Modular Embedding of Problems onto Quantum Annealers

Ellis Wilson, Frank Mueller, Scott Pakin
North Carolina State University, Los Alamos National Lab

Motivation

- Quantum annealers benefit from high qubit connectivity
- “Chains” of physical qubits used to represent single virtual qubits
- Embedding takes problems onto current topology is NP-Hard
- Previous work[1] shows improvement for specific problem by adding extra structural constraints
- Separates the problem into cells of 2 qubits
- Cells can only be embedded onto certain physical qubits on the Chimera structure
- Similar to the idea behind DWave’s Locally Structured Embeddings

NchooseK

NchooseK is a domain-specific, constraint-based language built for automatically setting up problems for both gate-based machines and quantum annealers[2].

- Good candidates for modular embedding, thanks to constraint-based nature
- NchooseK uses constraints which say “Of N variables, K must be true”
- Constraints take the form nchoosek([N1, N2], [K1, K2])
- Many NP problems have been solved with NchooseK
- One-hot encoding problems particularly suited to this type of embedding
- Several qubits represent one variable
 - Qubit measured as |1> indicates “hot” value
- Map coloring problem good example here
 - Map coloring uses 2 kinds of constraints, shown below:
 - Circles represent variables (regions P and Q)
 - Boxes represent constraints, number shows K for that constraint
 - One constraint per node to ensure one color per node:
 - nchoosek(a, 1, a, a, a, 3, 3)
 - n constraints per edge ensuring two nodes of the same color not connected:
 - nchoosek(a, b, c, 1)

Connectivity of central cells on section of DWave Pegasus architecture
Abstract representation in upper right corner
Thick colored line indicates chain representing single virtual qubit

NchooseK Usage

- NchooseK is used to embed problems onto quantum annealers
- Constraints take the form nchoosek([N1, N2], [K1, K2])
- Constraints can be added through implications of other constraints
- Cells can only be embedded onto certain physical qubits on the Chimera structure
- “Chains” of physical qubits used to represent single virtual qubits

Methodology

We decided to start our investigation with the Map Color and Clique Cover problems due to their one-hot encoding lending to distinct cells with predictable connections between them.

- First tried DWave’s current Pegasus architecture.
- Tried to find good encodings for maps of 3 and 4 colors
- These cells need the following properties:
 - Each cell must be a clique
 - Each qubit within the cell connected to every other qubit within the cell
 - Corresponding qubits in connected cells must be connected to each other
 - Ex: P, connected to Q in NchooseK example
 - Cell for 3 colors use 4 qubits (bottom left)
 - Thicker line indicates a chain, representing one virtual qubit
 - Cells have a degree of 4
 - Two cells found for 4 colors
 - One version uses 8 qubits per cell (bottom center)
 - Cells have a degree of 6
 - Other version uses 4 qubits per cell (bottom right, unused)
 - Corresponding qubits have degree of 2 or 3
 - Additional constraints on placement depending on connectivity
 - Cells need to be connected to connect with cells not on the same diagonal
 - Minorminer was used to map on our abstract maps and on the full Pegasus map

Results

- Map color problem based on US continental map, starting with Tennessee
- Compared metrics of the mappings: Average/Max chain length, total number of qubits, embedding time
 - Modular (blue) performed worse than standard (red), except in embed time
 - Ran some problems on physical machines, compared correctness
- Modular mappings once again underperformed when compared to standard mapping

Conclusions

- Finding good modular maps is non-trivial
 - Modular embedding is faster but worse than full map embedding in this case
 - Modular embedding is better in other situations
 - Likely better performance with cell size 2 or different necessary connections between cells
 - Unable to take advantage of many connections on Pegasus

References/Acknowledgements

https://github.com/nchoosek

Images:
- Table: Selected results for 4-color maps of US.

- 3-color, clique cover, and DWave Chimera architecture performed similarly.

- Embedding time for Modular vs Standard Embedding

Research presented in this paper was supported by the Laboratory Directed Research and Development program of Los Alamos National Laboratory. Los Alamos National Laboratory is operated by Triad National Security, LLC, for the United States Department of Energy Contract DE-AC52-06NA25396. Los Alamos National Laboratory is managed by Triad National Security, LLC under the U.S. Department of Energy contract DE-AC52-06NA25396. This work was also supported by the National Nuclear Security Administration, DOE award DE-NA0004055, the National Science Foundation award DMR-1716147, and NNSA AC-11/280. This research was also supported by the Los Alamos Laboratory Directed Research and Development program. Los Alamos National Laboratory is operated by Triad National Security, LLC, for the United States Department of Energy (contract DE-AC52-06NA25396). The views and opinions of authors expressed herein do not necessarily reflect the views and policies of the Department of Energy or the United States Government.