantum volume capture the impact of the relatively short chip
coherence times. A “small” quantum volume indicates there are
empirical practical bounds on the circuit depth, where we can ex-
pect approximations to benefit. Finally, best circuit selection is per-
formed using simulation/execution and examining the result in its
specific context. In order to guide circuit generation and synthesis
from first principles, we are interested in a thorough analysis of the
numerical value of different metrics (Hilbert-Schmidt distance [23],
Kullback-Leibler divergence [33], Jensen-Shannon distance [25],
etc.)

We are also looking into both deeper and wider circuits. QSearch
begins to require a prohibitive amount of search time when ex-
posing it to more than four qubits. QFast is a little faster and can
typically work with up to six qubits, but is still restricted in the
number of qubits it can handle. The Berkeley Quantum Synthesis
Kit recently acquired another method of synthesis, QFactor [34],
with the ability to synthesize circuits of up to eight qubits. QFactor
may be able to create approximate circuits in that range, but a new
method of developing approximate circuits is needed for even wider
circuits.

One possible solution to consider is that of breaking a large
program into pieces; it may be possible to create a large circuit
out of many small circuits, and we are interested in assessing if
approximate circuits also prove to be useful in such a context.

7 RELATEDWORK
While finding an approximate circuit is typically seen as less de-
sirable than finding an exact circuit, much work has been put in
in an effort to finding approximate circuits. The Solovay-Kitaev
algorithm [35] is well known to generate quantum gates which
have a specified accuracy.

Work on circuit synthesis [18, 19, 21, 22] is often classified as
either “exact” or “approximate”. But even the approximate algo-
rithms often end up finding closer approximations for circuits than
those we are interested in; the small allowable error does not add
enough wiggle room to take advantage of short circuits. We are
most interested in 𝜖-approximate synthesis techniques, which can
be coarsened to find circuits which are “more approximate”. Closely
related is the Quantum Fast Circuit Optimizer (QFactor) [34], a
newly developed piece of synthesis software being distributed as
part of the Berkeley Quantum Synthesis Toolkit, just as QSearch and
QFast are. It can handle a greater number of qubits than QSearch
and QFast can, but is focused more on circuit optimization than
just synthesis, and works through tensor networks.

TheQuantumApproximateOptimizationAlgorithm (QAOA) [36]
can also be said to create approximate circuits, though it differs
from the work done here in that there is not a known target circuit.
Much work has gone into optimizing QAOA circuits. Especially
interesting with relation to this work is the work of [20], which
reorders gates in order to reduce circuit length, similarly finding
that approximate circuits with fewer CNOTs tend to outperform
approximate circuits with more.

Much more work is being done on other ways to reduce noise
or circuit depth [2, 4, 6, 12, 14, 17, 37]. We are optimistic about
these being able to work alongside approximate circuits, though it
is unclear whether the benefits of approximate circuits will hold
for process which require post-processing or manipulation of error
levels, as these may end up interfering with the noise which the
approximate circuits rely on to perform better than exact circuits.

8 CONCLUSION
Experimental results confirm that on NISQ devices approximate
circuits have the potential to outperform theoretically precise refer-
ence circuits. Even though these circuits would perform worse on
a perfect machine, if they are created to be similar to the reference
circuits but have fewer CNOT gates, these approximate circuits
produce higher fidelity results.

Because these improvements rely on reducing the number of
CNOT gates, we see approximate circuits perform best relative to
reference circuits in situations where the reference circuit has many
CNOT gates, namely by up to 60% in experiments.

We have shown that approximate circuits can show greatly in-
creased performance, but we have also shown that selecting the
proper approximate circuit is more complicated than comparing
process metrics. At the very least, target machine noise levels need
to be taken into account. Finding a reliable way to determine the
ideal approximate circuit remains an open problem.
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