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ABSTRACT
As real-time embedded systems integrate more and more
functionality, they are demanding increasing amounts of com-
putational power that can only be met by deploying them on
powerful multi-core architectures. Efficient task allocation
and scheduling on such architectures is paramount. Multi-
core scheduling algorithms for independent real-time tasks
has been the focus of much research over the years. However,
in practice, tasks typically share software resources among
each other. One of the foremost bottlenecks in successfully
scheduling resource sharing tasks on multi-core architectures
is the blocking times, especially remote blocking, that tasks
may suffer from. In this paper, we present a novel semi-
partitioned scheduling algorithm that significantly reduces
blocking times of tasks by splitting a task into subtasks
based on resource usage and executing resource independent
and resource sharing subtasks on mutually exclusive cores.
We demonstrate the effectiveness of our algorithm and eval-
uate it alongside the classic Distributed Priority Ceiling Pro-
tocol (DPCP) that uses a similar approach with “synchro-
nization” cores and alongside a recent partitioned schedul-
ing approach called Greedy Slacker. Results demonstrate
that our algorithm achieves a higher scheduled utilization in
a majority of task sets, with average improvements in the
range of 10% to 15% over DPCP and Greedy Slacker.

1. INTRODUCTION
The need for increasing performance requirements under

lower power/energy budgets or greener computing constraints
has led to the advent of multi-core architectures for use in
general purpose systems. As modern real-time and embed-
ded systems continue to integrate more and more functional-
ity, they are also demanding increasing amounts of computa-
tion that can only be satisfied by the adoption of multi-core
architectures. However, due to their strict predictability re-
quirements, several challenges need to be addressed before
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real-time systems can be safely deployed on multi-core ar-
chitectures. This has been the focus of much research over
the last several years.

In order to effectively use the processing power of a multi-
core platform, efficient scheduling of tasks is paramount. Re-
searchers have proposed numerous approaches for schedul-
ing of real-time tasks on multi-core architectures, ranging
from partitioned to global scheduling approaches and hy-
brid semi-partitioned scheduling approaches [6]. In practical
real-time systems, tasks may share software resources (e.g.,
shared variables). The use of such shared resources must
be appropriately arbitrated and the arbitration rules have a
significant impact on task scheduling and task set schedu-
lability. In recent years, researchers have proposed resource
arbitration policies and task scheduling and schedulability
techniques for multi-core architectures [1, 8, 13, 12, 17].

In the context of resource-sharing tasks executing on multi-
core architectures, the main bottleneck or limiting factor for
task set schedulability is the blocking that tasks may ex-
perience due to shared resources. Even though there may
be available cores on the platform (for example, in many-
core architectures with dozens of cores), algorithms are un-
able to utilize them to improve schedulability due to high
blocking times, especially remote blocking times. Recently,
researchers have proposed task allocation and scheduling
approaches specifically targeted towards reducing blocking
times of tasks, thus improving task set schedulability [12,
17].

Contributions: We propose a semi-partitioned schedul-
ing scheme for resource-sharing tasks that strives to signif-
icantly reduce blocking times and improve task set schedu-
lability. The fundamental idea is to dedicate separate cores
for the execution of resource-sharing regions belonging to
each shared resource and to employ a partially non-work-
conserving scheduling approach to obtain tighter schedula-
bility bounds. While our approach uses a larger number of
cores and introduces data migration, we demonstrate that
it has a considerable potential to improve schedulability due
to reduction in blocking times. In contrast to most existing
work on scheduling for resource sharing real-time tasks, we
also explicitly consider architectural overheads introduced
due to data migration. In the majority of experiments con-
ducted, our algorithm outperforms existing work by a sig-
nificant factor.

The rest of this paper is organized as follows. Section 2
discusses background information and related work. Section
3 presents our assumptions and system model. In Section
4, we present the details of our semi-partitioned scheduling



algorithm. Section 5 discusses architectural considerations
and Section 6 presents a discussion on the limitations and
the complexity of our algorithm. In Section 7, we discuss
the details of a closely related work that we compare our
algorithm with. Section 8 presents our experimental setup
and results. We present our conclusions in Section 9.

2. BACKGROUND AND RELATED WORK
In this section, we present relevant background informa-

tion and discuss related work in real-time scheduling on
multi-core architectures. Real-time scheduling techniques on
multi-core architectures may be broadly classified into three
categories, namely partitioned, global and semi-partitioned
approaches. In partitioned scheduling, tasks are statically
allocated to cores and scheduled using single-core schedul-
ing algorithms on each core. In global scheduling, tasks are
placed in a common queue and dynamically scheduled on
cores, leading to task migrations. Semi-partitioned schedul-
ing is a hybrid approach where some tasks are partitioned
and others are allowed to migrate, typically in a predeter-
mined manner.

Schemes for Independent Tasks. Several real-time
scheduling techniques have been proposed for tasks that are
independent of each other, including partitioned, global and
semi-partitioned approaches. Davis and Burns survey sev-
eral such algorithms [6].

Schemes for Resource Sharing Tasks. Rajkumar et
al. presented two extensions of the PCP for multiprocessor
real-time systems under partitioned static priority schedul-
ing, namely the DPCP or distributed priority ceiling pro-
tocol, used for distributed memory multi-core architectures,
and the MPCP or multiprocessor priority ceiling protocol,
used for shared memory and global semaphores [13]. DPCP
is similar to ours in its use of separate cores for execution
with and without shared resources. Hence, we compare our
algorithm with it in our evaluation.

There have been multiprocessor synchronization protocols
proposed for partitioned EDF scheduling [7]. In recent work,
Block et al. proposed a Flexible Multi-processor Locking
Protocol (FMLP) [1] that may be used with both static-
priority and dynamic-priority scheduling schemes. Lozi et
al.[11] proposed a mechanism by which critical sections may
be locked on remote cores based on task profiling.

Lakshmanan et al. proposed a synchronization-aware par-
titioning algorithm (SPA) for resource sharing tasks [8]. Ne-
mati et al. proposed a blocking-aware partitioning algorithm
(BPA) [12] that achieved improvements over SPA. Wieder
and Brandenburg proposed a heuristic based resource-aware
partitioning algorithm termed the Greedy Slacker [17] that
demonstrated significant improvements over BPA. In this al-
gorithm, Audsley’s optimal priority assignment scheme [3]
is used to assign a static priority to the tasks on each core
and the algorithm uses response time analysis to determine
schedulability of a task. We explain the Greedy Slacker algo-
rithm in more detail in Section 7 and compare our algorithm
with it in Section 8.

Brandenburg [5] also proposed a linear programming based
method to optimize total blocking incurred on a task, when
it is scheduled using partitioned, fixed-priority scheduling
and any resource sharing protocol. The authors demon-
strated improvement in blocking time under both DPCP
and MPCP. Another recently proposed work by Weider and
Brandenburg [18] performed extensive blocking time anal-

ysis caused due to spin locks. Once again, this paper uses
linear programming to optimize blocking time calculation.
Unlike our current paper, neither of these papers consider ar-
chitectural factors such as cache effects and migration over-
heads. In order to include such factors, the objective func-
tions in these papers require extension. Such extension and
subsequent comparison is out of the scope of our current
paper and will be performed as part of future work.

In recent work, Afshar et al. propose a synchronization
mechanism and associated schedulability analysis for resource
sharing tasks scheduled using a semi-partitioned approach
[2]. This work assumes that at most one subtask of a given
task can be scheduled on a given core. As will be explained
in Section 4, our scheme requires support for scheduling mul-
tiple subtasks of a given task on the same core. Hence, the
work proposed by Afshar et al. is inapplicable in our con-
text.

3. ASSUMPTIONS AND SYSTEM MODEL
3.1 Task Model

In this work, we assume a sporadic hard-real-time task
model where the relative deadline of every task is less than or
equal to its minimum inter-arrival time (hereafter called its
period). We assume that tasks may share software resources
among each other. Regions of a task where shared resources
are used are referred to as resource sharing regions or critical
sections. We assume that critical sections do not have nested
resource usage.

We assume that tasks are split on the basis of their critical
sections, i.e., a task is split into resource independent and
resource sharing subtasks, and that the two types of sub-
tasks are executed on mutually exclusive cores. Resource
independent subtasks are executed in a preemptive manner
under a static priority assignment. Resource sharing sub-
tasks are assumed to be scheduled using a non-preemptive,
static-priority scheduling policy.

3.2 Architectural Model
We assume a homogeneous multi-core architecture with

a Network-on-Chip (NoC) for communication. Each core is
assumed to have a lockable, set-associative private cache and
it is assumed that there are no shared caches. We assume
that separate channels are available in the NoC for com-
munication between cores and main memory and for com-
munication among cores, as is found in Tilera’s TilePro64
architecture [16]. Main memory traffic is assumed to be ar-
bitrated using a weighted TDMA scheme proposed in prior
work [15] that makes memory access times independent of
the physical location of cores. A TDMA approach is also
used for core to core traffic in order to be able to bound
migration overhead.

3.3 Cache Locking and Migration Model
We assume that every subtask may statically lock a subset

of its own (non-shared) memory footprint in the cache on its
core and that every subtask is allowed to lock at most one
way in each cache set. Lines that are not locked in the cache
are assumed to be fetched from the main memory. Every
shared resource is assumed to be locked in an exclusive cache
way on the core to which subtasks using that resource are
allocated.

A given task may use some of its private data in both
its resource independent and its resource sharing subtasks.



Symbol Description
τi Sporadic task with index i

Ti, Ci, Di Period, WCET and Relative Deadline of task τi
ρp Shared resource with index p

Ci(ρm) WCET of critical section of task τi using resource ρm

τi,j jth subtask of task τi
φi,j Phase of subtask τi,j relative to phase of task τi
Ci,j WCET of subtask τi,j
ρi,j Shared resource used by subtask τi,j
Tc

i Set of subtasks of task τi on core c
Cc

i Total WCET of task τi on core c (i.e.,
P

WCETs in Tc
i )

vc
i Representative virtual task for subtasks in Tc

i
Tvc

i , Cvc
i Period and WCET of virtual task of vc

i

Table 1: Symbols and Terminology

Since resource independent and resource sharing subtasks
are executed on different cores, respectively, any cached pri-
vate data needs to be migrated among these cores. In this
work, we employ a proactive, push-based cache migration
scheme developed in prior work [14] to migrate data among
parent and critical cores.

Note that 1) the choice of memory lines to be locked for
a given subtask is an orthogonal problem that is out of the
scope of the current work; and 2) dynamic loading and lock-
ing of different memory lines belonging to a single subtask
whose memory footprint is larger than one cache way may be
allowed as long as every subtask uses a predetermined, exclu-
sive subset of cache lines and accounts for loading/reloading
costs in its own WCET. However, in practice, the use of
dynamic loading and locking may result in prohibitive in-
creases in blocking times. In this context, reserving more
than one cache way for a shared resource may be a better
option.

4. METHODOLOGY
In this section, we present the details of our algorithm to

allocate and schedule resource sharing tasks on a multi-core
architecture. The symbols and terminology that are used in
the remainder of this paper are briefly described in Table
1. The need and usage of symbols will be explained where
required in the rest of this section.

The fundamental goal of our algorithm is to reduce block-
ing times due to resource sharing and improve task set schedu-
lability. To this end, we first divide tasks into groups such
that no resource is shared by tasks in different groups. For
instance, if τi uses shared resources ρp and ρq, τj uses shared
resources ρq, ρr and τk uses shared resources ρr and ρs, then
τi, τj and τk are all members of the same group even though
there is no direct sharing between τi and τk. Groups are
scheduled onto cores, starting with the group with highest
utilization. Each group of tasks is assumed to be scheduled
on an exclusive set of cores in order to prevent interference
across groups. In the rest of this discussion, we will describe
the algorithm to allocate and schedule a given group of tasks
onto a given set of cores.

As mention in Section 3, tasks are split into resource inde-
pendent and resource sharing subtasks and the two types of
subtasks are executed on mutually exclusive cores. Resource
sharing subtasks corresponding to a given resource are as-
sumed to be allocated to a common dedicated core, termed
a critical core for that resource. Subtasks on critical cores
are scheduled non-preemptively1 using a static priority as-

1Note that several state-of-the-art techniques [13, 8, 1, 12,

signment among them. Resource independent subtasks are
partitioned onto an exclusive set of cores, with all subtasks
of a given task being allocated to a common core, termed
the task’s parent core. Subtasks on parent cores are sched-
uled using a preemptive, static-priority scheduling scheme.
In our current implementation, we employ the Rate Mono-
tonic (RM) priority assignment policy [9].

Phases or offsets of each subtask with respect to the re-
lease time of its parent task are statically determined. Specif-
ically, we calculate the worst-case response time of a given
subtask and use this to offset the release of the next subtask
of the same task. This gives rise to a potentially non-work-
conserving schedule among subtasks of a given task.

We will now describe the steps and theory involved in our
algorithm. To ease understanding, we will employ a running
example throughout the description. Table 2 represents the
characteristics of the task set that is used as a running ex-
ample. The first, second and third columns show the index
(or ID), period and locked WCET, respectively, of tasks.
The locked WCET of a task is calculated assuming all its
lines are locked in the cache. The fourth column shows the
shared resource usage for tasks. The format is [ρp; C] (from
t), where ρp is the shared resource used, C is the length of
the critical section and t is the time at which the resource
is requested, relative to the start of the task. In this exam-
ple, all tasks belong to a single group due to the nature of
shared resource usage. Tasks within a group are chosen for
allocation in non-increasing order of their locked utilization
(i.e., utilization calculated with locked WCET). Please note
that, for the sake of clarity, we do not complicate the run-
ning example by adding migration overheads although we
do include these overheads in our experiments.

i Ti Ci Shared Resources
1 90 30 [ρ2; 10] (from 10)
2 900 300 [ρ2; 30] (from 100)
3 100 30 [ρ2; 5] (from 10), [ρ2; 10] (from 15)
4 1000 300 [ρ2; 20] (from 100), [ρ3; 100] (from 120)
5 80 20 [ρ1; 5] (from 5), [ρ2; 5] (from 10)
6 800 200 [ρ3; 50] (from 50), [ρ2; 20] (from 100)

Table 2: Running Example - Task Set Characteris-
tics

4.1 Division of tasks into subtasks
We split every task into subtasks on the basis of its crit-

ical sections. Since we assume non-nested resource sharing,
a task using n resources has between n and 2n + 1 sub-
tasks. Figure 1 shows the division of tasks into subtasks
for our running example. Here, tasks τ1 and τ2 are divided
into three subtasks each and tasks τ3 to τ6 are divided into
four subtasks each. Resource sharing regions using different
resources are depicted using different colors and resource in-
dependent regions of all tasks have a common color.

4.2 Allocation of subtasks
The next step is to allocate the resource independent sub-

tasks of a chosen task to a suitable parent core and its re-
source sharing subtasks to a set of critical cores such that
the task is schedulable, or to declare the task unschedula-
ble. First, a potential parent core for the task is chosen from
among cores that are already designated as parent cores for

17] employ non-preemptive scheduling for resource sharing
regions in order to reduce task blocking times.



Figure 1: Running Example - Division of tasks into
subtasks

previously allocated tasks, if any, or from the set of empty
cores, otherwise. If no potential parent core is found, the
task is deemed unschedulable. If multiple potential parent
cores are found, one of them is chosen and the resource in-
dependent subtasks of the task are allocated to the chosen
parent core. Resource sharing subtasks of a task are allo-
cated to the critical cores already designated to their respec-
tive resources. If no core has yet been designated for a given
shared resource, an empty core is chosen and designated as
its critical core. If no empty core exists, the task is deemed
unschedulable.

Once a potential parent core and a set of critical cores
have been identified, an upper bound on the response time
of each subtask, in execution sequence, is calculated. The
phase or offset of the first subtask of a task is zero with
respect to the release time of the task. The phase of every
subsequent subtask is equal to the sum of its predecessor’s
phase and worst-case response time. In other words, the
worst-case completion time of a subtask is assumed to be the
release time of the next subtask. If the sum of all subtask
response times is less than or equal to the relative deadline of
the task, the task is declared schedulable and the potential
parent core being considered is marked as a candidate parent
core. In a similar way, other candidate parent cores are
identified. Among all candidate parent cores, the core with
the lowest current utilization (i.e., before the allocation of
the current task) is actually designated as the task’s parent
core. If no candidate parent core is found, the task is deemed
unschedulable.

4.3 Response time calculation
When preemption delays are not considered and tasks do

not self-suspend, the worst-case response time of a task oc-
curs when it is released at the critical instant, i.e., when it
is released in phase with all higher-priority tasks [10]. In
the current context, although each task may be shifted to
have zero phase, subtasks within a task cannot be similarly
shifted since their phases establish precedence constraints
that are required for correctness of execution.

In order to guarantee safety of schedulability analysis in
this context, it would be necessary to calculate response
times at the job level instead of the task level, i.e., the re-
sponse time of each job of a given task in the hyperperiod
of a task set would need to be calculated. Since tasks are
split into subtasks, each higher-priority subjob needs to be
explicitly enumerated in the calculation. In practice, the
complexity of such analysis becomes prohibitive, especially
for a large hyperperiod. In order to perform a calculation at
the task level while still being safe, we propose the use of a
virtual task corresponding to a given task on a given core.

A virtual task of a task τi, denoted as vi, is represented
by the tuple (Cvi, Tvi, Avi), where Cvi is its WCET, Tvi,

its minimum inter-arrival time and Avi, the maximum num-
ber of activations it may have within the period of task τi.
Note that this virtual task is used purely for the purposes of
analysis, as a means to capture the worst-case interference
that the set of subtasks of task τi on a given core c, denoted
by Tc

i , can impose on lower-priority tasks on that core.
The characteristics of the virtual task, namely vc

i , of τi on
core c, are derived using Equations 1, 2 and 3, respectively.

Cvc
i = maxCi,j , ∀τi,j ∈ Tc

i (1)

Tvc
i = min{∆c

i} (2)

Avc
i = |Tc

i | (3)

Here, ∆c
i represents the set of differences between the phases

of consecutive subtasks in Tc
i . By taking the minimum

among the inter-arrival times of subtasks, we account for
the worst-case frequency of subtask activations for task τi on
core c. By assigning the maximum among subtask WCETs
as the WCET of the virtual task, we capture the longest in-
terference that each activation can impose on lower-priority
subtasks. When calculating the worst-case response time for
a particular subtask on its core, we assume that all higher-
priority virtual tasks on that core release in phase with the
subtask under consideration. In this context, the modified
response time calculation for subtask τk+1,j , scheduled on
core c, is shown in Equation 4.

h(t) =

i=kX
i=1

[b t
Ti
c × Cc

i + min(d t%Ti

Tvc
i

e, Avc
i )× Cvc

i ]

+Ck+1,j + β Lk+1,j

(4)

Here, h(t) is the demand on core c in an interval of time
t. The first term in the equation captures interference by
higher-priority task instances that are released and have
deadlines within the interval t. Here, Cc

i denotes the to-
tal WCET of task τi on core c, i.e., this term only counts
the WCETs of the subtasks of task τi that execute on core c
and not all the subtasks of τi. C

c
i is calculated using Equa-

tion 7. The min term in Equation 4 captures the interference
from the subtasks of the last instance of task τi that is re-
leased within the interval t but that does not complete fully
within the interval by using the representative virtual task
Tvc

i . Here, the use of the min function ensures that the max-
imum number of virtual task instances considered is limited
to the maximum number of subtasks of τi that exist on core
c.

We now need to prove that the response time h(t), cal-
culated using Equation 4, is maximal. For this, we simply
need to prove that the contribution of every higher priority
task in the response time of the task under consideration
(τk+1) within the interval t is maximal.

Let the contribution of a higher priority task τi in time t
be Ri(t). In other words, Ri(t) is calculated using Equation
5.

Ri(t) = b t
Ti
c × Cc

i + min(d t%Ti

Tvc
i

e, Avc
i )× Cvc

i (5)

Let us assume that Ri(t) is not maximal. This would imply
that the contribution of task τi to the response time of τk+1

in time t is Ri(t)+δ. Here, δ ∈ {Cc
i,j}must hold, with {Cc

i,j}
representing the set of WCETs of subtasks of τi allocated to
core c.



The first term in Equation 5 is part of the standard re-
sponse time analysis. So, we only need to consider the con-
tribution of the last job of τi release in the interval t, which is
represented by the second term in Equation 5. Let the num-
ber of subtasks of task τi executed in the remaining time in
t, namely t%Ti, be ns. According to our assumption, since
min(d t%Ti

Tvc
i
e, Avc

i ) represents the number of subtasks in time

t%Ti in Equation 5, ns must be greater than that. This is
represented by Inequality 6.

ns > min(d t%Ti

Tvc
i

e, Avc
i ) (6)

We now have two cases to consider.
Case 1: min(d t%Ti

Tvc
i
e, Avc

i ) = Avc
i . Recall that, by defini-

tion, Avc
i is the total number of subtasks of τi in time Ti.

Since t%Ti < Ti, only subtasks of one job of τi are being
considered. Hence, ns > Avc

i is a contradiction.
Case 2: min(d t%Ti

Tvc
i
e, Avc

i ) = d t%Ti
Tvc

i
e. Once again though,

by definition, Tvc
i is min{T c

i,j}. Hence, t%Ti
Tvc

i
is the maximum

number of segments in interval t%Ti. Thus, ns > d t%Ti
Tvc

i
e is

a contradiction.
Thus, our assumption that Ri(t) is not the maximum con-

tribution of a higher priority task τi must be false. This
proves that the contribution from higher priority tasks con-
sidered in Equation 4 is maximal and, hence, safe.

In our algorithm, all resource sharing subtasks pertain-
ing to a given shared resource execute non-preemptively on
a core dedicated to the resource, namely the critical core
for that resource. Hence, the only blocking times that re-
source sharing subtasks may experience are caused by lower-
priority resource sharing subtasks using the same resource.
Specifically, the blocking time experienced by a resource
sharing subtask τk+1,j using a shared resource ρp is the max-
imum among the lengths of all resource sharing subtasks us-
ing resource ρp. The blocking time of a subtask τk+1,j is
denoted as β Lk+1,j .

Cc
i =

X
Ci,j , ∀τi,j ∈ Tc

i (7)

4.4 Task Allocation : Running Example
We now illustrate our approach for task allocation and

schedulability check using the running example. Recall that
the subtasks in this task set are shown in Figure 1. Let
us assume that the system has 9 cores (3x3 mesh), labeled
c0, c1,. . . c8. In accordance with a non-increasing utilization
based ordering scheme, tasks are chosen for allocation in the
order τ1, τ2, . . . τ6.

Allocation of task τ1: At this stage, since all cores are
empty, task τ1’s resource independent subtasks τ1,1 and τ1,3

are tested and successfully allocated on core c0 — desig-
nated as its parent core — and its single resource sharing
subtask τ1,2, on core c1 — designated as the critical core
for resource ρ2. Figure 2 depicts the response times of the
subtasks of τ2 on cores c0 and c1, respectively. Since the
task τ1 is the only allocated task on both these cores, the
worst-case response times for subtasks are equal to their re-
spective WCETs. After this allocation, the total WCET of
τ1 on core c0, denoted by C0

1 , is 20 and that on core c1,
namely C1

1 , is 10.
Calculation of virtual tasks for τ1: From Figure 2, we ob-

serve that there are two subtasks of τ1 that execute on c0.
The inter-arrival time between these subtasks is 20, which

Figure 2: System state after allocation of task τ1

makes the period of the virtual task v0
1 , namely Tv0

1 , equal
to 20 in accordance with Equation 2. The maximum WCET
among the subtasks in T0

1 is 10 and so, the WCET of the
virtual task v0

1 , namely Cv0
1 , is 10 in accordance with Equa-

tion 1. On core c1, since there is only one subtask of task
τ1, the period of the virtual task v1

1 is equal to the period
of the task τ1, namely 90. The WCET of v1

1 is equal to the
WCET of the subtask of τ1 on core c1, namely 10. Hence, at
this stage of the algorithm, the characteristics of the virtual
tasks for task τ1 are v0

1(10, 20, 2) and v1
1(10, 90, 1).

Allocation of task τ2: We now use the steps involved in the
allocation of task τ2 to demonstrate the calculation of worst-
case response times for resource independent subtasks.
At this stage of the algorithm, c0 is an existing parent core,
so we begin by considering c0 as a potential parent core for
τ2. Since τ2 also uses resource ρ2, its resource sharing sub-
task is tested on core c1, which has already been designated
as the critical core for ρ2.

Temporary allocation of τ2’s subtasks: To determine the
schedulability of the system if core c0 were to be designated
as the parent core for τ2 and core c1, its critical core, we
temporarily perform these allocations, i.e., τ2,1 and τ2,3 are
assigned to core c0 and τ2,2, to core c1.

Temporary recalculation of virtual task for task τ1: Since
τ1 and τ2 share a resource, the resource sharing subtask of
the higher-priority task τ1, namely τ1,2, experiences block-
ing. In Figure 3, the rectangle shaded in red denotes the
blocking time experienced by this resource sharing subtask.
Since this blocking time changes the response time of sub-
task τ1,2, it also changes the phase of τ1,3 on core c0. This
requires recalculation of the period of the virtual task of
τ1 on core c0. Applying Equation 2 once again, we get
v0
1(10, 50, 2). Characteristics of v1

1 remain unaffected.
Calculation of response time of task τ2: Equation 8, de-

rived from the modified response time calculation shown in
Equation 4, is used to calculate the worst-case response time
of subtask τ2,1.

h(t) =

i=1X
i=1

[b t

100
c × 20 + min(d t%100

50
e, 2)× 10] + 100 (8)

Here, the initial value of t is the WCET of the subtask
τ2,1, namely 100. Upon performing the iterative calcula-
tion, a response time of 130 is obtained for subtask τ2,1.
Performing similar calculations for other subtasks, we ob-
tain the response times depicted in Figure 3. Here, the
rectangles shaded in blue represent delays suffered by lower-
priority subtasks due to interruptions by higher-priority vir-
tual tasks. Since the worst-case response times of both tasks
are less than their respective relative deadlines, the tasks are
schedulable. Thus, core c0 is a candidate parent core for task
τ2. Since core c0 is also the only (initially non-empty) candi-
date parent core at this stage, it is designated as the parent
core of task τ2, i.e., the allocation of τ2 is made permanent.



(a) Task τ1 (b) Task τ2

Figure 3: System state after allocation of τ1 and τ2

Calculation of virtual tasks for τ2: Based on the WCETs
and response times of its subtasks, the WCET and period
characteristics of the virtual tasks of task τ2 on cores c0
and c1, respectively, are calculated as v0

2(170, 170, 2) and
v1
2(30, 900, 1). To elaborate, there are two subtasks, namely
τ2,1 and τ2,3, of τ2 on core c0. The WCET of the virtual
task v0

2 , namely Cv0
2 , is max(C2,1, C2,3), which is 170. The

inter-arrival times of these subtasks is also equal to 170, thus
making Tv0

2 equal to 170.
Allocation of task τ3: Using the same process as detailed

above, core c0 is also designated as the parent core for task
τ3 (C0

3 is equal to 15). Since τ3 also uses resource ρ2, one
of its resource sharing subtasks, namely τ3,2, is allocated
to critical core c1 of resource ρ2. In addition, task τ3 uses
resource ρ1 in subtask τ3,3. An empty core, namely c2, is
designated as the critical core for ρ1.The resulting response
times of tasks after the allocation of τ3 are depicted in Figure
4.

In Figure 4, note the changes in response times for the
subtasks of task τ2 as compared to the one shown in Figure
3. This change is due to the fact that task τ3 has higher
priority than task τ2 (Rate Monotonic priority assignment
is assumed). The response times of resource independent
subtasks of task τ1 do not change because it is the highest-
priority task in the system. Response times of the resource
sharing subtask of τ1 also remains the same because the
critical section length for task τ3 is less than that for τ2,
thus resulting in no increase in blocking time. Since task τ3
has a new shared resource, namely ρ1, a new empty core c2
is designated as the critical core for resource ρ1.

Virtual task characteristics: At the end of the allocation
of τ3, virtual task characteristics are updated as follows:
virtual tasks for τ1 are v0

1(10, 50, 2), v1
1(10, 90, 1); those for

τ2 are v0
2(170, 210, 2), v1

2(30, 900, 1); and those for τ3 are
v0
3(10, 65, 2), v1

3(5, 100, 1), v2
3(10, 100, 1). Note that, after al-

location of every new task, our algorithm recalculates virtual
task characteristics for all previously allocated tasks.

Allocation of task τ4: Upon following the same procedure
as that for earlier tasks, it is found that task τ4 cannot be
accommodated on parent core c0. Hence, at this stage, an
empty core c3 is chosen as a potential parent core for task
τ4 and a schedulability check is performed. The check is
successful and the state of the system after the allocation of
task τ4 is depicted in Figure 5. Note that, since all resource
sharing subtasks of a given resource execute on a common
core, the fact that τ4 belongs to a different parent core than
tasks τ1, τ2 and τ3 does not make a difference to the blocking
times. In other words, there is no concept of remote blocking
in our context.

5. ARCHITECTURAL CONSIDERATIONS
In this work, we assume the use of a multi-core architec-

ture with lockable private set-associative caches, no shared
caches and a bidirectional, mesh-based Network-on-Chip (NoC)
interconnect such as the one found on Tilera’s TilePro64
[16]. We now briefly discuss the effects of these architectural
features on our task allocation and scheduling approach.

As discussed thus far, our algorithm splits a task into
resource independent and resource sharing subtasks and the
two types of subtasks are executed on the task’s parent core
and a set of critical cores, respectively. As mentioned in
Section 3, we assume that every subtask may lock a chosen
subset of its private data in the cache of the core to which
it is allocated. We also assume that every shared resource
(i.e., shared across multiple tasks) is locked in one exclusive
cache way on its critical core.

However, a task may have some private data that is used
in both its resource independent subtasks (i.e., on its parent
core) and its resource sharing subtasks (i.e., on one of its
critical cores). We assume that any such data of a task is
initially locked in the cache of its parent core. This data is
proactively migrated and re-locked on a given critical core
of the task when the task acquires the shared resource cor-
responding to that critical core. The data is assumed to be
migrated back to its parent core when the shared resource
usage is complete, but before actually releasing the resource.
We employ a push-based migration mechanism developed in
prior work [14] for this purpose. As a consequence of this
migration model, the overhead of migration contributes to
the worst-case blocking times of other tasks using the same
shared resource and must be tightly bounded. This is ac-
counted for by explicitly adding the migration overhead for
a critical section of a task added to the WCET of the critical
section.

Since they correspond to a task’s parent core and a spe-
cific critical core, the source and destination cores for a given
migration are statically known. In general, this information
could be used to statically determine routes for each data
migration in an effort to obtain tighter bounds on the migra-
tion overhead. However, such routing policies and analyses
thereof are out of the scope of the current paper. Instead, we
make some simplifying assumptions, namely that 1) traffic
among cores assigned to a given group of resource sharing
tasks does not interfere with traffic from other groups of
tasks; 2) cores assigned to a given group are arranged in a
mesh-based pattern on the NoC; 3) every migration among
a given group could travel over the largest number of hops,
under an X-Y routing scheme, within its group of cores;
and 4) NoC contention is handled through the use of a sim-
ple time-division multiplexing among cores and, within each
core, among different migration streams.

Under these assumptions, the worst-case one-way migra-
tion overhead for a given chunk of data is calculated using
Equation 9.

Mc
l = hmax ∗

L

B
∗mp ∗min(|Tc|, |<c|) ∗ l (9)

Here, Mc
l is the overhead for migrating l cache lines from/to

a parent core c. hmax = dmg

2
e, where mg is the number of

cores allocated to the group of tasks under consideration, is
the largest number of hops that need to be traversed assum-
ing the cores in the group are organized as a mesh. L is the
size of a cache line, B is the bandwidth along each hop of the
NoC, mp is the number of parent cores in the given group,
Tc is the set of tasks whose parent core is c and <c is the set
of unique shared resources accessed by tasks whose parent
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Figure 5: System state after allocation of task τ4

core is c. The basic idea behind Equation 9 is that, since
migration data starts from (or returns to) a parent core, the
total number of parent cores is an upper bound on the num-
ber of cores sharing a given channel of the NoC for migration
traffic in a time-division multiplexed manner. Within each
parent core, at most min(|Tc|, |<c|) number of migrations
may be contending for core c’s share of the bandwidth.

We choose to employ a time-division multiplexed approach
as opposed to prioritizing migration streams because using
a priority-based scheme could result in prohibitively large
migration overheads for lower-priority tasks, which would,
in turn, result in prohibitively large blocking times.

6. DISCUSSION

6.1 Limitations
We now discuss limitations of our algorithm and present

our justification for some of the limiting choices. Our algo-
rithm 1) results in an increase in the total number of cores
used, 2) results in a potential reduction of actual core uti-
lization due to the use of a partially non-work-conserving
schedule, 3) results in a potential increase in migration traf-
fic and 4) currently does not support nested resources.

Since we allocate a dedicated core for each shared resource
in the system, our algorithm admittedly uses an increased
number of cores. However, in today’s modern multi-core
architectures, the number of cores on a single platform is
continuing to increase. In this context, the fundamental bot-
tleneck for schedulability of resource sharing real-time tasks
is not the number of cores, but rather prohibitively high re-
mote blocking times. In fact, increase in remote blocking
makes the availability of cores useless.

Having said this, as part of future work, we propose to
extend our algorithm to allow multiple shared resources to
reside on a single critical core. This extension would require
us to re-introduce some blocking terms that we currently
do not require. We propose to conduct a sensitivity study

to determine the trade-off between decreased schedulability
and improved core usage. Furthermore, we propose to ex-
ploit this to allow a limited form of nested resource usage
through the use of group locks on a set of resources that are
allocated to the same critical core.

Although the use of a non-work-conserving schedule re-
duces the online core utilization, it enables us to calculate a
much tighter estimate of subtask response times. Since real-
time systems design requires a-priori guarantees of schedu-
lability, we believe that the improved schedulability analysis
makes the loss of processor utilization an acceptable trade-
off.

Since our algorithm insists that resource independent data
that may be needed on both parent and critical cores is mi-
grated from and returned to the parent core of a task, it
results in an increase in migration traffic and hence, migra-
tion overhead and task blocking times. In order to provide a
realistic evaluation of the performance of our algorithm, as
mentioned in Section 5, we explicitly account for migration
costs in our experimental results.

6.2 Complexity
Every time a new task is checked for allocation, all previ-

ously allocated tasks require a recalculation of their response
times, leading to a complexity of the O(n2) for a task set of
size n. Our algorithm checks for the possibility of allocating
a given task on multiple potential cores. Hence, the com-
plexity of the overall algorithm is of the order O(n2 ∗ m),
where m is the number of cores. However, since this is an
offline calculation, we believe it is an acceptable complexity.
The Greedy Slacker algorithm that we compare our algo-
rithm with [17] has a very similar complexity.

7. GREEDY SLACKER ALGORITHM
In this section, we briefly describe the outcome of the

running example that was used in Section 4 when using the
Greedy Slacker algorithm proposed by Wieder and Bran-



denburg [17]. The Greedy Slacker algorithm assumes that
task critical sections are executed non-preemptively and that
blocked tasks busy wait on their allotted core for access to
shared resources. Response time analysis (Equation 10) is
used to determine the schedulability of a set of tasks allo-
cated to a core.

Ri = Ci +BR
i + max(BNP

i , BL
i ) +

i−1X
j=1

(dRi

Tj
e × (Cj +BR

j ))

(10)
Here, Ri and Ci are the response time and WCET of task
τi, respectively. BR

i is the remote blocking for task τi, i.e.,
the blocking time experienced by it when a resource it re-
quests is being used by a task on another core. BNP

i is the
non-preemptive blocking for task τi, i.e., the blocking time
experienced by it when a lower-priority task on the local
core is busy waiting, followed by (non-preemptive) critical
section execution. BL

i is the local blocking for task τi, i.e.,
the blocking time experienced by it due to a lower-priority
task on the local core using a local resource.

Tasks τ1 and τ2 are allocated, in their entirety, to core c0.
After this allocation, the worst-case response time for task
τ2 is calculated using Equation 11.

h(300) = 300 + d100

90
e × 30 (11)

Solving Equation 11, we obtain a worst-case response time of
450 for task τ2. Figure 3 shows that the worst case response
time of task τ2 at this stage using our algorithm was 390.
Subsequently, the Greedy Slacker allocates τ3 on core c0.
The algorithm then checks whether τ4 is schedulable on core
c1. As part of this check, the worst-case response time for
task τ3 is calculated using Equation 12.

h(30) = 30 + 20 + max(20 + 30, 30) + d30

90
e× (30 + 20) (12)

The first two terms in this equation are the WCET and
total blocking time, respectively, for task τ3. The third
term denotes the interference from higher-priority task τ1
in the response time of τ3. It should be noted that, since
Greedy Slacker busy waits for a global resource, in the third
term, the remote blocking of task τ1 is added along with
its WCET. This extra addition of remote blocking in the
third term makes task τ3 unschedulable after the allocation
of task τ4 in the system. Hence, τ4 is deemed unschedulable
on the system and the algorithm quits, leaving tasks τ4, τ5
and τ6 unscheduled in this case. On the other hand, from
Figure 5, we see that, using our algorithm, the worst case
response time of task τ3 remains unchanged (equal to 90)
after the allocation of task τ4. Furthermore, our algorithm
manages to schedule all six tasks on the given set of cores.

The primary reasons why our algorithm outperforms Greedy
Slacker here are that 1) our algorithm employs a non-work-
conserving schedule for a given task, enabling it to calculate
tighter response time bounds; and 2) since Greedy Slacker
assumes that tasks busy wait for a shared resource, it re-
quires the addition of a remote blocking to be added to the
WCET of higher-priority tasks in the response time calcu-
lation.

7.1 Migration Overheads
In Section 8, we quantitatively compare the performance

of our proposed scheme with the greedy slacker algorithm.
In order to perform a fair comparison among the two schemes,
we explicitly account for the overheads introduced due to
one-way migration of a shared resource to the core on which

the task that acquires it is allocated. As with our algo-
rithm, we use the time-division multiplexed approach de-
scribed in Section 5 to account for traffic contention in the
NoC. The calculation of migration overhead in the context
of the greedy slacker is shown in Equation 13.

Ml = hmax ∗
L

B
∗min(mg, |<G|) ∗ l (13)

Here, Ml is the overhead for migrating l cache lines, mg is
the total number of cores allocated to the group of tasks
under consideration and <G is the set of unique global re-
sources. In the greedy slacker, since migration is required
only for global shared resources, the number of simultane-
ous migrations is limited by the number of unique global
shared resources. Furthermore, since tasks busy-wait in a
non-preemptive manner for resource access, on each core, at
most one migration can be performed at a time. Hence,
the number of simultaneous migrations is limited by the
minimum of the number of cores and number of global re-
sources. Finally, in the greedy slacker, since a global shared
resource may have to migrate from any core within a group
to any other core, using the largest possible number of hops,
hmax = dmg

2
e, is required for safety.

8. EVALUATION
The architectural configuration we assume is shown in Ta-

ble 3. The external memory latency shown is calculated us-
ing the weighted TDM approach proposed in our previous
work [15]. We assume that all four ways of the L1 data
cache on cores are lockable. On critical cores, i.e., cores that
are dedicated for the execution of resource sharing subtasks
using a given shared resource, one cache way is reserved for
locking the footprints of the shared resource.

Parameter Configuration
Processor Model in-order
Cache Line Size 32Bytes
L1 D-Cache Size/Associativity 256KB/4-way
L1 hit latency 1 cycle
Replacement Policy Least Recently Used
Number of Cores 16
Cache to cache Transfer latency 13 cycles
External Memory Latency 90 cycles

Table 3: System Configuration

Our goal is to evaluate the effectiveness of our algorithm,
alongside the Greedy Slacker algorithm proposed by Wieder
et al. [17] and DPCP proposed by Rajkumar [13] under
varying task set characteristics. To achieve this, we employ
synthetic task sets that are randomly generated using an
unbiased task set generator based on an algorithm proposed
by Bini et al. [4]2.

We generate task sets that have a total utilization of up to
4 for a 16 core system as mentioned in Table 3. Note that,
due to increases in actual utilization due to blocking times,
a base utilization of 4 is reasonable. Each task set consists
of 30 tasks. Table 4 represents the varying parameters used
while generating task sets for our experiments. The resource
sharing factor is used in order to ensure that, in every task
set, at least a certain number of tasks use each shared re-
source. As defined by Wieder et al. [17], if the resource
sharing factor is r and the total number of tasks in a task

2This generator has been appropriately modified to suit a
multi-core environment.



Parameter Range
Number of Resources 3-9, in steps of 1
Resource Sharing Factor 5% to 50%, in steps of 5%
Critical Section Length 2% to 8%, in steps of 1%

Table 4: Task Set Configuration Parameters

set is n, then the minimum number of tasks sharing each
resource in the task set is equal to r ∗n. The critical section
length for a task is defined as the percentage of its WCET
that the task spends in critical sections. We use short criti-
cal sections in our evaluation since it is typical that critical
sections are kept as short as possible in practice. Varying
the resource sharing factor and critical section lengths for a
given number of shared resources allows us to evaluate the
performance of the three algorithms.

For each configuration, i.e., combination of the number of
resources, the resource sharing factors and the critical sec-
tion lengths, we generate 100 task sets. Each generated task
set is provided as input to our semi-partitioned algorithm
(hereafter denoted as SP), the Greedy Slacker (denoted as
GS) and DPCP. All algorithms choose tasks for alloca-
tion in the same order and quit as soon as any one task
becomes unschedulable. As such, the success ratio of each
algorithm is reflected by the total utilization of tasks sched-
uled by it. Hence, in our evaluation, we use a metric based
on the scheduled utilization for comparison. Specifically, for
a given configuration, we show the percentage of task sets for
which each of the three algorithms had the greatest scheduled
utilization.

Figures 6 and 7 show two graphs comparing the perfor-
mance of the three algorithms, namely SP, GS and DPCP.
Each graph depicts the variation in performance of the three
algorithms for a given critical section length, but with vary-
ing number of resources and varying resource sharing fac-
tors. Due to space constraints, we only present results for
the two extreme critical section lengths among our configu-
rations, namely 2% and 8%. The common legend for both
graphs is shown as part of Figure 6. The x-axis of each
graph shows the combination of resource sharing factor and
the number of resources for a given experiment, denoted
as res-sharing-factor&num-resources. The y-axis shows the
percentage of task sets where a given algorithm manages to
schedule a higher (locked) utilization than the other two al-
gorithms3. In other words, each stacked bar shows, for a
specific configuration of resource sharing factor and number
of resources, the above-mentioned percentages for all three
algorithms. For example, the first stacked bar in Figure 6
indicates that, for 3 resources and a resource sharing factor
of 5%, SP performs better in approximately 65% of the task
sets, DPCP performs better in approximately 25% of the
task sets, and GS, in approximately 10% of the task sets.

From these two graphs, we may make several observations.
(1) SP performs better (i.e., achieves a higher scheduled
utilization in a larger number of task sets) than the other
two algorithms in most of the configurations presented. The
primary reason that SP mostly outperforms DPCP is that
DPCP uses a pessimistic blocking time calculation. The
comparison of SP and DPCP would be much more interest-
ing when we enhance DPCP with the optimal blocking time

3Recall that locked utilization of a task is defined as the
utilization of a task when its complete memory footprint is
locked in the cache.

calculation technique proposed by Brandenburg [5]. How-
ever, this technique uses a linear programming based ap-
proach. In order for us to use it in the context of our paper,
we require a change to the objective function to incorpo-
rate migration overhead. So, we defer such a comparison to
future work. SP outperforms GS because blocking time is
significantly reduced in SP since execution with shared re-
sources occurs on exclusive cores. (2) In most cases (for con-
figurations with number of resources 5 and higher in Figure
6 and for most configurations in Figure 7), as the resource
sharing factor increases, for a fixed number of resources (i.e.,
within sets of 10 consecutive bars), SP shows a trend of im-
proved performance. This is because, as the resource sharing
factor increases, since a larger number of tasks share a given
resource, there is more benefit in the reduced blocking times
obtained in SP due to execution of resource sharing regions
on exclusive cores. (3) For lower resource sharing factors, as
the number of resources increases, the performance of both
GS and DPCP improves more than in the case of larger
resource sharing factors. This is because, for smaller re-
source sharing factors, it is likely that a smaller number of
tasks share a given resource. Hence, there is an increased
likelihood that some resources end up being local resources
instead of global resources. In both GS and DPCP, local
resources require no data migration. In contrast, SP always
requires migration since all shared resources are global.

Next, we study the trend in the performance of SP and GS
as critical section lengths are varied. In GS, resources are
migrated to the core on which a task using the resource ex-
ecutes. In contrast, SP migrates tasks to the core on which
a shared resource resides. Hence, this study demonstrates
the effects of varying migration overheads for the two algo-
rithms. Figures 8 and 9 depict the results of this study. The
x-axis in both graphs shows critical section lengths and the
y-axis shows the average percentage for which a given algo-
rithm schedules higher utilizations over configurations with
varying resource sharing factors for a given critical section
length. Both graphs show results for a fixed number of re-
sources as indicated. Since we use randomly generated task
sets for our experiments, we employ simple linear regression
to identify performance trends.

In Figure 8, each scatter point denotes the average of
the percentage of task sets for which GS performed the
best over configurations with resource sharing factors be-
tween 25% and 50% (i.e., higher resource sharing factors),
a given critical section length and for 9 resources. For this
setup, the trend line shows that GS performs better at lower
critical section lengths and its performance deteriorates as
critical section lengths increase. This is because, as the
resource sharing factor increases, the likelihood of global
resources increases. In GS, resources are global resources
and are migrated to the cores on which tasks using them
reside. Smaller critical sections typically indicate smaller
sizes of shared resources, hence requiring less data migra-
tion. Larger critical sections typically require more data
migration, thus justifying the trend.

In Figure 9, each scatter point denotes the average of the
percentage of task sets for which SP performed the best over
configurations with resource sharing factors between 5% and
50% (i.e., a wide range of resource sharing factors), a given
critical section length and for 3 resources. In this graph, the
trend line shows that, for a given number of resources, the
performance of SP improves slightly with increasing criti-



Figure 6: Comparison w/ crit. sec.=2% of WCET Figure 7: Comparison w/ crit. sec.=8% of WCET

Figure 8: GS trend w/ varying crit. sec. and 9 res. Figure 9: SP trend w/ varying crit. sec. and 3 res.

cal section length. This is because SP migrates tasks to
cores on which shared resources reside. Hence, it avoids po-
tentially higher resource migrations that would be required
for larger critical sections. To summarize, SP demonstrates
better performance in most cases for the small critical sec-
tion lengths considered in this evaluation. Furthermore, the
trend suggests that its performance could improve further
for longer critical sections.

9. CONCLUSION AND FUTURE WORK
A major bottleneck in successfully scheduling resource

sharing hard-real-time task sets on multi-core architectures
is prohibitively high task blocking times. In this paper, we
present a novel semi-partitioned scheduling scheme for re-
source sharing tasks. By allocating and executing resource
independent and resource sharing portions of tasks on mu-
tually exclusive cores and employing a partially non-work-
conserving schedule, our approach effectively reduces block-
ing times of tasks, thus improving task set schedulability.
We compare the performance of our algorithm against that
of a recent partitioned scheduling scheme called Greedy Slacker
and the classic Distributed Priority Ceiling Protocol (DPCP).
Results demonstrate that our algorithm achieves a higher
scheduled utilization in a majority of task sets.

In an effort to decrease blocking times, our algorithm as-
sumes that every shared resource is allocated a dedicated
core on which all critical sections using that resource ex-
ecute. This assumption leads to the use of an increased
number of cores. Furthermore, our algorithm does not allow
nested resource usage. As part of future work, we propose to

extend our algorithm to allow multiple shared resources on
a given core and study the trade-off between better core uti-
lization and increased task blocking times. We also propose
to support a subset of nested resource usage through the
use of group locks, with resources in a given group sharing
a core.
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