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Abstract—In the current era of Noisy Intermediate Scale Quan-
tum (NISQ) computing, efficient digital simulation of quantum
systems holds significant importance for quantum algorithm
development, verification and validation. However, analysis of
sparsity within these simulations remains largely unexplored.
In this paper, we present a novel observation regarding the
prevalent sparsity patterns inherent in quantum circuits. We
introduce DiaQ, a new sparse matrix format tailored to exploit
this quantum-specific sparsity, thereby enhancing simulation
performance. Our contribution extends to the development of
libdiaq, a numerical library implemented in C++ with OpenMP
for multi-core acceleration and SIMD vectorization, featuring
essential mathematical kernels for digital quantum simulations.
Furthermore, we integrate DiaQ with SV-Sim, a state vec-
tor simulator, yielding substantial performance improvements
across various quantum circuits (e.g., ∼26.67% for GHZ-28 and
∼32.72% for QFT-29 with multi-core parallelization and SIMD
vectorization on Frontier). Evaluations conducted on benchmarks
from SupermarQ and QASMBench demonstrate that DiaQ
represents a significant step towards achieving highly efficient
quantum simulations.

Index Terms—Quantum Computing, Digital Quantum Simu-
lation, Sparse State-Vector Simulation, High Performance Com-
puting, Sparse Linear Algebra

I. INTRODUCTION

Quantum Computing has progressed significantly in the past
decade with a variety of algorithms like Variational Quantum
Eigen-Solvers (VQE), Quantum Approximate Optimization
Algorithms (QAOA), Quantum Neural Networks (QNN) in
many fields like cryptography [1], [2], optimization [3] [4],
physics/chemistry [5], [6], machine learning [7], [8], and
finance [9], [10].

The concept of mimicking quantum behavior (quantum
systems and their dynamics) and using it for “quantum par-
allelization”, where multiple states can co-exist at the same
time, is called quantum simulation. Quantum simulation is a
key area of focus of quantum computing because it paves the
path for solving classically infeasible problems using quantum
“behavior” (quantum dynamics). This has been used in fields
like material science and machine learning [11].

In 1982, Richard Feynman hypothesized about having a
universal quantum simulator [12], a device that could simulate
any quantum system. Broadly, they are two distinct types of
quantum simulators: analogue and digital.

Analogue Quantum Simulator: The process of simulating
quantum behavior by physically implementing quantum dy-
namics is called analogue quantum simulation. In contrast to
Feynman’s vision, analogue simulators today simulate limited

quantum systems. They excel in optimization problems, quan-
tum chemistry simulations, and machine learning tasks, many-
body systems etc., but cannot be generalized easily. Notwith-
standing its restricted applications, this class of simulation is
looked at as the most feasible with today’s quantum hardware.

Digital Quantum Simulator: Quantum simulation (also
referred as quantum computing today) can be truly universal
when looked at as quantum circuits, a sequence of quantum
gates. These “gates” are norm-maintaining transformations of
qubits in a quantum system. Digital quantum simulators are
quantum devices that can be “programmed” (using these gates)
into any other quantum system.

We are in the Noisy-Intermediate-Scale-Quantum (NISQ)
era, where quantum hardware is still error-prone, with limited
coherence times and costly quantum error correction. There
are many programmable devices on the market today, IBM’s
superconducting systems, Quera’s Rydberg atoms, Ion-Q’s
Ion-trap machines, among others.

Today, we make use of classical linear-algebra tools and
techniques for algorithmic verification as NISQ devices re-
main noisy. Simulation also serves as a means for device
verification. The tools that are used for this purpose are also
called simulators, but are classical in nature. For these classical
simulators of digital quantum simulators, quantum gates are
represented as matrices, and quantum circuits are a sequence
of such gate matrices. From now on, when we use the term
“simulation” we refer to the classical simulation of digital
quantum simulation/computing.

Run-time is our primary metric for comparing simulation
techniques. This choice is driven by the exponential increase in
computational demands with quantum circuit width and linear
growth with depth. The efficient simulation speed is crucial
for exploring variational quantum algorithms and directly
impacts the cost and effectiveness of algorithm development.
Hence, improvement in one iteration of such algorithms has a
multiplied effect on the overall solution finding process.

In search for ways to improve today’s simulations, this paper
makes the following contributions:

• Identification of diagonal sparsity in quantum circuit
unitaries;

• formulation of the DiaQ format;
• implementation of the libdiaq C++ library (with python

wrappers);
• integration of libdiaq with SV-Sim [13]; and
• evaluation of SV-Sim + libdiaq on multi-core CPUs with

vectorization, with comparisons against the default dense
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II. BACKGROUND

A. Quantum Simulations

Different types of quantum simulations are distinguished by
their functionality for an n-qubit system.

State-Vector (SV) Simulation: The state of a quantum
system is represented as a vector of size 2n. This vector stores
the amplitudes of all the possible states of the quantum system.
For instance, a 2-qubit system’s vector stores amplitudes of
|00⟩, |01⟩, |11⟩ and |10⟩. And for a 3-qubit system, the state
vector stores amplitudes of |000⟩, |001⟩, |010⟩ and so on. The
initial state of a system is always |0⟩, which mathematically is
[1, 0, . . . , 0]. This state evolves as gates (qubit transformations)
are applied to it, resulting in a final state. This process is called
SV simulation. SV simulation encounters three significant
challenges at scale:

• Memory-Bound Roofline Model: With Operational Inten-
sity (OI) below 0.5 [14], SV simulation involves strided
memory accesses during matrix-vector multiplication.
Traditional cache hierarchies struggle with such “strided”
memory accesses. DiaQ addresses this challenge by trans-
forming strided memory accesses into linear accesses
through different data storage techniques.

• Communication Hurdles: When a SV exceeds the capac-
ity of a single node, it needs to be split and stored across
multiple nodes. Communication between these nodes can
become a major bottleneck for simulation performance.

• Computation Efficiency: This aspect revolves around the
question of whether SV simulation can leverage hetero-
geneous accelerators to enhance simulation speed.

Density-Matrix (DM) Simulation: Density matrices pro-
vide a comprehensive representation of the quantum state,
capturing both pure and mixed states. Unlike SV simulations,
density-matrix simulations accommodate quantum systems
with entanglement and statistical mixtures. The density matrix
has dimensions (2n, 2n), and it characterizes the quantum
state’s statistical information. Density-matrix simulations are
particularly advantageous when dealing with noisy quantum
systems or situations where classical uncertainty is involved.
However, the computational demands for density-matrix sim-
ulations grow quadratically with the number of qubits, i.e.,
O(22∗n). Addressing this scalability challenge is crucial for ef-
ficiently simulating large quantum systems and exploring noisy
intermediate-scale quantum (NISQ) algorithms. We expect our
DiaQ format to significantly speed-up DM simulation.

Unitary Simulation: Every quantum gate is unitary in na-
ture (i.e., its conjugate transpose equals its inverse). A quantum
circuit can also be represented as a single unitary matrix
with dimensions (2n, 2n). The generation of the quantum
circuit’s unitary using individual gate unitaries is called unitary
simulation. The memory requirements of unitaries double with
every addition of a qubit to the system, i.e., the unitary
dimensions grow exponentially O(2n). And if we were to
combine two quantum circuits (unitary times unitary), a dense

algorithm for such matrix multiplication is of the order of
O(23∗n). Our DiaQ format significantly speeds up unitary
simulations, but there are few practical needs for large unitary
simulations.

Tensor-Network (TN) Simulation: The size of the SV
grows exponentially, limiting simulation to the compute node’s
RAM. Tensor networks are smart factorizations intended for
such large vectors, because a gate is limited to a factor of the
previously-huge vector, ”contracting” it with another tensor
(the gate tensor has a rank equal to the number of qubits
it transforms), which reduces computation at the expense of
accuracy.

This work primarily focuses on state-vector simulation.
While the DiaQ format significantly improves performance
and memory efficiency of unitary simulation, unitary simula-
tion has limited practical applications of relevance. Hence, our
focus centers on its impact on SV simulation, which is highly
relevant for quantum computing using classical computers as
well as quantum device verification. We contribute to the
development of algorithmic advantages made possible by the
DiaQ format. In addition, density-matrix and tensor networks
simulations may provide future avenues of investigation for
DiaQ benefits, which are beyond the scope of this work.

B. Benchmark Circuits

In this work, we consider a total of 14 quantum algorithms
as benchmarks, three from SupermarQ [15] and eleven from
QASMBench [16].

The algorithms from SupermarQ are Greenberger-Horne-
Zeilinger (GHZ), Hamiltonian Simulation and Mermin-Bell.
The GHZ Benchmark assesses a quantum processor’s entan-
glement generation using CNOT ladders to create a GHZ
state, with evaluation based on Hellinger fidelity. Mermin-
Bell tests quantumness through a Mermin-Bell inequality,
involving the preparation of a GHZ state and measuring a
specific operator’s expectation value. Hamiltonian Simulation
targets the simulation of the 1D Transverse Field Ising Model
(TFIM) for N spins using Trotterization, measuring average
magnetization against classical expectations. We use this suite
for scaling up the number of qubits.

The other eleven quantum algorithms that are from QASM-
Bench [16] represent circuits covering diverse quantum al-
gorithms and applications, including quantum Fourier trans-
form (qft), Ising model (ising), secret sharing (seca),
3×5 multiplication (multiplier), Bernstein-Vazirani algo-
rithm (bv), W-state generation (w_state), larger Bernstein-
Vazirani algorithm (bv), counterfeit-coin finding (cc), quan-
tum ripple-carry adder (bigadder), quantum RAM (qram),
quantum Fourier transform (qft), adder (adder), Bernstein-
Vazirani algorithm (bv), and quantum phase estimation to
factor 21 (qf21). Each routine in both sets is characterized
by the number of qubits, gates, and CX (CNOT) category. We
use this benchmark suite to facilitate a direct comparison with
SV-Sim for a more comprehensive evaluation.



(a) HAM(2) State

(b) Timesteps in HAM(2) without gate parallelism

(c) Circuits representing various sparsity patterns (from left to right):
H ⊗ I8, I2 ⊗H ⊗ I4, I4 ⊗H ⊗ I2, and I8 ⊗H .

Fig. 1. Timesteps in Quantum Circuits
.

C. Time-Steps in Quantum Circuits

Since quantum circuits can be modeled at as a sequence of
gates that are applied one after the other, we refer to the point
in time when the gate is applied as a “time-step”. For instance,
for the quantum circuit in Figure 1(a), the timesteps (without
gate parallelism) are represented in Figure 1(b), separated by
logical barriers to illustrate the sequence of steps.

The unitary at each time-step can be expressed as Iabove ⊗
Gate ⊗ Ibelow, where Iabove and Ibelow are identity matrices
representing the state of qubits at logical positions above and
below the target qubit(s) that the gate is applied to.

III. MOTIVATION

A. Sparsity Patterns in QC

Time-steps, when looked at individually as unitaries, exhibit
certain sparsity patterns. Figure 2 depicts unitaries of time-
steps where a Hadamard gate is applied to different qubits in
a 4-qubit circuit. We see a peculiar sparsity pattern: the non-
zeros in the unitaries are diagonally dense. The number of
diagonals for such unitaries are usually constant for a given
quantum gate. This is true for all norm maintaining (unitary)
transformations. In fact, for the Z (phase) gate, the unitary is
just the principal diagonal.

We find this diagonal sparsity in all time-step unitaries
that are formed from norm conserving gate unitaries. Fig-
ures 3(a), 3(b) and 3(c) indicate the number of diagonals on
the second y-axis, in time-step for unitaries of benchmarks
with 10 qubits (each unitary is a 1024x1024 matrix) from
SupermarQ [15].

Also, the primary y-axis indicates sparsity, where interme-
diate result matrices during this chain matrix multiplication
also are highly sparse for certain circuits. For instance, the

GHZ(10) unitary simulation remains highly sparse (≥99.8%)
throughout the simulation as seen in Figure 3(d). But some
circuits become dense after a few time-steps. For instance,
the Mermin Bell(10) unitary simulation becomes half-dense
at time-step 72, and full-dense around time-step 98.

We hence establish that either full-circuits or sub-circuits
have a peculiar diagonal sparsity which can be exploited
algorithmically for performance gains.

There is considerable potential to improve the matrix mul-
tiplication from a computational complexity of (O(N3)) to
O(N) when this sparsity is exploited, where N is 2n.

Similarly, when there are limited diagonals in unitaries, the
scope to improve the SpMV kernel, a key kernel in state-
vector simulation, can also be improved, moving from O(N2)
to O(N ∗d), where d is the number of diagonals in the matrix.

Therefore, this work leverages these sparsity patterns to
formulate a smart storage format that complements multiple
linear-algebra kernels to significantly speed up simulation and
save memory.

B. Existing Sparse Representations

But before we get into our new format, let us discuss Scipy’s
DIA format [17], [18], [19], which is a representation method
for sparse matrices by arranging elements in a diagonal-major
pattern, employing offsets to denote positions beyond the
matrix’s immediate scope. Consider the following:

a 0 0 b
0 c 0 0
0 0 d 0
e 0 0 f

 (1)

In the DIA format, non-zero elements are stored with re-
spect to their diagonals. For this matrix, the non-zero elements
would be stored as: values = [a, c, d, f, *, *, *, e, b, *, *,
*] Here, ’*’ denotes non-existent or empty positions within
the matrix, essentially representing ’NA’. The corresponding
offsets would be: offsets = [0, -3, 3] These offsets signify the
positions of the non-zero elements along the diagonals. Specif-
ically, the values are aligned based on their diagonal positions
relative to the main diagonal (0 offset). This representation
allows for a compact storage scheme, where non-zero values
are organized in line with their respective diagonal offsets,
effectively capturing the essential elements of the matrix in a
structured diagonal-major format.

Other commonly used sparse formats are Compressed
Sparse Row (CSR), Compressed Sparse Column (CSC), Co-
ordinate (COO), and Block Compressed Row (BSR) formats.
CSR and CSC formats store sparse matrices by compressing
the rows or columns, respectively, utilizing arrays to store the
non-zero values and additional arrays to store the column or
row indices. On the other hand, the COO format stores the
non-zero elements along with their corresponding row and
column indices, making it suitable for constructing sparse
matrices from scratch. BSR format, unlike CSR and CSC,
divides the matrix into fixed-size blocks and compresses each



(a) H ⊗ I8 (b) I2 ⊗H ⊗ I4 (c) I4 ⊗H ⊗ I2 (d) I8 ⊗H

Fig. 2. Sparsity patterns of time-step unitaries in a 4-qubit circuit when a single Hadamard gate is applied to just the (a) first, (b) second, (c) third and (d),
or the last qubit. Unitaries represent circuits from Figure 1(c). Note: The red stars denote non-zeros, black dots denote zeros.

(a) GHZ time-step unitaries (b) Hamiltonian time-step unitaries (c) Mermin Bell time-step unitaries

(d) GHZ during unitary simulation (e) Sparsity Analysis of HAM during unitary
simulation

(f) Sparsity Analysis of Mermin Bell during uni-
tary simulation

Fig. 3. Sparsity in SupermarQ benchmarks

block separately, enabling efficient storage and manipulation
of block-structured matrices. However, while these formats
offer efficient storage and operations for general sparse matri-
ces, they are not tailored specifically for quantum simulations,
where exploiting quantum-specific sparsity patterns can lead to
further performance improvements. Scipy’s DIA format relies
on CSR kernels after a mid-conversion step to perform effi-
cient matrix operations, ensuring compatibility with existing
numerical libraries and computational environments.
The value array is the same for all the formats, i.e., [a, c, d,
f, b, e]. The CSR format stores Row Indices: [0, 1, 2, 3, 0, 3]
and Column Pointers: [0, 2, 3, 4, 6]. The CSC format stores
Column Indices: [0, 2, 3, 3, 0, 0] and Row Pointers: [0, 1,

2, 3, 4, 6]. The COO format stores Row Indices: [0, 1, 2, 3,
3, 0] and Column Indices: [0, 2, 3, 3, 0, 3]. The BSR format
stores Block Indices: [0, 0, 1, 1, 2, 2] and Row Indices within
blocks: [0, 1, 0, 1, 0, 1].

IV. DIAQ: A NOVEL QUANTUM-TAILORED FORMAT

Levering the sparsity patterns seen in the above section, we
formulate DiaQ, a DIA-like matrix format without the need
to store offsets. We store a hashmap of diagonals indexed
by diagonal indices and values as arrays of lengths that are
pre-computed using the diagonal index and shape of the
matrix.
data[diagonal index] ← diagonal elements



Fig. 4. Memory Savings that DiaQ offers for GHZ circuit’s chain of unitaries

The above example Matrix(1) when stored in DiaQ looks like:

(dIndex = −3) [e]

(dIndex = 0) [a, c, d, f ]

(dIndex = 3) [b]

This way of storing non-zeros provides significant memory-
savings for matrices that most quantum simulations witness.
Figure 4 shows DiaQ’s memory-savings compared to other
sparse formats to store GHZ’s chain of unitaries for different
number of qubit circuits. The figure shows that the memory
requirements of Numpy’s dense format exhibit exponential
growth, whereas other sparse formats, though more compact
than Numpy, still fall short of the efficiency achieved by
DiaQ. Notably, DiaQ’s memory usage scales linearly with
the number of qubits, offering substantial savings in memory
utilization. Additionally, most sparse formats necessitate con-
version to CSR before undergoing matrix operations, whereas
DiaQ circumvents this step. This exceptional scalability of
DiaQ, coupled with its efficient algorithms discussed below,
establishes it as the optimal choice for quantum simulations.
Certain matrix kernels’ performance directly impacts overall
simulation efficiency, necessitating a reconsideration of BLAS
operations with DiaQ matrices in mind. This approach would
optimize memory usage and computational efficiency, poten-
tially enhancing overall simulation performance.

Matrix Product: This kernel holds significant importance
as it facilitates the “fusion of gates” in state-vector simulations,
mixed-state evolution (density matrix simulation), and unitary
simulations. The traditional approach to Dense Matrix Product
involves matrices of dimensions N×N , with a computational
complexity of O(N3). While this dense kernel has undergone
several optimizations in the realm of high-performance com-
puting, such as blocking, SIMD, and GPU acceleration, it does
not offer memory savings similar to DiaQ. Storing matrices
as sets of diagonals offers benefits to the matrix product,
as it can be decomposed into a series of sub-kernels (called
MultiplyDiagonals that perform diagonal times diagonal
computations). If both matrices contain only the principal

diagonal (diagonal index = 0), the matrix product reduces
to O(N) for DiaQ as opposed to N2 unitaries with O(N3)
for dense matrix multiplication, where N is the matrix size.
Overall, the time complexity of this kernel is O(d1 ∗ d2 ∗N),
where d1 and d2 represent the number of diagonals in the
matrices. Each of these sub-kernels operates in O(N) time,
as the diagonal length can be at most N , the dimension of the
matrix. This algorithm, outlined in Algorithm 1, in the worst-
case scenario, when the matrix is fully dense, d1 = d2 = N , is
comparable to the dense version, albeit complicating caching
opportunities such as blocking.

Algorithm 1 Matrix Multiplication (A×B)
1: if A.columns ̸= B.rows then
2: throw InvalidArgument(“not multiplyable”)
3: end if
4: result← InitializeResultMatrix()
5: mapA← A.getDiagonalMap()
6: mapB← B.getDiagonalMap()
7: #pragma omp parallel for
8: for diagA ∈ mapA do
9: for diagB ∈ mapB do

10: diagNew← MultiplyDiagonals(diagA, diagB)
11: ▷ SIMD vectorized
12: if diagNew.isValid() then
13: newIndex← diagA.index + diagB.index
14: result[newIndex]← diagNew
15: end if
16: end for
17: end for
18: return result

Matrix times Vector: This kernel is pivotal in state-vector
simulations and profoundly impacts their performance. The
use of matrices in the DiaQ format allows for a linear time
complexity in the SpMV operation when the matrix has just
one diagonal, typically O(num diags × vector length). This
represents a significant algorithmic enhancement compared to
its dense counterpart, which typically requires O(n2) time,
where n is the size of the matrix. Therefore, employing the



DiaQ format not only improves memory utilization but also
enhances computational efficiency. In contrast, CSR (Com-
pressed Sparse Row) matrix times vector takes O(nnz +
num rows) time, where nnz represents the number of non-zero
elements in the matrix. This format is particularly efficient for
sparse matrices with a structured pattern of non-zero elements.
Similarly, the COO (Coordinate) matrix times vector operation
also achieves a time complexity of O(nnz). The COO format
excels in scenarios where the matrix is irregular and its non-
zero elements are distributed randomly.

Algorithm 2 Sparse Matrix-Vector Product (A× x)
1: if A.columns ̸= x.rows then
2: throw InvalidArgument(“not multiplyable”)
3: end if
4: y ← InitializeResultVector(A.matrix shape[0], 0.0)
5: mapA← A.getDiagonalMap()
6: #pragma omp parallel for
7: for diagA ∈ mapA do
8: diagA vals← diag.getValues()
9: if diagA.index < 0 then ▷ Negative diagonals

10: for i← 0 to diagA.length− 1 do ▷ SIMD
11: xIndex← i
12: yIndex← i− diagA.index
13: y[yIndex] += diagA vals[i] · x[xIndex]
14: end for
15: else if dIndex > 0 then ▷ Positive diagonals
16: for i← 0 to diagA.length− 1 do ▷ SIMD
17: xIndex← diagA.index + i
18: yIndex← i
19: y[yIndex] += diagA vals[i] · x[xIndex]
20: end for
21: else ▷ Principal diagonal
22: for i← 0 to diagA.length− 1 do ▷ SIMD
23: y[i] += diagA vals[i] · x[i]
24: end for
25: end if
26: end for
27: return y

Matrix Transpose is another important kernel in quantum
simulations which is not used by SV-Sim but is often utilized
in BLAS kernels [20]. DiaQ Matrix transpose is a linear oper-
ation where diagonal indices are multiplied by -1, effectively
swapping the upper and lower halves of the matrix. In contrast,
the dense version takes O(N2) time, where N is 2n for an n-
qubit circuit.

V. THE DIAQ LIBRARY

The DiaQ library encompasses all the algorithms discussed
in the previous section, implemented in C++ and compiled
with optimization flags (-O3) to produce a shared library
and an API header file. These artifacts facilitate seamless
integration with other libraries. Additionally, Python wrappers
with converters from Numpy to DiaQ are provided.

Furthermore, the DiaQ library offers several features to
enhance its usability and performance. Users have the flexibil-
ity to opt for byte alignment while allocating DiaQ matrices
and state-vector arrays, catering to architectures supporting
AVX SIMD vectorization instructions and OpenMP multi-core
parallelization. Additionally, users can choose between single-
precision (float) and double-precision (double) data types,
aligning the library’s interface with other High-Performance
Computing (HPC) numerical libraries.

The MultiplyDiagonals sub-kernel, utilized in Al-
gorithm 1 at line 9, performs a linear element-by-element
operation between four arrays (real and imaginary parts of
two diagonals). This critical operation has been optimized
through vectorization using AVX-512 instructions, enhancing
computational efficiency.

Algorithm 3 y ← (Idima
⊗M ⊗ Idimb

)× x

1: y ← InitializeResultVector()
2: yvalues ← y.getValues()
3: xvalues ← x.getValues()
4: diagMap←M.getDiagonalMap()
5: for each (dIndex, diag) in diagMap do
6: dLength← diag.dLength
7: values← diag.getValues()
8: if dIndex < 0 then ▷ Handle Negative Diagonals
9: #pragma omp parallel for

10: for rep← 0 to dima − 1 do
11: skip← rep× (dimb × (dLength− dIndex))
12: for i← 0 to dLength− 1 do
13: val← values[i]
14: for j ← 0 to dimb − 1 do ▷ SIMD
15: x idx← j + i× dimb + skip
16: y idx← x idx− (dimb × dIndex)
17: yvalues[y idx] += val× xvalues[x idx]
18: end for
19: end for
20: end for
21: else ▷ Handle Principal and Positive Diagonals
22: #pragma omp parallel for
23: for rep← 0 to dima − 1 do
24: skip← rep× (dimb × (dLength + dIndex))
25: for i← 0 to dLength− 1 do
26: val← values[i]
27: for j ← 0 to dimb − 1 do ▷ SIMD
28: y idx← j + i× dimb + skip
29: x idx← x idx + (dimb × dIndex)
30: yvalues[y idx] += val× xvalues[x idx]
31: end for
32: end for
33: end for
34: end if
35: end for
36: return y

Similarly, Algorithm 2 benefits from SIMD (Single Instruc-
tion, Multiple Data) vectorization for loops at lines 9, 15,



and 21. This optimization leverages parallelism to expedite
the computation of sparse matrix-vector products, particularly
advantageous for large-scale simulations.

In Algorithm 3, which will be discussed in the next section,
SIMD vectorization has been applied to loops at lines 14 and
27. This optimization further accelerates the execution of the
algorithm, contributing to overall performance enhancements.

VI. INTEGRATING DIAQ WITH SV-SIM

In this section, we discuss the integration of DiaQ, our novel
sparse matrix format, with SV-Sim, a state-vector simulator.
Unlike traditional dense representations, where gate matrices
are fully populated, DiaQ leverages sparsity by storing a
hashmap of diagonal indices to diagonal elements, resulting
in efficient storage and computation. The integration process
involves utilizing sparse Generalized Matrix-Matrix Multipli-
cation kernel (spGEMM) for gate fusion. Here, sparse gate
matrices are efficiently multiplied to produce a resultant sparse
matrix. Moreover, gate application is performed using sparse
Matrix-Vector Multiplication kernel (spMV). Notably, the
DiaQ format allows for optimization of operations involving
matrices of the form M⊗I and I⊗M , exploiting the diagonal
structure inherent in DiaQ.

The DiaQ format’s storage of data in diagonals enables
contiguous memory accesses during Sparse Matrix-Vector
Multiplication (spMV). This stands in contrast to dense repre-
sentations, where memory accesses are staggered, leading to
reduced computational efficiency. A significant enhancement
arises from the nearly zero Floating Point Operations (FLOPs)
required for the Kronecker product operation, facilitated by
moving contiguous memory accesses enabled by the DiaQ
format. The reported speedups in simulations largely stem
from optimizing Kronecker product algorithms based on this
premise. Furthermore, by recognizing that Sparse Matrix-
Vector Multiplication (SpMV) operations often follow the
identity Kronecker matrix operation, we exploit this synergy to
combine both operations efficiently. This integration eliminates
redundant iterations over the same non-zero elements resulting
in improved computational performance. The details of this
optimization are given in Algorithm 3 and depicted in Fig-
ure 6. In practice, only diagonals (and often just the singular
principle one) need to be multiplied with shifting subsets of
the state vector resulting in an order of magnitude reduction
in complexity.

The CMake configuration of the SV-Sim C++ library has
been adapted to include libdiaq.so and diaq.h from the DiaQ
C++ library. This modification allows for seamless integration
with any numerical library that provides the necessary kernels
utilized by SV-Sim. SV-Sim’s backendManager is responsible
for directing simulations to different backends. diaq-cpu and
diaq-mpi have been added to the list of available backends,
but at compile time.

VII. EXPERIMENTAL FRAMEWORK

We convey our experiments on an Intel Broadwell Processor
with 32 cores and 64GB RAM, and a Frontier [21] Cluster

Node featuring 128 cores (AMD EPYC 7763) with 256GB
RAM.

The evaluation encompassed a range of benchmarks, in-
cluding GHZ and HAM benchmarks from 2-28 qubits,
from the SupermarQ suite [15], and a range of di-
verse quantum circuits from QasmBench [16], such as
seca_n11, cc_n12, multiplier_n15, qf21_n15,
qft_n18, bigadder_n18, qram_n20, ising_n26,
w_state_n27, adder_n28, and qft_n29. All bench-
marks are run for 1024 shots. The averages are plotted over 10
runs, and the box-plots on each bar show the standard devia-
tion over the 10 runs. Time measurements were obtained using
output of SV-Sim’s trace functionality within the program.

VIII. RESULTS

A. Quantitative Results

Figures 5(a) and 5(b) depicts the relative speedup (y-axis) of
our sparse DiaQ over SV-Sim’s dense baseline in the range of
4-28 qubits (x-axis) for the GHZ benchmark on Broadwell and
Frontier, respectively. We observe speedups of the simulation
runtime on average by 56-69% and 41-52% in the range of
12-20 qubits on Broadwell and Frontier, respectively, where
problems fit into L3 cache. Beyond L3 capacity, speedups
are around 50% and 25% for Broadwell (22 or more qubits)
and Frontier (26 or more qubits), respectively. There is a
dip in performance for circuits in the range of 22-24 qubits
on Frontier, which can be attributed to L3 cache effects as
the overall data size just exceeds the L3 capacity, likely
before hardware prefetching becomes effective (at 26 qubits)
to recover to a stable speedup. For small problem sizes with 8-
10 or fewer qubits, the dense baseline outperforms our sparse
DiaQ due to highly optimized dense linear algebra, which fits
the hardware platforms perfectly.

Figures 7(a) and 7(b) show the results for the HAM bench-
mark on the same axes, which follow a similar trend to GHZ.
We observe that the DiaQ format speeds up runtime in its
sparse DiaQ format over dense simulation for larger number
of qubits. Speedups peak around 12-14 qubits at 63% and 54%
for Broadwell and Frontier, respectively, and stabilize at 26
or more qubits around 31% and 23% for the two respective
platforms. The same dips around 22-24 qubits are seen on
Frontier, and problems sizes with at most 8 qubits result in
slowdowns for the same reasons as before.

In the following, we restrict ourselves to results of problem
sizes exceeding 10 qubits as only then can speedups be
expected for DiaQ. We omit results for Mermin Bell from the
SupermarQ benchmark as this benchmark can only construct
circuits of less than 12 qubits.

Figures 8(a) and 8(b) depict speedups on the y-axis of DiaQ
over the dense SV-Sim baseline for a variety of QASMBench
circuits with different number of qubits (indicated as n##) on
the x-axis. The results show that DiaQ improves the simulation
significantly, especially for large qubit circuits with at least
15 qubits, but for problems smaller than that slowdowns are
seen. For instance, qft at 18 qubits experiences a reduction in
simulation time by 68% and 48% for Broadwell and Frontier,
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Fig. 6. Gate Application (Algorithm 3). In this example, we focus on just the
principal diagonal (dIndex = 0). Each element along this diagonal, denoted by
i, interacts with the corresponding element in the input vector x. Specifically,
the ith element in the diagonal is multiplied with the (j+ i× dimb + skip)th
element in the vector x, where skip = 4 × rep × dimB, iterates over the
diagonal dimA times, where rep signifies each iteration and dimB represents
the columns in Idimb

, i.e., qubits above those that the gate is applied to. And
j iterates over dimb. In brief, each set of four elements in the input vector x
corresponds directly to four elements in the gate matrix diagonal. The limited
number of diagonals typically present in gate matrices, render this operation
nearly linear.

respectively, down to 50% and 32% at 29 qubits, again due
to exceeding L3 cache size. Savings for classical problems
reimplemented as a quantum circuit, such as the adder circuit,
as well as state preparation (w state) and Ising Hamiltonian
simulation (ising), tend to be smaller.

Overall, simulation time is significantly reduced via DiaQ,
peaking at L2 cache capacity and then stabilizing beyond L3

capacity as circuits become larger and sparser.

B. Qualitative Analysis

DiaQ significantly reduces memory requirements in unitary
simulations, converting O(N2) to O(d×N), where d if often
a constant in quantum simulations (see Figure 6). Storing in
this format is beneficial for unitary simulation as it reduces
O(N3) matrix multiplication to a O(d × d × N) kernel as
seen in Algorithm 1, i.e., often O(N) if d is constant.

Most significantly, DiaQ improves state-vector simulation
when the circuit unitaries are sufficiently sparse. It achieves
this by leveraging the spMV kernel demonstrated in Algo-
rithm 2, which exhibits a complexity of O(N × d), whereas
the dense Matrix-Vector product takes O(N2).

As demonstrated in Algorithm 3, DiaQ allows for smart
optimizations to avoid intermediate Kronecker product calcu-
lations. The complexity of the kernel (Idima

⊗M ⊗ Idimb
)×x

is O(N × d), whereas the same sequence of steps (Kronecker
followed by Matrix-Vector) in the dense format would take
O(N4).

IX. RELATED WORK

In the field of quantum computing, various high-
performance computing (HPC) tools have been developed
for quantum simulation. However, developing simulations for
distributed and parallel systems using classical simulators on
the HPC systems requires advanced skill in programming and
algorithm design. Benchmark tests of QASMBench [16] were
conducted on the OLCF Summit supercomputer equipped
with IBM Power9 CPUs, Nvidia Volta V100 GPUs, and a
Mellanox EDR 100 Gb/s Infiniband interconnect, utilizing the
distributed NWQ-Sim simulator [24]. This research leveraged
significant computational resources and advanced simulation
technologies.

QSim [25] by Google is an open-source simulator designed
for Schrödinger simulations. Quimb [26] utilizes tensor net-
works for high-performance circuit simulation. Qulacs [27]
by Quansys is another open-source simulator tailored for
Schrödinger simulations. Stim [28], an open-source library by
Google, focuses on high-speed simulation of Clifford circuits
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TABLE I

OTHER QUANTUM LIBRARIES

Library MV GEMM CPU Multi-threaded? SIMD vectorized? Open-sourced?

Qiskit O(n2) O(n3) ✓ ✓ ✓
CUDA-Quantum [22] O(n2) O(n3) ✓ – ×
Cirq [23] O(n2) O(n3) ✓ ✓ ✓
Qulacs O(n2) O(n3) – ✓ ✓
Stim O(n2) O(n3) – ✓ ✓
SV-Sim + DiaQ (this work) O(n× d) O(n× d× d) ✓ ✓ ✓

Note: In this table, n represents the matrix dimension, which is 2number of qubits, and d represents the number of diagonals in the matrix.

and quantum error correction. cuQuantum [29] provides tools
by Nvidia for accelerating quantum simulation on GPUs.

Recently, Nvidia introduced Quantuloop [30], a sparse
simulator that utilizes a bitwise representation for efficient
simulation of quantum circuits on GPU architectures. Despite
these advancements, sparse simulation techniques have not
been extensively explored in the field.

DiaQ distinguishes itself from existing approaches as de-
picted in Table I. In particular, DiaQ specifically targets
sparsity in quantum simulations at the numerical format level,
both in unitary matrices and during vector space simulation
via algorithmic kernel specialization. This unique character-

istic enables DiaQ to offer superior scalability and efficiency
compared to traditional simulators.

The sparse simulator [31] under the Azure Quantum Devel-
opment Kit focuses on leveraging state-vector sparsity to save
memory and improve simulation time, which is orthogonal to
DiaQ’s approach of exploiting sparsity in quantum simulations
at the unitary matrix level.

Moreover, DiaQ’s versatility extends beyond quantum sim-
ulation to other applications encountering diagonal sparsity,
such as after Kaleidoscope [32] matrices are formed or when
weight matrices are predominantly diagonal in deep neural
networks. This adaptability positions DiaQ as a promising



solution for optimizing memory usage and computational
performance across various domains.

X. CONCLUSION

DiaQ represents a significant advancement in sparse matrix
formats, particularly in the realm of quantum simulation. By
exploiting diagonal sparsity, DiaQ offers substantial reductions
in memory usage and computational complexity, making it
a valuable tool for quantum researchers and practitioners.
SV-Sim with DiaQ speeds up most benchmark circuits sig-
nificantly (∼ 23.65%) across 11 diverse benchmarks from
QASMBench via multi-core parallelization (OpenMP) and
vectorization (SIMD). DiaQ can be used like other numerical
libraries, after a simple python import.

Exploring DiaQ’s compatibility and efficacy with other
matrix-based simulation techniques, such as unitary simula-
tions and density-matrix simulations, holds promise for further
advancements and should be a focus of future investigations.
Moreover, once libdiaq gains GPU acceleration support, it can
further enhance quantum simulations. DiaQ can be tested in
conjunction with tensor-network simulations once diagonals
are re-imagined for higher-order tensors (rank>2). By contin-
uing to innovate in the realm of sparse simulation techniques,
we can unlock new opportunities for advancing quantum
computing and computational science as a whole.
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