
This manuscript has been authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the US Department of Energy (DOE). The US 

government retains and the publisher, by accepting the article for publication, acknowledges that the US government retains a nonexclusive, paid-up, 

irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for US government purposes. DOE 
will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-

public-access-plan). 

Quantum Physics Inspired Methods for Two-Batch PWR Loading Pattern Optimization 

 

Joseph Fustero1, Frank Mueller1, David Kropaczek2, Colleen Farrelly3 

 
1North Carolina State University, jgfuster@ncsu.edu, mueller@cs.ncsu.edu 

2Oak Ridge National Laboratory, kropaczekdj@ornl.gov 
3Staticlsym, LLC, cfarrelly@med.miami.edu 

  

[leave space for DOI, which will be inserted by ANS] 

 

INTRODUCTION 

 

In this work, a simplified pressurized water reactor 

(PWR) fuel loading pattern optimization problem is solved. 

This is a modification of a problem [1] previously studied 

using quantum annealing (QA), involving the design of the 

APR1400 initial core with quarter-core (rotational only) 

symmetry and the choice of two fuel assembly designs, a high 

and low enrichment, for each core location. Lastly, a lower-

enrichment fuel assembly is fixed at the center of the core. 

Thus, the problem has 60 degrees of freedom and 260 

potential solutions. This differs from the previous study [1], 

which sought a 30/30 split between higher- and lower- 

enrichment fuel assembly design usage. Here, the constraint 

on region split has been removed and additional constraints 

were added to the cost function. The previous study 

considered only the maximum local power peaking factor as 

well as the cycle length. Here, the initial critical boron, as 

well as the fuel cost, are included in the cost function.  Note 

that the cycle length and fuel cost serve to drive the solution 

to the optimal region split between the more expensive high 

enriched fuel and the low enriched fuel. Candidate loading 

patterns are evaluated by the metrics listed in Table I. 

 

TABLE I. Cost Function Components 

 

Component Limit Penalty Credit 

Initial Boron (B, ppm) 1450 10 0 

Maximum Local Peaking 

Factor (𝐹𝑞) 

2.15 100 10 

Cycle Length (CE, 
𝐺𝑊−𝑑

𝑀𝑇
) 20.95 100 0 

Fuel Cost (FC, 
$

𝑀𝑊−ℎ
) 10.06 100 100 

 

With H as the Heaviside step function, the cost function 

for a given loading pattern is given by Eq. (1). 

 

𝐸 = 10𝐻(𝐵 − 1450) + 100𝐻(𝐹𝑞 − 2.15) − 10𝐻(2.15 −

𝐹𝑞) + 100𝐻(𝐶𝐸 − 20.95) + 100𝐻(𝐹𝐶 − 10.06) − 10 −

0𝐻(10.06 − 𝐹𝐶) ,                (1) 

 

In Eq. (1), B represents the initial boron, Fq represents 

the maximum local power peaking factor, CE represents the 

cycle length, and FC represents the fuel cost. Acceptable  

loading patterns must meet the upper limits on the initial 

boron, maximum local power peaking factor and fuel cost 

and the lower limit on the cycle length. 

 

METHODS 

 

The phrase “quantum computing” generally refers to (i) 

adiabatic quantum computing (ii) gate-based quantum 

computing or (iii) the implementation of algorithms inspired 

by quantum physics on a traditional (classical) computer. 

Here, only (i) and (iii) are addressed. Addressing (i), the D-

Wave 2000Q was used to solve the problem. Additionally, a 

quantum-inspired genetic algorithm (QGA) was used to solve 

the problem, addressing (iii). QGA is a variation on more 

typical genetic algorithms (GAs) that have been used in 

solving fuel loading pattern optimization problems. None of 

the gate-based architectures (ii) were used in solving this 

problem. Lastly, parallel simulated annealing (PSA) based on 

the constraint annealing method was used to solve the stated 

problem [2]. 

 

The CASMO-SIMULATE code system for reactor 

analysis was used to evaluate the cost components of the 

candidate loading patterns. This involves (1) one-time 

generation of the nuclear cross-section library using CASMO 

for the fuel assembly designs in the problem and then (2) core 

depletion using SIMULATE to determine the metrics listed 

in Table I. Here, PSA and QGA could be “traditional” 

methods in that they generate sample loading patterns as 

input to SIMULATE, and then, based upon the SIMULATE 

output, they adaptively generate new samples. Simulated 

annealing (SA) and classic genetic algorithms (GAs) are also 

common methods but these results are not presented here [3]. 

 

Quantum computers, in general, are useful for solving 

fewer problems than what is commonly believed. D-Wave 

solves the quadratic unconstrained binary optimization 

(QUBO) problem. Other methods exist for solving QUBO 

problems, and the authors make no statement on whether D-

Wave is superior or could be made superior to these other 

methods [4]. Nevertheless, an examination of how to relate 

the fuel loading optimization problem to a QUBO problem 
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will allow insight into the fuel loading optimization problem. 

Additionally, D-Wave solutions to the QUBO representing 

the problem must be input into SIMULATE and the output 

must be extracted to determine solution quality. D-Wave, 

then, unlike the “traditional” methods, does not work by 

directly manipulating the input and output of SIMULATE. If 

the best solutions generated by D-Wave are comparable to 

the best solutions generated by PSA, then the method by 

which D-Wave solves the fuel loading problem (i.e. by 

solving a QUBO) should be examined in greater detail. 

QUBOs are a specific type of sparse graph and-if shown to 

be useful in modeling the fuel loading problem-should be 

examined in greater detail as surrogate models for the fuel 

loading problem. 

 

A process [1] for using CASMO-SIMULATE to 

generate a QUBO was previously developed assuming 

random sampling (20,000 samples) of SIMULATE. This 

process creates a surrogate model using a machine learning 

approach; however, other methods have directly created the 

QUBO by embedding a rules-based approach [5]. First, since 

the neutron mean free path in PWRs is small, it is appropriate 

to use a 2D Ising model (easily convertible to a QUBO) that 

only incorporates nearest-neighbor connectivity between fuel 

assemblies. Once the graph’s structure is assumed, the values 

for its vertices (linear coefficients) and edges (quadratic 

coefficients) must be trained. First, acceptable fuel loading 

patterns were sampled. Secondly, the samples were input to 

SIMULATE, and the cost functions were evaluated 

according to Eq. (1). Next, the ground state of the cost 

function is estimated. The lower-enrichment fuel assemblies 

were assumed to have a spin of “-1” whereas the higher-

enrichment fuel assemblies were assumed to have a spin of 

“1.” The sign convention on the summation terms is the same 

as that of the previous methodology. A previously discovered 

training algorithm [6] for the 2D Ising model was altered to 

include corrections to account for the expected Boltzmann 

distribution of the solutions. Additionally, the tuning 

parameter was set to zero, as the 2D Ising model ia not a very 

accurate surrogate model (though it is more accurate at lower 

energies). The algorithm was run and the values for the linear 

and quadratic coefficients of the 2D Ising model were 

discovered. For the current problem, the only alteration is that 

the sampling randomly selects (with equal probability) a fuel 

assembly design at each location as opposed to randomly 

selecting an entire fuel loading pattern at once with a 30/30 

split in the fuel assembly designs. The 2D Ising model 

obtained using this method is shown in Fig. 1. In all 2D Ising 

maps (Figs.1, 2, and 3), the blue locations represent the 

location of a fuel assembly as well the corresponding linear 

coefficient to the 2D Ising model. Additionally, the green 

locations represent the quadratic coefficient, the coupling 

between fuel assembly locations. Before being input into D-

Wave, all 2D Ising models were converted to QUBOs. 

 

 
 

Fig. 1. 2D Ising map generated using random samples. 

 

As seen in Fig. 1, the behavior of the linear and quadratic 

coefficients is broadly as expected. The quadratic coefficients 

are largely positive, indicating a preference for dissimilar fuel 

assembly designs to be located adjacent to each other. This is 

consistent with checkerboard-style strategies. Additionally, 

the linear coefficients begin as more positive towards the 

center of the core (favor lower-enrichment fuel) but become 

more negative closer to the periphery (favor higher-

enrichment fuel) of the core. This behavior is consistent with 

IN-OUT fuel loading pattern strategies. 

 

Next, two additional QUBO models were prepared. 

Parallel simulated annealing was run to generate 

approximately 25,000 candidate loading patterns. For the 

first 20,000 of these loading patterns, the set comprising those 

meeting the criteria listed in Table I was found. Thus, all of 

the first 20,000 solutions as well as only the solutions meeting 

the criteria in Table I among the first 20,000 solutions were 

used to train a 2D Ising model. The major change from the 

method used to train the 2D Ising model for the random cases 

is that there is no longer the exponential correction term 

accounting for the Boltzmann distribution. Because PSA 

itself is an optimization method, it should favor the lower 

energy solutions. Fig. 2 shows the 2D Ising model trained on 

the first 20,000 solutions generated by PSA and Fig. 3 shows 

the 2D Ising model trained on only accepted solutions among 

the first 20,000 solutions generated by PSA. 

 

 
 

Fig. 2. 2D Ising map generated using all PSA samples. 
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Fig. 3. 2D Ising map generated using only accepted PSA 

samples. 

 

Comparing Fig. 2 and Fig. 3 to Fig. 1, it is apparent that 

for the PSA-informed 2D Ising models, the outermost linear 

coefficients (unlike in Fig. 1) are negative, implying a 

preference for the lower-enriched fuel *assemblies at this 

location. Thus, unlike the 2D Ising model trained on random 

cases, the 2D Ising models presented in Figs. 2 and 3 capture 

the low neutron leakage design criterion. Otherwise, the 2D 

Ising models in Figs. 2 and 3 are broadly similar both to each 

other as well as those in Fig. 1. All models point to a 

preference for checkerboard-style loading patterns as well as 

IN-OUT loading pattern strategies. To determine which 

model best captures the details of the problem, the QUBOs 

(2D Isings are easy to convert to QUBOs) are embedded onto 

D-Wave to solve the QUBO using quantum annealing. To 

keep the results of all methods comparable, at most 5,000 

unique solutions should be generated using D-Wave, with the 

solutions subsequently input to and evaluated with 

SIMULATE. 

 

Likewise, QGA should be used to evaluate 25,000 

candidate solutions for a valid comparison of computational 

expense. QGAs implement the usual genetic operators of 

randomly initializing a chromosome population (here, qubits 

rather than bits), evaluating the fitness of chromosomes, and 

mutating chromosomes to generate new populations. QGAs 

add a qubit rotation gate that informs chromosome mutation, 

allowing for superposition to hasten convergence. Prior 

results suggest that QGAs converge faster and find solutions 

of similar quality compared to GAs on loading pattern 

optimization problems [7]. QGA solutions provide similar 

best loading patterns to PSA solutions. 

 

RESULTS 

 

Table II lists the five methods along with the evaluated 

cost function for the best loading pattern generated. Table II 

shows that using QA to solve the 2D Ising trained only on 

accepted PSA samples has a much higher evaluated cost 

function (worse solution) than the other four methods, which 

obtain best solutions of comparable quality. Figs. 4, 5, 6, 7, 

and  8 show graphically the best loading pattern obtained 

using each method. In these figures, blue represents lower-

enrichment fuel assemblies and red represents the higher-

enrichment fuel assemblies. 

 

TABLE II. Evaluated Cost Function 
 

Method Average Best 

PSA 171.2 -0.5 

QGA 513.3 31.4 

QA, Random 180.7 57.4 

QA, All PSA 177.7 34.3 

QA, Accepted PSA 348.9 212.0 

 

 
 

Fig. 4.  Best loading pattern generated by PSA. 

 

 
 

Fig. 5.  Best loading pattern generated by QGA. 

 

 
  

Fig. 6.  Best loading pattern generated by QA solve of 

2D Ising trained on random samples. 
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Fig. 7.  Best loading pattern generated by QA solve of 

2D Ising trained on all PSA samples. 

 

 
 

Fig 8.  Best loading pattern generated by QA solve of 

2D Ising trained on only accepted PSA samples. 
 

In general, the best loading patterns generated using QA 

(Figs. 6, 7, and 8) have much more higher-enrichment fuel on 

their periphery compared to the loading patterns generated 

using methods unrelated to solving a 2D Ising surrogate (Fig. 

4: PSA, Fig. 5: QGA). Although the result in Fig. 7 has nearly 

the same cost function evaluation as that in Fig. 5, the Fig. 5 

result is most similar to the Fig. 4 result. In fact, the PSA and 

QGA results are remarkably similar in terms of the structure 

of the loading pattern closer to the core. On the other hand 

QA results either mimic IN-OUT strategies (Fig. 8) or IN-

OUT strategies combined with checkerboard-style loading 

patterns (Figs. 6 and 7). 

 

CONCLUSIONS 

 

PSA, QGA and QA were used to solve a two-batch PWR 

fuel loading optimization problem. PSA and QGA resulted in 

best solutions of very similar quality. When QA was used to 

solve 2D Ising surrogate models trained on either random 

samples or all PSA results, the best QA solution was 

comparable to the best PSA and QGA solutions. However, 

when QA was used to solve the 2D Ising trained on only PSA 

samples that met the design criteria, the best solution was 

much worse than any of the other four approaches taken. A 

surprising result is that for QA approaches, both using 

samples resultant of some classical optimization method 

(such as PSA) as well as explicit reconstruction of the 

Boltzmann distribution result in the same solution quality. 

Failure to include lower quality solutions during the classical 

optimization approach also results in a lower quality best 

solution obtained using QA. 

 

It must be re-stated that the results in this paper do not 

reflect conclusions on the validity of quantum computing 

itself; rather, this work explores how the steps involved in 

formulating the problem into a QUBO allows for greater 

insight into the problem. QA is a competitive option for 

generating loading patterns despite the low surrogate 

accuracy [1] of the 2D Ising model. Thus, the general use of 

sparse graphs as surrogate models for fuel loading pattern 

optimization should be investigated further for reactors with 

tight local spatial coupling. Further innovation could be 

including diagonal coupling to improve the sparse graph 

surrogate accuracy. 

 

ACKNOWLEDGMENTS 

 

This work was supported in part by the following 

awards: NSF 1917383, 1818914, 2120757, and LANL 

subcontract 725530. 

 

REFERENCES 

 

1.  J. FUSTERO, S. PALMTAG and F. MUELLER, 

“Quantum Annealing Stencils With Applications to Fuel 

Loading of a Nuclear Reactor.” 2021 IEEE International 

Conference on Quantum Computing and Engineering (QCE), 

pp. 265-275, (2021). doi: 10.1109/QCE52317.2021.00044. 

2. D. KROPACZEK and R. WALDEN, “Constraint 

Annealing Method for Solution of Multiconstrained Nuclear 

Fuel Cycle Optimization Problems,” J. Nuclear Science and 

Engineering, 193, 506-522 (2019). 

3.  B.D. ANDERSON, “A Machine Learning Based 

Approach to Minimize Crud Induced Effects in Pressurized 

Water Reactors.” Dissertation, North Carolina State 

University (2021). 

4.   J. KING, ET. AL., “Quantum Annealing Amid Local 

Ruggedness and Global Frustration.” Journal of the Physical 

Society of Japan, 88, 061007, (2019) 

10.7566/JPSJ.88.061007 

5.  A. WHYTE and G. PARKS, “Quantum Annealing 

Optimization of a Heuristic Surrogate Model for PWR Fuel 

Loading.” Proc. PHYSOR 2020, Cambridge, United 

Kingdom, March 29–April 2, 2020, American Nuclear 

Society (2020). 

6.  A. LOKHOV, M. D. VUFFRAY, S. MISRA & M. 

CHERTKOV, “Optimal Structure and Parameter Learning of 

Ising Models.” LA-UR-16-294425, Los Alamos National 

Laboratoy, (2012). 

7.  A. DOS SANTOS NICOLAU, R. SCHIRRU, & A. M. M. 

DE LIMA, “Nuclear Reactor Reload Using Quantum 

Inspired Algorithm.” Progress in Nuclear Energy, 55, 40-48, 

(2012). 


