
Bounding Worst-Case Response Time for Tasks With Non-Preemptive Regions ∗

Harini Ramaprasad, Frank Mueller
Dept. of Computer Science, Center for Efficient, Secure and Reliable Computing

North Carolina State University
Raleigh, NC 27695-8206, mueller@cs.ncsu.edu

Abstract

Real-time schedulability theory requiresa priori knowl-
edge of the worst-case execution time (WCET) of every task
in the system. Fundamental to the calculation of WCET is
a scheduling policy that adheres to priorities among tasks.
Such policies can be non-preemptive or preemptive. While
the former reduced analysis complexity and overhead in
implementation, the latter provides increased flexibilityin
terms of schedulability for higher utilizations of arbitrary
task sets. In practice, tasks often have non-preemptive re-
gions but are otherwise scheduled preemptively. To bound
the WCET of tasks, architectural features have to be con-
sidered in the context of a scheduling scheme. In particular,
preemption affects caches, which can be modeled by bound-
ing the cache-related preemption delay (CRPD) of a task.

In this paper, we propose a framework that provides
safe and tight bounds of the data-cache related preemption
delay (D-CRPD), the WCET and the worst-case response
times, not just for homogeneous tasks under fully preemp-
tive or fully non-preemptive system, but for tasks with a non-
preemptive region. By retaining the option of preemption
where legal, task sets become schedulable that might oth-
erwise not be. Yet, by requiring a region within a task to
be non-preemptive, correctness is ensured in terms of arbi-
tration of access to shared resources. Experimental results
confirm an increase in schedulability of a task set with non-
preemptive regions over an equivalent task set where only
those tasks with non-preemptive regions are scheduled non-
preemptively altogether. Quantitative results further indi-
cate that D-CRPD bounds and response-time bounds com-
parable to task sets with fully non-preemptive tasks can be
retained in the presence of short non-preemptive regions.

To the best of our knowledge, this is the first framework
that performs D-CRPD calculations in a system for tasks
with a non-preemptive region.

∗ This work was supported in part by NSF grants CCR-0208581, CCR-
0310860 and CCR-0312695.

1. Introduction

Bounding the worst-case execution times of tasksa pri-
ori is a requirement of schedulability analysis in hard real-
time systems and an area of research that has received sig-
nificant attention over many years. Several modern architec-
tural features increase the complexity of the analysis to de-
termine these WCET bounds by making execution behavior
more unpredictable. A data cache is one such feature that is
particularly hard to analyze.

Analyzing data cache behavior for single tasks is chal-
lenging in itself and has been the focus of much research
for many years ([9, 5, 8, 17, 10]). However, this is not suffi-
cient since systems usually have multiple tasks that execute
in a prioritized, preemptive environment.

In prior work, we proposed a framework to provide
worst-case response time estimates for tasks in a multi-task,
preemptive, hard real-time environment [12, 13]. In such a
system, every task has a priority. A task with a higher pri-
ority may preempt a task with a lower priority. The lower
priority task then experiences a data-cache related preemp-
tion delay (D-CRPD) when it resumes execution, which in-
creases its WCET and, hence, response time.

The fundamental assumption in our previous analysis is
that all tasks in a task set are completely preemptive. In
other words, a task may be interrupted by a task with higher
priority at any timeduring its execution. This assumption
may not be valid for some tasks. A task may have a pe-
riod in its execution during which it performs some critical
operations and, if interrupted, could produce incorrect re-
sults.

In our current work, we relax this assumption and al-
low tasks to have a region within their execution where they
may not be preempted. We call this the non-preemptive re-
gion (NPR) of a task. We propose a framework that stat-
ically analyzes task sets within such an environment and
calculates worst-case response times for all tasks.

The complexity of our analysis arises from the fact that
the actual execution time of a task is usually unknown.
Instead, we consider a range of possible execution times
bounded by the best and worst-case execution times of the
task. Hence, if a higher-priority task is released when a

lower-priority task is already in execution, we cannot give
an exact point in the iteration space where the lower-priority
task is guaranteed to be at the time. Thus, in our current sys-
tem, there could arise a situation where the lower-priority
task could be inside its non-preemptive region, but isnot
guaranteedto be.

In our work, we consider a periodic real-time task model
with period equal to the deadline of a task. The notation
used in the remainder of this paper is as follows. A task
Ti has characteristics represented by the 7 tuple (Φi, Pi, Ci,
ci, Bi, Ri, ∆j,i). Φi represents the phase of the task,Pi rep-
resents the period of the task (equal to deadline),Ci repre-
sents the worst-case execution time of the task,ci represents
the best-case execution time of the task,Bi represents the
blocking time of the task,Ri represents the response time of
the task and∆j,i represents the preemption delay inflicted
on the task due to a higher priority taskTj . Ji,j represents
thejth instance (job) of taskTi.

The rest of this paper is organized as follows. Section
2 discusses related work. Section 3 gives an overview of
prior work that analyses task sets in which all tasks are
completely preemptive. Section 4 provides details of the
methodology we have developed. Section 5 presents de-
tailed experimental results of our analysis. We summarize
the contributions of our work in Section 6.

2. Related Work

Recently, there has been considerable research in the
area of data cache analysis for real-time systems. Several
methods characterize data cache behavior with respect to a
single task [9, 5, 8, 17, 10]. Recently, some analytical meth-
ods for characterizing data cache behavior were proposed
[3, 2, 1]. In prior work [11], we extended the Cache Miss
Equations framework by Ghoshet al. [3] to produce exact
data cache reference patterns.

Several techniques have been proposed to analyze tasks
and calculate preemption delay in multi-task, preemptive
environments. Leeet al. proposed and enhanced a method
to calculate an upper bound for cache-related preemption
delay (CRPD) in a real-time system [6, 7]. They used cache
states at basic block boundaries and data flow analysis on
the control-flow graph of a task to analyze cache behavior
and calculate preemption delays.

The work by Leeet al. was enhanced by Staschulatet
al. [14, 16]. They build a complete framework for response
time analysis of tasks. The focus of the authors of these
papers is on instruction caches rather than data caches. In
prior work [12, 13], we propose a framework that aims at
performing the same three steps to calculate worst-case re-
sponse time as the work by Staschulatet al.. However, our
methodology is significantly different and our focus is on
data rather than instruction caches.

More recently, Staschulatet al. propose a framework to

calculate WCET of tasks [15]. This framework takes into
account both input-independent and input-dependent ac-
cesses. A tight bound of the effect that input-dependent ac-
cesses have on input-independent accesses is calculated. In
their scheme, when unpredictable data references exist, any
reused data cache contents are assumed to be replaced. For
large array sizes (larger than cache size), they would have
to assume that the entire data cache is replaced. In our prior
work [12, 13] and in our current work, we only focus on pre-
dictable (input-independent) data cache accesses. Further-
more, we need not make any assumptions about array sizes
with respect to data cache size.

In other related work, Juet al. propose a method to ex-
tend CRPD calculations using abstract cache states to dy-
namic scheduling policies [4]. Once again, this work fo-
cuses on instruction caches. Our handling of data caches
differs significantly.

There have been several pieces of work that provide
schedulability analysis and tests for non-preemptive sys-
tems. However, the fundamental assumption in them is that
every task is completely non-preemptive. They do not al-
low any task to be partially or fully preemptive. This as-
sumption simplifies analysis greatly. However, schedulabil-
ity of task sets may suffer.

3. Prior Work

In previous work, we presented a framework that stati-
cally analyzes tasks in a multi-task preemptive environment
and produces safe and tight worst-case response time esti-
mates for tasks. When a task is preempted, some data that
it had loaded into the data cache may potentially be evicted
from cache by higher-priority tasks. Hence, on resumption
of execution, it incurs additional delay to bring the evicted
data back into the data cache.

In order to incorporate the effects of preemption of a task
by a higher-priority task, we perform the following three
steps:

1. Calculaten, the maximum number of times a task can
be preempted during execution within a given task set.

2. Identify the placement of then preemption points in
the iteration space of the preempted task such that the
worst-case total preemption delay is obtained.

3. Given the preempted task, the set of possible preempt-
ing tasks and the preemption point, calculate the delay
incurred due to the preemption.

Our analysis presented a framework that calculated a
safe and tight estimate of the maximum number and the
placement of preemptions for a task by eliminating infea-
sible preemption points. A preemption point is infeasible
for a certain task if the task has not started at all before the
point or if the task has already completed execution before

the point. We used both the best and the worst-case execu-
tion times of higher priority tasks to help tighten the actual
preemption delay at every identified preemption point.

Our method showed significant improvements over a
prior method proposed by Staschulatet al.[14, 16] and over
theoretical bounds for the maximum number of preemp-
tions. These results are also presented in prior work [13].
In this work, we showed that, when preemption delay is ac-
counted for, the critical instant for a task set does not nec-
essarily occur when all tasks in the task set are released si-
multaneously as is generally assumed.

4. Methodology

Section 3 briefly discusses our prior work in which we
propose a method to calculate the worst-case response time
of a task in a multi-task preemptive hard real-time system
[13]. In this work, the basic assumption is that a task may
be preemptedat any point during its execution by a task
with higher priority. Hence, we are unable to consider task
sets with tasks that contain a non-preemptive region (NPR)
within them. Our current work aims at proposing a method-
ology that allows such tasks.

In the work presented here, we assume that every task
has at most one NPR during its execution. However, this
is only an implementation detail. Conceptually, our frame-
work can deal with tasks that have multiple NPRs during
their execution and this will be incorporated as part of fu-
ture work. A NPR is represented by the first and last points
of the range of consecutive iteration points during which a
particular task may not be interrupted. Every task is hence
effectively divided into three regions with the middle one
representing the NPR. The static timing analyzer described
in prior work [13] is enhanced to calculate the worst-case
and best-case execution times of these three regions based
on the start and end iteration points of the NPR.

In our prior work [13], whenever an instance of a task is
released, it is placed in a service queue and the scheduler
is invoked. The scheduler chooses the task with the high-
est priority at the current time, preempting any lower prior-
ity task that might be executing at the time. However, in our
new system, a task with higher priority may be required to
wait if a lower-priority task is executing in its NPR. In or-
der to calculate the worst-case response time for every task,
we need to consider several possible scenarios.

Let us suppose that a taskT1 is released at timet. At
time t + x, a taskT0, with a higher priority thanT1 is re-
leased. At timet + x, there are three possible cases:

1. T1 has finished executing its first region and started ex-
ecuting its NPR in both best and worst cases;

2. T1 has not finished executing its first region in either
case; or

3. T1 has started executing its NPR in the best-case, but
not in the worst-case.

Cases1 and2 are straightforward. In case1, T0 has to wait
until T1 finishes executing its NPR. In the best case, this
time is equal to the best-case remaining execution time of
T1’s NPR. In the worst-case, it is equal to the worst-case re-
maining execution time of taskT1’s NPR. In case2, T1 gets
preempted andT0 starts to execute immediately.

In case3, it is not certain whetherT1 has started exe-
cuting its NPR or not. Hence, for each task, we calculate
the best and worst possible scenario for that particular task
in order to determine its worst-case response time. ForT0,
the worst case is to assume thatT1 has already started exe-
cuting its NPR and add the worst-case remaining execution
time of T1’s NPR to the response time ofT0. On the other
hand, the best case forT0 is to assume thatT1 has not yet
started executing its NPR and, hence, may be preempted.
The scenario is reversed forT1. Its best case is to assume
that it has already started executing its NPR and, hence, is
not preempted. Its worst case is to assume that it gets pre-
empted byT0 and add the associated preemption delay to
its remaining execution time. By considering parallel exe-
cution scenarios for each task, we can come up with safe
response time estimates.

4.1. Illustrative Examples

We now provide an illustrative example of our method-
ology. In our example, we use a task set with three tasks
whose characteristics are specified in Table 1. The first col-
umn shows the task name. The second and third columns
show the phase and period (equal to the deadline) of the
each task. The fourth and fifth columns show the WCETs
and BCETs of each of the three regions of each task. Let
us assume that the Rate Monotonic (RM) scheduling policy
is used for this task set. Figure 1 shows the best and worst-
case scenarios for the tasks below and above the horizon-
tal time axis, respectively. The arrows show release points
of the three tasks. The lightly shaded rectangles represent
preemptive execution regions and the black rectangles non-
preemptive regions.

Task Phase Period WCET BCET
= deadline (r1/r2/r3) (r1/r2/r3)

T0 10 20 5/0/0 3/0/0
T1 15 50 7/0/0 5/0/0
T2 0 200 10/14/6 7/9/4

Table 1. Example Task Set Characteristics -
Task Set 1

Due to space constraints, we shall not examine the en-
tire timeline in detail. Instead, let us focus on three portions
of the timeline shown. These portions will help explain

T0

T1

T2

T0

T1

T2

50454035302520151050

WORST CASE

BEST CASE

Figure 1. Best and Worst-Case Scenarios for Task Set 1

the basic concept behind our methodology. Let us con-
sider all the events that would occur at time10. JobJ0,0

is released. The best case forJ0,0 is that it is sched-
uled immediately since there is a chance thatJ2,0 has
not yet started executing its NPR. It is scheduled to fin-
ish region 1 at time13. On the other hand, since there is
a chance thatJ2,0 has started its NPR,J0,0 has to wait
for at most14 units of time (worst-case remaining exe-
cution time ofJ2,0’s NPR) and is scheduled to start only
at time 24. The best case forJ2,0 is that it continues ex-
ecuting its NPR. However, in the worst case, since there
is a chance that it has not started its NPR, it gets pre-
empted byJ0,0 and it now re-scheduled to start its NPR at
time15 (adding the WCET ofJ0,0). However, due to the re-
lease of another higher-priority job, namely,J1,0, at time
15, J2,0 gets re-scheduled once again to start at time22
(adding the WCET ofJ1,0).

Let us now move forward in the timeline to time22. In
the worst case, this is the time at whichJ2,0 starts execut-
ing its NPR. It is scheduled to finish this region at time36.
At time 24, J0,0 starts executing region 1 in its worst case.
It is scheduled to finish at time29. Now, consider the events
that occur at time30. JobJ0,1 is released. In the best case, it
starts executing region 1 right away and is scheduled to fin-
ish at time33. However, in the worst case, sinceJ2,0 is
guaranteed to have started its NPR,J0,1 has to wait un-
til J2,0 completes its NPR and is, hence, scheduled at time
36.

The analysis proceeds in a similar fashion until the hy-
perperiod of the task set, namely200. In this example, for
the sake of simplicity, preemption delay calculations are not
shown. Delay at every resumption point is assumed to be
zero. These calculations will be explained later in Section
4.3.

4.2. Analysis Algorithm

An algorithm briefly describing our methodology is
shown in Figure 2. Our system is built on an event hi-
erarchy. Every event has a handler which performs all
operations necessary on the occurrence of the particu-
lar event. We have several event types, each with a pri-
ority, time of occurrence and information about the task
and job that the event corresponds to. The events are or-
dered by time, and upon ties, by priority based on the type
of event. The various events in our system, in order of pri-
ority, are BCEndExec, WCEndExec, DeadlineCheck,
JobRelease, BCStartExec, WCStartExec and Preemp-
tionDelayPhaseEnd. The algorithm in Figure 2 describes
the actions that take place when a certain event is trig-
gered. In the algorithm, we describe the events in an order
that follows the flow of the logic rather than based on pri-
ority.

In Figure 2, we first define variables that are global to all
event handlers. Variables that are local to a particular event
are described with the corresponding event type. The basic
flow of operations in our analysis is as follows. Stand-alone
WCETs and BCETs are calculated for each region of each
task. JobRelease and Deadline check events are pre-created
based on task periods and inserted into a global event list.
Events in the event list are handled one at a time until there
are no more events. The basic life-cycle of a job is described
below. Upon release of a job, we evaluate when that job
gets scheduled if possible and determine whether any job
that is currently executing gets preempted due to this re-
lease. This triggers a B/WCStartExec event which signify
the start of execution of the current region of a job. These
events in turn schedule B/WCEndExec events or Preemp-
tionDelayPhaseEnd events as the case may be. Finally, a
DeadlineCheck is triggered and is responsible for checking
if a certain job missed its deadline.

The creation dependencies between event types are rep-
resented by the state-transition diagram shown in Figure 3.

Structures global to all events are described below
bc servicequeue, wcservicequeue : queues of all

released jobs that have not yet completed in the
best and worst case respectively. Each job is in
one of three states : READY, WAITING and INSERVICE

event list : list of events ordered first by time and then
by the priority of the type of event

Parameters for each event are described below
current time : Time at which event occurs
curr job: Job which the event corresponds to

JobRelease event: This event represents the release
of a new job of a task.

Best case handling:
If (event queue is empty){

insertIntoEventList(currjob, currenttime, BCStartExec)
} else{

for every job (qjob) in bc servicequeue starting from
lowest priority job{
if (curr job has greater priority than qjob) {

check npr status of qjob
evaluate if qjob gets preempted
evaluate start time of currjob gets in best case
} else{

curr job is not scheduled now
break from for loop
} }

}
insert currjob into bcservicequeue

Worst case handling:
If (event queue is empty){

createevent← TRUE
} else{

for every job (qjob) in wc servicequeue starting from
lowest priority job{
if (curr job has greater priority than qjob) {

check if npr possible for qjob
check if npr guaranteed for qjob
if (q job gets preempted){

calculate preemption delay
put q job in PreemptionDelay phase
}
re-schedule WCStartExec event for qjob if required
schedule WCStartExec event for currjob
} else{

curr job is not scheduled now
break from for loop
}
}
}
insert currjob into wc servicequeue

BCStartExec event : This event represents the best case
start of execution of the current job’s current region.

set status of currjob to IN SERVICE in bcservicequeue
schedule BCEndExec event for currjob

BCEndExec event : This event represents the best case
end of execution of the current job’s current region.

remove currjob from bc servicequeue update bcremainingtime
of current job
if (curr job has another region){

evaluate if next region can be scheduled
schedule BCStartExec event for next region if possible
insert currjob into bcservicequeue
} else if (bcservicequeue has more jobs in it)){

schedule BCStartExec event of next READY job
}
WCStartExec event : This event represents the worst case

start of execution of the current job’s current region.
set status of currjob to IN SERVICE in bcservicequeue
if (curr job is in PreemptionDelay phase){

schedule PreemptionDelayPhaseEnd event for currjob
} else{

schedule WCEndExec event for currjob
}

WCEndExec event : This event represents the worst case
end of execution of the current job’s current region.

remove currjob from wc servicequeue update wcremainingtime
of curr job
if (curr job has another region){

evaluate if next region can be scheduled
schedule WCStartExec event for next region if possible
insert currjob into wc servicequeue
} else if (wcservicequeue has more jobs in it)){

schedule WCStartExec event of next READY job
}

DeadlineCheck event : This event checks whether the given
job has exceeded its deadline. if (currjob misses deadline) re-

lease its structures

PreemptDelayPhaseEnd event : This event represents
the end of the preemption delay phase for the current job.

schedule WCStartExec event for currjob

Main Algorithm : This is the starting point of
our analysis.

for every task in the task set{
create JobRelease events for all jobs of task
create DeadlineCheck events for all jobs of task

}
while (events in event list){

get highest priority event and handle it based on event type
}

Figure 2. Algorithm for NPR-Aware Calculation of WCET w/ Delay

An arrow from one event type to another indicates that the
handler of the first event type may create an event of the sec-
ond type. Events that do not have a creator in the diagram
are created at the beginning outside any of the event types.

BCStartExec Event BCEndExec Event

WCEndExec EventWCStartExec Event

JobRelease Event

PreempDelayPhaseEnd Event

DeadlineCheckEvent

Figure 3. Creation Dependencies among
Event Types

4.3. Preemption Delay Calculation

Preemption delay at every identified preemption point is
calculated in a manner consistent with our earlier work [13].
At every preemption point, we calculate the best-case and
worst-case execution times that have been available for a
task for its execution. We provide these values to the static
timing analyzer and obtain the earliest and latest iteration
points reachable for each of these times. We then consider
the highest delay in this range of iteration points as given by
the access chain weights for those points. In our past work,
we simply added this delay to the remaining worst-case ex-
ecution time of the task and assumed that, on resumption,
execution continues from the iteration where it had left off.
However, this is imprecise since we do not know at what
points the preemption delay is actually incurred during the
execution of the task. Hence, for future preemption points,
determination of the iteration range where the task is sup-
posed to be when it is preempted is not guaranteed.

In order to solve the above problem and provide safe esti-
mates of the worst-case preemption delay at every point, we
devised the following solution. When a task is preempted,
we calculate the delay as indicated above. When the task
later resumes execution, it enters apreemption delayphase
for a time equal to the calculated delay. In this phase, the
task prefetches all data cache items that contribute to the de-
lay. Once done, the task resumes normal execution. If a task
gets preempted during its preemption delay phase, it pes-
simistically starts the same preemption delay phase all over
again once it resumes execution. This new phase ensures
that all future delay calculations are accurate.

5. Experimental Results
For our experiments, we constructed several task sets us-

ing benchmarks from the DSPStone benchmark suite [18],
consistent with earlier work [13]. These task sets have base
utilizations of 0.5, 0.6, 0.7 and 0.8. For each of these utiliza-

tions, we construct task sets with 2, 4, 6 and 8 tasks. For a
utilization of 0.8, we also construct a task set with 10 tasks.
In all our experiments, we use a 4KB, direct-mapped data
cache with a hit penalty of 1 cycle and a miss penalty of
100 cycles. The stand-alone WCETs and BCETs of the var-
ious benchmarks are depicted in Table 2.

ID Name WCET BCET ID Name WCET BCET
1 convolution 7491 7491 15 matrix1 59896 54015

2 200convolution 14191 14191 16 fir 9537 9537

3 300convolution 20891 20891 17 500fir 43937 43937

4 500convolution 34291 34291 18 600fir 54837 52537

5 600convolution 45291 40991 19 700fir 65937 61137

6 700convolution 55491 47691 20 800fir 77037 69737

7 800convolution 66191 54391 21 900fir 88137 78337

8 900convolution 76391 61091 22 1000fir 99237 86937

9 1000convolution 87091 67791 23 lms 14536 14536

10 n-real-updates 16738 16738 24 600lms 89636 79536

11 300n-real-updates56538 47338 25 700lms 112636 92536

12 400n-real-updates92238 62638 26 800lms 135636105536

13 500n-real-updates12753877938 27 900lms 158636118536

14 dot-product 750 750 28 1000lms181636131536

Table 2. Stand-Alone WCETs and BCETs of
DSPStone Benchmarks

In our first set of experiments, we perform response time
analysis using the method presented in this paper to calcu-
late the number of preemptions and the worst-case preemp-
tion delay. Due to the fact that the benchmarks used in our
experiments do not already have a NPR, we simply choose
an iteration range from the valid iteration range of a particu-
lar task and mark it as being non-preemptive. Table 3 shows
execution times of each region as determined by the tim-
ing analyzer based on the chosen iteration ranges for a sub-
set of our benchmarks. Since we only have a fixed set of
benchmarks, we sometimes use the same benchmark with
and without NPRs in different task sets. The length of the
NPR of a task as a portion of the total execution time of the
task ranges from4% to 37% in both the worst and the best
cases.

The characteristics of task sets with base utilization 0.5,
0.6, 0.7 and 0.8 are shown in Table 4. The first column
shows the tasks used in each task set. We use the IDs as-
signed to benchmarks in Table 2 to identify the tasks. If a
task is chosen to have a NPR in a certain task set, we ap-
pend the letterN to its ID to indicate this fact. In this case,
the WCETs and BCETs for the task are as shown in Ta-
ble 3. Otherwise, they are as indicated in Table 2. The sec-
ond column shows the phases of the tasks and the third col-
umn shows the periods (equal to the deadlines) of tasks. The

ID Region 1 Region 2 (NPR) Region 3
WCET / BCET WCET / BCET WCET / BCET

5 39371 / 38271 5084 / 2184 836 / 536
6 39371 / 38971 10924 / 6024 5196 / 2696
7 46771 / 44471 14224 / 7224 5196 / 2696
8 52371 / 48771 18824 / 9624 5196 / 2696
9 61571 / 55471 15424 / 7224 10096 / 5096
11 33494 / 31194 5337 / 3737 17707 / 12407
12 52294 / 43194 9647 / 4847 30297 / 14597
13 68444 / 53344 12987 / 5587 46107 / 19007
15 28912 / 26172 22400 / 20760 8584 / 7083
17 32302 / 32302 9045 / 9045 2590 / 2590
18 45802 / 45402 5845 / 4545 3190 / 2590
19 58652 / 55352 5845 / 4545 1440 / 1240
20 56502 / 53602 11545 / 9045 8990 / 7090
21 69352 / 63552 11545 / 9045 7240 / 5740
22 70152 / 64052 17245 / 13545 11840 / 9340
24 47756 / 45956 4649 / 3549 37231 / 30031
26 66506 / 60406 5239 / 3939 63891 / 41191
27 59256 / 54956 20639 / 15639 78741 / 47941

Table 3. Characteristics of Regions of Tasks
with NPR

phases of the tasks are chosen in a way to demonstrate in-
teresting features of our analysis.

Results obtained for task sets in the above set of exper-
iments are shown in Figures 4 and 5 for base utilizations
of 0.5 and 0.8, respectively. Each graph shows the results
of analysis of the same task sets using both the static Rate
Monotonic (RM) scheduling policy and the dynamic Earli-
est Deadline First (EDF) scheduling policy. The results for
utilizations 0.6 and 0.7 are omitted due to space constraints.
For each utilization, we have a separate graph for the max-
imum number of preemptions, the WCET with preemption
delay and the response time. These values form the y-axes
in the graphs. In each graph, on the x-axis, we show the var-
ious task sets used. Tasks within each task set are numbered
from 0 onwards.

For each scheduling policy, we show results using three
analysis techniques. The first one is NPR unaware (Preemp-
tive), in which all tasks are assumed to be completely pre-
emptive, as in our earlier work [13]. The second is a NPR-
aware analysis in which some tasks have a non-preemptive
region in the middle (PartialNPR). The third analysis is a
NPR-aware analysis in which the same tasks are completely
non-preemptive (NonPreemptive). In these graphs, we omit
response time values for tasks that end up missing their
deadline.

At the outset, it is to be noted that, if a task is supposed
to have a non-preemptive region, then forcing the task to
be completely preemptive is unsafe since the results of the
task could be incorrect (due to possible data races). Hence,
the results of our NPR unaware (Preemptive) analysis are

Tasks 2 4 6 8
U = 0.5

IDs 16, 19N 1,
15N,
18N,
22

23, 3, 6, 11N,
19, 26

2, 3, 4, 11, 15N,
18, 7, 27

Phases 4K, 0 1K, 0,
10K, 0

32K, 32K, 32K,
0, 0, 0

0, 0, 0, 0, 0, 0,
0, 0

Periods 50K, 200K 50K,
400K,
500K,
1000K

400K, 500K,
1000K, 1000K,
2000K

100K, 400K,
500K, 800K,
1000K, 2000K,
2000K, 4000K

U = 0.6
IDs 21, 27N 1, 15,

8N, 27
3, 4, 6, 11N, 19,
26

2, 5, 6N, 11N,
15, 18, 7, 27

Phases 55K, 0 0, 0, 0,
0

32K, 33K, 34K,
0, 0, 0

0, 45K, 32K, 0,
0, 0, 0, 0

Periods 300K, 500K 50K,
400K,
500K,
1000K

100K, 400K,
500K, 1000K,
1000K, 2000K

100K, 400K,
500K, 800K,
1000K, 2000K,
2000K, 4000K

U = 0.7
IDs 27N, 21N 16, 9,

7N, 27
3, 17N, 8, 7,
20N, 27

3, 5N, 20, 11N,
15, 19, 8, 26

Phases 64K, 0 45K,
45K,
0, 0

0, 0, 0, 0, 0, 0 0, 0, 0, 0, 0, 0,
0, 0

Periods 300K, 500K 50K,
400K,
500K,
1000K

100K, 400K,
500K, 1000K,
1000K, 2000K

100K, 400K,
500K, 800K,
1000K, 2000K,
2000K, 4000K

U = 0.8
IDs 27, 26N 28,

13N,
27, 19

21, 8N, 20, 13,
25, 19

8, 26, 20, 15N,
9, 11, 8, 21

Phases 0, 0 54K,
0, 0, 0

49K, 0, 0, 0, 0,
0

27K, 27K, 27K,
0, 0, 0, 0, 0

Periods 300K, 500K 500K,
500K,
1000K,
2000K

400K, 500K,
500K, 1000K,
1000K, 2000K

400K, 500K,
800K, 800K,
1000K, 2000K,
2000K, 4000K

U = 0.8, # Tasks=10
IDs 10, 8, 15, 9, 5, 11N, 20, 27, 22, 17
Phases 32K, 32K, 32K, 32K, 32K, 0, 0, 0, 0, 0
Periods 100K, 625K, 625K, 625K, 1000K, 1000K,

1250K, 1250K, 2500K, 5000K

Table 4. Task Set Characteristics: Benchmark
IDs, Phases[cycles] and Periods [cycles]

unsafe as far as the tasks with NPR are concerned. It is
purely for the sake of comparison that we present those re-
sults here. On the other hand, making a task that is supposed
to have a portion which is non-preemptive completely non-
preemptive is conservative, yet safe.

From the graphs, we make the following observations.

�
�+B
Y

Y+B
p

p+B
�

�+B
�

�+B

� Y � Y p � � Y p � � B � Y p � � B µ Ì
ú�(?Vm��(

²�
ÉVà

V÷�
��

%÷
�<S

j(

�²�¯SjÆ���%÷�<Ý�
ô�"�¯SjÆ���%÷�<Ý�
�²�Æ���<�9¯Æ�
ô�"�Æ���<�9¯Æ�
�²�Æ���%÷�<Ý�
ô�"�Æ���%÷�<Ý�

(a) # Preemptions for U = 0.5

�
p����
�����
µ����
P����

Y�����
Yp����
Y�����
Yµ����
YP����
p�����

� Y � Y p � � Y p � � B � Y p � � B µ Ìú�(?Vm��(

g~
ôú

V�
¬VÃ

�9�
ÚVñ

�Ú
�9�

(�

�²�¯SjÆ���%÷�<Ý�
ô�"�¯SjÆ���%÷�<Ý�
�²�Æ���<�9¯Æ�
ô�"�Æ���<�9¯Æ�
�²�Æ���%÷�<Ý�
ô�"�Æ���%÷�<Ý�

(b) WCET w/ delay for U = 0.5

�
Y�����
p�����
������
������
B�����
µ�����
Ì�����

� Y � Y p � � Y p � � B � Y p � � B µ Ìú�(?Vm��(

��
(÷

Sj
(�

Vú<
%�

Vñ�
Ú�

9�(
� �²�¯SjÆ���%÷�<Ý�

ô�"�¯SjÆ���%÷�<Ý�
�²�Æ���<�9¯Æ�
ô�"�Æ���<�9¯Æ�
�²�Æ���%÷�<Ý�
ô�"�Æ���%÷�<Ý�

(c) Response Time for U = 0.5

Figure 4. Results for U=0.5 under RM and EDF Scheduling

First of all, we observe that the results for the RM schedul-
ing policy and the EDF scheduling policy are almost the
same for most tasks. For RM and EDF to exhibit a dif-
ference in behavior, a task with a longer period needs to
have an earlier deadline than one with shorter period some-
where in the execution timeline. This could happen in two
situations, namely, when the shorter period does not divide
the longer period and when there is phasing between the
tasks. In most of our task sets, neither case occurs as ob-
servable from the results. However, for a base utilization
of 0.8, we do observe small differences in the two policies.
As expected, some tasks with a shorter period (higher prior-
ity according to RM) have a longer response time with EDF.
Other tasks in the same task set with a longer period have a
shorter response time with EDF.

For most of our task sets, we observe that the response
time estimates obtained from the NonPreemptive analysis
is shorter than that obtained from the PartialNPR analysis.
The reason for this is as follows. In the PartialNPR analy-
sis, the following situation could occur. When a task is re-
leased, some task with a lower priority could have started
its NPR in the best case, but not started it in the worst.

As explained in Section 4, when this happens, we con-
sider the effects of contradicting worst-case scenarios for
the two tasks involved. In other words, we assume the worst
possible scenario for each task. This is done in order to en-
sure safety of the response time estimates. In reality, how-
ever, only one of the scenarios can actually occur. In the
case of the NonPreemptive analysis, a task that has a NPR
is assumed to be completely non-preemptive. Hence, a situ-
ation like the one described above cannot occur.

On the other hand, in some task sets, the NonPreemptive
analysis causes some high-priority tasks to miss their dead-
lines. This is because the waiting time for the high-priority
tasks are now longer since the length of the non-preemptive
region of a task extends to its entire execution time. This,
in part, compensates for the pessimism that the PartialNPR
method introduced and is observed by the fact that the ac-
tual difference between response times of tasks in the two
cases are not significant.

We also conducted a sensitivity study using the example
task set shown in Table 1. We maintain the same periods,
phases and total execution times for all tasks. However, we
vary the length of the NPR inT2 in both the best and worst

�
�+B
Y

Y+B
p

p+B
�

�+B
�

�+B
B

� Y � Y p � � Y p � � B � Y p � � B µ Ì � Y p � � B µ Ì P 6ú�(?Vm��(

²�
ÉVà

V÷�
��

%÷
�<S

j(

�²�¯SjÆ���%÷�<Ý�
ô�"�¯SjÆ���%÷�<Ý�
�²�Æ���<�9¯Æ�
ô�"�Æ���<�9¯Æ�
�²�Æ���%÷�<Ý�
ô�"�Æ���%÷�<Ý�

(a) # Preemptions for U = 0.8

�
p����
�����
µ����
P����

Y�����
Yp����
Y�����
Yµ����
YP����
p�����

� Y � Y p � � Y p � � B � Y p � � B µ Ì � Y p � � B µ Ì P 6ú�(?Vm��(

g~
ôú

V�
¬VÃ

�9�
ÚVñ

�Ú
�9�

(�

�²�¯SjÆ���%÷�<Ý�
ô�"�¯SjÆ���%÷�<Ý�
�²�Æ���<�9¯Æ�
ô�"�Æ���<�9¯Æ�
�²�Æ���%÷�<Ý�
ô�"�Æ���%÷�<Ý�

(b) WCET w/ delay for U = 0.8

�

B�����

Y������

YB�����

p������

pB�����

� Y � Y p � � Y p � � B � Y p � � B µ Ì � Y p � � B µ Ì P 6ú�(?Vm��(

��
(÷

Sj
(�

Vú<
%�

Vñ�
Ú�

9�(
�

�²�¯SjÆ���%÷�<Ý�
ô�"�¯SjÆ���%÷�<Ý�
�²�Æ���<�9¯Æ�
ô�"�Æ���<�9¯Æ�
�²�Æ���%÷�<Ý�
ô�"�Æ���%÷�<Ý�

(c) Response Time for U = 0.8

Figure 5. Results for U=0.8 under RM and EDF Scheduling

cases. We start without a NPR forT2 and then extend the
NPR from the middle outwards symmetrically in both direc-
tions untilT2 is completely non-preemptive. Table 5 shows
the WCETs and BCETs of each region for different experi-
ments. The average response times over all jobs of each task
using the RM scheduling policy are shown in Figure 6. Re-
sponse times are omitted from the graph if any job of a task
misses its deadline. At one extreme, whereT2 is completely
preemptive, we see that the response time ofT0 is the same
as its WCET since it executes to completion right after its
initial release. At the other extreme, whenT2 is completely
non-preemptive, we see thatT0 misses its deadline due to
increased waiting time. This sensitivity study demonstrates
the improved schedulability of our PartialNPR analysis over
the NonPreemptive analysis.

In summary, our work enables us to study the ef-
fects of having a non-preemptive region and the ad-
vantages of having partial NPRs as compared to com-
pletely non-preemptive tasks in a task set. Assuming that a
task is completely non-preemptive is simpler from an anal-
ysis standpoint. However, it has the disadvantage that there
is an increased probability that task sets are not schedula-

Expt. # Region 1 Region 2 (NPR) Region 3
WCET / BCET WCET / BCET WCET / BCET

1 30/20 0/0 0/0
2 13/9 4/2 13/9
3 11/8 8/4 11/8
4 9/7 12/6 9/7
5 7/6 16/8 7/6
6 5/4 20/12 5/4
7 3/2 24/16 3/2
8 0/0 30/20 0/0

Table 5. Execution times for T2

ble due to some high-priority task missing its deadline. On
the other hand, a completely preemptive system might not
be acceptable for certain kinds of tasks that inherently pos-
sess a region in which they should not be preempted in or-
der to preserve correctness. In such cases, our analysis
may be used to calculate whether the task set is schedula-
ble or not.

�

Y�

p�

��

��

B�

µ�

Y p � � B µ Ì P
ôÉ÷��<%�j�

��
(÷

Sj
(�

Vú<
%�

Vñ�
Ú�

9�(
�

ú�
úY
úp

Figure 6. Response Times of Tasks

6. Conclusion

We presented a framework to calculate safe and tight
timing bounds of data-cache related preemption de-
lay (D-CRPD) and worst-case response times. In con-
trast to past work, our novel approach handles tasks with
a non-preemptive region of execution. Through exper-
iments, we obtain response-time bounds for task sets
where some tasks have non-preemptive regions. We com-
pare these results to an equivalent task set where only
those tasks with non-preemptive regions are sched-
uled non-preemptively altogether. We show that, for some
task sets, schedulability is improved without signifi-
cantly affecting the response times of tasks using partially
non-preemptive tasks as opposed to fully non-preemptive
tasks. To the best of our knowledge, this is the first frame-
work that bounds D-CRPD and response times for tasks
with non-preemptive regions.

References
[1] S. Chatterjee, E. Parker, P. Hanlon, and A. Lebeck. Exact

analysis of the cache behavior of nested loops. InACM SIG-
PLAN Conference on Programming Language Design and
Implementation, pages 286–297, June 2001.

[2] B. B. Fraguela, R. Doallo, and E. L. Zapata. Automatic ana-
lytical modeling for the estimation of cache misses. InInter-
national Conference on Parallel Architectures and Compila-
tion Techniques, 1999.

[3] S. Ghosh, M. Martonosi, and S. Malik. Cache miss equa-
tions: a compiler framework for analyzing and tuning mem-
ory behavior. ACM Transactions on Programming Lan-
guages and Systems, 21(4):703–746, 1999.

[4] L. Ju, S. Chakraborty, and A. Roychoudhury. Accounting for
cache-related preemption delay in dynamic priority schedu-
lability analysis. InIEEE Design Automation and Test in Eu-
rope, 2007.

[5] S. Kim, S. Min, and R. Ha. Efficient worst case timing anal-
ysis of data caching. InIEEE Real-Time Embedded Technol-
ogy and Applications Symposium, June 1996.

[6] C.-G. Lee, J. Hahn, Y.-M. Seo, S. L. Min, R. Ha, S. Hong,
C. Y. Park, M. Lee, and C. S. Kim. Analysis or cache-related

preemption delay in fixed-priority preemptive scheduling.
IEEE Transactions on Computers, 47(6):700–713, 1998.

[7] C.-G. Lee, K. Lee, J. Hahn, Y.-M. Seo, S. L. Min, R. Ha,
S. Hong, C. Y. Park, M. Lee, and C. S. Kim. Bounding cache-
related preemption delay for real-time systems.IEEE Trans-
actions on Software Engineering, 27(9):805–826, Nov. 2001.

[8] Y.-T. S. Li, S. Malik, and A. Wolfe. Cache modeling for real-
time software: Beyond direct mapped instruction caches. In
IEEE Real-Time Systems Symposium, pages 254–263, Dec.
1996.

[9] S.-S. Lim, Y. H. Bae, G. T. Jang, B.-D. Rhee, S. L. Min, C. Y.
Park, H. Shin, and C. S. Kim. An accurate worst case tim-
ing analysis for RISC processors. InIEEE Real-Time Sys-
tems Symposium, pages 97–108, Dec. 1994.

[10] T. Lundqvist and P. Stenstrm. Empirical bounds on data
caching in high-performance real-time systems. Technical
report, Chalmers University of Technology, 1999.

[11] H. Ramaprasad and F. Mueller. Bounding worst-case data
cache behavior by analytically deriving cache reference pat-
terns. InIEEE Real-Time Embedded Technology and Appli-
cations Symposium, pages 148–157, Mar. 2005.

[12] H. Ramaprasad and F. Mueller. Bounding preemption de-
lay within data cache reference patterns for real-time tasks.
In IEEE Real-Time Embedded Technology and Applications
Symposium, Apr. 2006.

[13] H. Ramaprasad and F. Mueller. Tightening the bounds on
feasible preemption points. InIEEE Real-Time Systems Sym-
posium, pages 212–222, Dec. 2006.

[14] J. Staschulat and R. Ernst. Multiple process executionin
cache related preemption delay analysis. InACM Interna-
tional Conference on Embedded Software, 2004.

[15] J. Staschulat and R. Ernst. Worst case timing analysis of in-
put dependent data cache behavior. InEuromicro Conference
on Real-Time Systems, 2006.

[16] J. Staschulat, S. Schliecker, and R. Ernst. Schedulinganal-
ysis of real-time systems with precise modeling of cache re-
lated preemption delay. InEuromicro Conference on Real-
Time Systems, 2005.

[17] R. T. White, F. Mueller, C. Healy, D. Whalley, and M. G.
Harmon. Timing analysis for data and wrap-around fill
caches.Real-Time Systems, 17(2/3):209–233, Nov. 1999.

[18] V. Zivojnovic, J. Velarde, C. Schlager, and H. Meyr. Dsp-
stone: A dsp-oriented benchmarking methodology. InSignal
Processing Applications and Technology, 1994.

