
Reducing NoC and Memory Contention for
Manycores

Vishwanathan Chandru and Frank Mueller

North Carolina State University, Raleigh, NC, mueller@cs.ncsu.edu

Abstract. Platforms consisting of many computing cores have be-
come the mainstream in high performance computing, general purpose-
computing and, lately, embedded systems. Such systems provide in-
creased processing power and system availability, but often impose laten-
cies and contention for memory accesses as multiple cores try to reference
data at the same time. This may result in sub-optimal performance un-
less special allocation policies are employed. On a multi-processor board
with 50 or more processing cores, the NoC (Network On Chip) adds
to this challenge. This work evaluates the impact of bank-aware and
controller-aware allocation on NoC contention. Experiments show that
targeted memory allocation results in reduced execution times and NoC
contention, the latter of which has not been studied before at this scale.

1 Introduction

On many-core platform(s), memory (DRAM) is a resource critical to perfor-
mance. As applications share cores and become more and more memory inten-
sive, DRAM tends to become a performance bottleneck that critically affects
system performance [1].

Performance problems usually arise due to serialization of memory accesses.
This can be avoided using bank-aware and controller-aware allocation. The
DRAM in manycore platform(s) is divided among multiple memory controllers
and, within a controller, ranks and banks. Controllers and banks can be ac-
cessed in parallel. Therefore, performance of an application varies significantly
depending on how data is placed and how many cores/processors access a given
bank at same time. In the best case, each core/processor accesses a different
controller/bank. This ensures that contention of accesses does not occur and
that accesses are resolved in parallel. One strategy to improve bank-level par-
allelism is to use bank interleaving. In case of single threaded applications it
improves performance. However, when multiple programs or multiple threads
are running simultaneously, it can cause cross-interference. The higher the de-
gree of parallelism, the higher is the probability of bank sharing resulting in
more cross-interference.

Linux on the Tilera platform can be configured to allocate memory on the
closest NUMA node (physical memory controller) [2,3]. Since Linux on the Tilera
platform handles DRAM as a single resource following a NUMA allocation policy



(unless and until disabled), banks are not considered during allocation and it is
not possible to predict the exact location of allocated memory over the banks.

The Tilera architecture features a mesh NoC (Network on Chip) instead of a
bus. All data accesses and data exchanges go through the NoC. Given the large
number of cores, traffic over the network can lead to high latencies. Therefore,
NoC contention also becomes important for bandwidth and performance. Due
to the large number of cores, controller contention also becomes a critical factor.

Fig. 1. Worst Case Scenario Fig. 2. Tilera Architecture

If all accesses are directed via a particular memory controller as depicted
in Fig. 1, then the latencies increase since requests get queued at controller(s)
and core(s) stall. Furthermore, cores in each quadrant may access all controllers,
which leads to a high volume of traffic. Even though all controllers are being
utilized, the latency is high.

Contributions: This work contributes a user space bank-aware and
controller-aware allocator that keeps track of bank(s) and controller(s) of al-
located memory, i.e., it returns memory addresses requested on a particular
bank/controller. This allows users to bind a core/processor to a specific bank
and controller reducing the contention and serialization, thus improving perfor-
mance. Using the allocator, an extensive experimental study was performed to
evaluate the impact of bank-aware and controller-aware allocation. It was ob-
served that performance (in terms of execution time) improved with our allocator
while its variance was reduced due to less NoC contention.

2 Background And Problems

The Tilera [4] architecture differs from most modern systems due to presence
of a mesh NoC instead of a bus (see Fig. 2). Other platforms with large core
count now use a mesh or ring NoC as well (Intel Xeon Phi [5], Intel SCC [6],
Adapteva [7] etc). Like modern DRAM systems, the memory system is composed
of a controller that handles the arbitration, scheduling and conversion of packets
to external memory commands. Memory is organized into ranks (4 in our setup)
and each rank has multiple banks (8 in our case). The systems may or may not



have multiple independent memory controllers. The Tilera architecture supports
four independent controllers that operate in parallel [8].

Tiles (similar to cores) do not have direct access to controllers as the ar-
chitecture implements a DSM (Distributed Shared Memory) protocol to ensure
coherence at the L2 level cache. Tilera utilizes a mesh interconnect for data ex-
change [9]. Dimension ordered routing is used in the network [8]. The interface
to off-chip memory and I/O devices is done via I/O shims that interface the
NoC to memory controllers and other I/O devices [9]. The memory controller is
connected to the memory dynamic network (MDN, see Fig. 2) and has multiple
ports [8] where requests arrive and are fulfilled.

NUMA allocation is the default policy. However, NUMA and STRIPE alloca-
tions might not be able to deliver the best possible performance by themselves as
the accesses to data structures will be resolved by different memory controllers
with different latencies (hops) over the NoC.

None of the policies are bank aware, i.e., they cannot restrict accesses of a
task running on a tile to a particular bank or even controller if memory striping
is enabled, where a page (64 kB size) is striped across all controllers in an inter-
leaved way at 8 kB granularity to balance load and improve memory parallelism.

In this work, we present a user space allocator utilizing non-striped mode and
using controller-interleaved page allocation instead of the default NUMA policy.
We use the interleaved policy for allocating our memory pool as it ensures that
an equal amount of memory per controller is available for allocation.

3 Bank Aware Allocator

We designed and implemented a user space bank-aware and controller-aware al-
locator. It exploits the virtual to physical address translation. After determining
the bank and controller from bits within the physical address, the address is
added to a specific list corresponding to the relevant controller and bank. When
a user requests memory from a certain bank and controller, the corresponding
list is searched and if memory is available, its address is returned.

Our allocator requires pre-allocation of a large pool of memory, which is then
traversed at a granularity of 8 kB and chunks are added to the corresponding free
list(s). The default behavior of the allocator is to try to find a memory chunk
fitting the requested size, bank and controller. However, if the exact request
cannot be full-filled, the allocator supports multiple modes as an automatic
fallback from the default behavior, namely:

CONTROLLER RESTRICTED : If a requested bank is not found within the
controller, the allocator defaults to the bank that has the most free memory.

CONTROLLER UNRESTRICTED : If a requested bank and the controller
cannot be used to satisfy the request, the allocator defaults to the bank and
controller that have the most free memory.

SPLIT : If the requested size is greater than 8 kB and this mode is enabled,
then standard allocation is performed (i.e., find the first fitting contiguous chunk
available) and its address is returned.



Input: Request Size, Memory Controller, Bank, modes mask
block ←− NULL;
block ←− Memory from requested controller and bank;
if block != NULL then

return block;
end
if CONTROLLER RESTRICTED in modes mask then

Q ←− Banks corresponding to requested Memory Controller with banks in
descending order of memory availability;
for each bank in Q do

block ←− allocate memory from current bank if chunk of size greater
than or equal to requested size is available;
if block != NULL then

return block;
end

end

end
if CONTROLLER UNRESTRICTED in modes mask then

ControllerQ ←− Get controllers in descending order of memory availability;
for each controller in ControllerQ do

BankQ ←− Get banks from current controller (ordered in descending
order of memory availability);
for each bank in BankQ do

block ←− allocate memory from current bank if chunk of size
greater than or equal to requested size is available;
if block != NULL then

return block;
end

end

end

end
block ←− NULL;
if SPLIT MODE in modes mask then

block ←− Allocate contiguous block of memory (may span across banks and
controllers);

end
return block;

Algorithm 1: Bank aware algorithm allocator

Algorithm 1 shows the implementation. Multiple modes can be configured
via a bit-mask for finer control of the allocator. Multiple lists are used to improve
the performance of the allocator. Multiple doubly linked list(s) are maintained,
one for each bank within a controller. The head of the list is indexed using
the controller number/bank number. For SPLIT allocation, a separate list is
maintained for quicker allocation. Each free memory chunk is part of both lists.
Each memory chunk has four pointers, two pointers that are used to traverse the
corresponding bank list and two pointers for the list used for SPLIT allocation.



Depending on the allocation modes, we track the memory available per
bank/controller via a queue. Five such queues are maintained, one queue per
controller to keep track of banks and one shared queue to keep track of memory
available per controller.

This multiple-level design accelerates bank-aware allocation for allocations
less than 8 kB. SPLIT allocation is slow as multiple data structures and free lists
need to be updated. Hence, experiments exclude the allocation time and focus
on real-time applications after they pre-allocate data during the initialization.

In contrast to PALLOC [10], a kernel-level allocator, and other software
partitioning approaches [11] [12], our allocator works targets manycores with
mesh NoCs (not multicores with bus/ring NoCs) and operates in user space as
a proof-of-concept implementation. It is more restrictive in terms of usage due
to constraints imposed by manycores. Tilera supports a 64 kB page size and
utilizes controller-interleaved page placement, i.e., we cannot allocate more than
64 kB of contiguous memory within a controller (see Fig. 3). As the bank varies
every 13 address bits (explained in Section 4.1), a contiguous allocation cannot
exceed 8 kB if it needs to be within the same bank and controller. Instead, our
allocator allows medium allocations (8KB < size ≤ 64KB) to span multiple
banks while larger ones (> 64KB) even span multiple controllers.

Fig. 3. Bank split up in a 64 kB page

4 Evaluation

The evaluation platform used is a Tilera TILEPro-64 with 64 tiles [13]. Each
tile has 16+8 kB private L1I+D cache(s), a 64 kB private L2 cache and a soft
L3 cache of 5 MB, which is created by combining the private L2 caches of all
tiles (see Fig. 2). There are 4 memory controllers, each capable of independent
operation. Each controller can support up to 32 banks (4 ranks and 8 banks
per rank). The configuration we utilize has 8 GB of DDR2 RAM, 2 GB per
controller. Address hashing [8] is enabled to enhance the number of available
banks.

4.1 Address Mapping

Address translation is straight forward. The physical address has 36 bits [8].
Per the documentation and configuration register values, address hashing is per-



formed to increase bank availability, which distributes a page at cache line gran-
ularity among the available tiles. Bits 13, 14, 15 are used to determine banks
and bits 34 and 35 are used to determine the controller (in combination covering
all 32 banks).

4.2 Experimental Setup

To measure bank-level contention, we use two OpenMP benchmarks. The entire
processor is divided into 4 quadrants with 16 tiles each, except quadrants 3 and
4 with only 12 tiles each as the bottom-most 8 tiles are reserved by Tilera’s SDK
in our setup. The primary aim of dividing tiles into quadrants is to restrict the
access to memory via the closest memory controller. This allows us to remove
controller contention across quadrants and to minimize NoC contention so that
we can focus on measuring bank level contention. This also helps if we want to
create pathological worst case scenarios, i.e., tiles from each quadrant access-
ing all four controllers to generate excessive memory contention. The execution
time is indicative of contention. We refer to the controller-restricted policy as
“colored allocation”, i.e., choosing a page located at the closest controller to min-
imize NoC path length and this contention. The selection of c colors indicates
that threads access controller-local banks shared by as few threads as possible
depending on the configuration. Colored allocation results in lower execution
time and better memory bandwidth compared to non-colored allocation. Non-
colored, using tmc alloc map() from the Tilera Multicore Components (TMC)
library, is subsequently referred to as the default allocator, which observes con-
troller locality and uses address hashing (see Section 4.1) affecting banks, only,
i.e., same or different banks may be chosen in an indeterminate manner.

During the entire experiment, threads were pinned to the respective tiles
to prevent them from migrating and causing unintended interference. Bench-
mark data is explicitly allocated from the bank/controller-aware allocator using
coloring.

5 Experiments And Results

Let us assess the impact of bank-aware allocation on performance. We use ex-
ecution time to measure the performance impact of latency, bandwidth and
contention. By running the same benchmark in multiple tile(s) and using
an OpenMP enabled benchmark (where OpenMP constructs map to POSIX
threads), the impact of bank-aware and controller-aware allocation is shown.
The x-axis of the plots denotes the ith experiment/execution (experiment in-
stance) and the y-axis shows overall memory bandwidth (MB per second) or
execution time (seconds) depending on the plot.

Fig. 4 depicts the execution time (y-axis) of the NAS IS OMP benchmark for
32 threads (8 threads per quadrant) for 15 runs. We obtain close to a 20% per-
formance benefit with colored allocation, which improves as colors increase from
four per controller (each color/bank shared by 2 threads) to eight (completely



Fig. 4. NPB IS OMP (Class A) Fig. 5. Stream Add Bandwidth

thread-private banks). We also observe significant performance variations when
bank non-aware allocation is used. Fig. 5 depicts the bandwidth on y-axis re-
ported by the STREAM benchmark with 32 threads and 8 threads per quadrant.
We observe a significant increase in sustainable bandwidth for the ADD kernel
from the STREAM benchmark for 15 runs. Bank non-aware allocation results
in higher variation again (for 1 of 15 experiments).

To further understand NoC contention and bank contention, composite
benchmark executions (for bubblesort from the Mälardalen benchmark suite)
with varied number of threads and memory traces were obtained. Bubblesort is
the most memory bound of all integrated benchmarks. Composite benchmark
runs are reported in terms of iterations. To get reliable data and account for
outliers, multiple iterations are run per execution and experiments are repeated
(reported as instances). Fig. 6 shows the overall maximum execution time per
experiment of the composite benchmark for 32 threads and 2 pages per thread.
We observe that colored allocation always results in the best performance isola-
tion. The two pathological worst case scenarios, tasks in each quadrant accessing
all quadrants (labeled as circular allocation) or tasks restricted to a particular
controller, always lead to the worst performance. This highlights the criticality of
NoC contention and controller contention. Controller-local allocation is slightly
slower than bank-aware allocation within a controller (colored allocation) as the
latter reduces serializations of accesses.

The difference between 2, 4 and 8 color allocations is noticeable. This is due
the fact that even though we are simulating two and four bank configuration(s)
by wrapping around bank indices when populating free lists at user level, at
hardware level we still have 8 banks, which is a higher bank level parallelism
than can be exploited by a four or two color scheme.

To further analyze the impact of colored allocation, the following two sets of
experiments were performed:
1. Constant memory footprint and variations in the number of threads.
2. Constant number of threads and variable memory footprint per thread.

Fig. 7 shows the overall maximum execution time per experiment/execution
of the composite benchmark for 32 threads and 10 pages per thread. As we
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Fig. 7. Composite Benchmark
(32 Threads, 10 Pages per Thread)

compare the plots in Fig. 6 with Fig. 7, we observe an increase in execution time
by a factor of 21, even though the input size increased five-fold. This is mainly
due to memory boundedness of the latter vs. L2-boundedness of the former
experiment. An improvement of 17% to 20% over non-bank aware controller-
local allocation was observed on average.

For experimental case 1, we fixed the memory footprint to 10 pages per thread
and varied the number of threads from 8 to 32 in steps of 8, i.e., increments of 2
threads per quadrant. We observe that the difference between colored allocation
and bank non-aware controller-local allocation keeps increasing until 32 threads,
and then remains close to 60 seconds (see Figures 6, 7, and 8). This is due to
the fact that each controller has 8 banks per rank, i.e., for up to 32 threads we
were able to restrict each thread in the quadrant to a separate bank. However,
as we exceed 8 threads per quadrant, more than one thread accesses a given
bank leading to increased contention. Now, as we reduce the number of threads
to 8, non-colored controller-local allocation provides good performance most of
the times (see Fig. 9). There are two possible reasons for this behavior.
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One is bank address hashing. In case of non-bank aware controller-local al-
location, we perform 8 kB allocations using Tilera’s API that allocates at 64 kB
(page size) granularity. Effectively, we only access the first 8 kB of each page,
for which the bank is randomized due to bank address hashing. Our colored
allocation restricts thread 0 in each quadrant to bank 0 of the closest controller
and thread 1 to bank 1 of the closest controller, effectively restricting accesses to
2 banks. But in case of non-colored allocation, due to bank address hashing, the
first 8 kB of the page (which we access) can be any bank (from 0-4), so there is a
high probability of more bank level parallelism. The second, less probable reason
is that the number of threads per controller is less than the number of MDN
ports per controller. There are two threads per quadrant and 3 MDN ports per
controller. Therefore, any delay due to serialization at ports is avoided.

Table 1 shows the standard deviation of the execution times of IS and sus-
tainable bandwidth reported by STREAM over 15 executions. We can observe
that bank-aware allocation results in tighter bounds for IS and STREAM.

Table 1. Standard Deviations for IS and STREAM

Benchmark 4 Banks 8 Banks Controller-local

NAS IS OMP 0.06824 0.06272 0.866052
STREAM 2.950072 3.919421 12.63999

Table 2 shows the standard deviation over 15 experiments corresponding to
the plots of each experiment having 5 iterations for Composite Benchmarks.
We observe increased jitter compared to controller-local allocation except for
8 banks. We can also observe that as we increase the number of threads from
32 to 48, the jitter decreases as we change the number of threads from 8 to
32, which is due to increased bank-level parallelism. However, as we increase
the number for threads to 48, the increased NoC contention and bank sharing
subsume the performance improvement. For controller-local allocation, a higher
level of serialization exist as we increase the memory footprint, which causes
lower performance at reduced jitter.

Table 2. Standard Deviation for Composite Benchmark Execution

threads,pages 2banks 4banks 8banks ctrl-local opposite-ctrl 1node 2nodes circular-alloc

32,2 0.39 0.57 0.02 0.07 0.22 0.12 0.042 0.036
8,10 – – 1.13 0.67 – – – –
32,10 – – 0.38 0.19 – – – –
48,10 – – 2.23 0.38 – – – –

6 Related Work

Jeong et al. [11] propose to optimize power consumption, increase memory
throughput and improve performance by means of bank-level partitioning but do
not consider multiple controllers or NoC contention. Instead of actual hardware,
the evaluation is based on a simulator. Fourth, the effect of the NUMA allocation
policy is not considered. Park et al. [14], another software-based approach, pro-
pose to increase memory bandwidth and reduce cross interference in a multicore



system by dedicating multiple dedicated banks to different cores. Page allocation
within the dedicated banks is randomized to reduce row-buffer conflicts and to
further minimize unwarranted cross-interference. Due to the implicit assump-
tion of more banks than cores, this approach excels when the number of banks is
much larger than the number of cores. It can also be observed that none of the
approaches focus specifically on improving worst-case execution time (WCET).

Since multicore systems have multiple memory channels, memory channel
partitioning is one potential solution to improve performance isolation. Mu-
ralidhara et al. [15] propose an application-aware memory channel partitioning.
They consider partitioning memory channels and prioritized request scheduling
to minimize the interference between memory-bound tasks from cache bound
tasks and CPU bound tasks. Apart from software based approaches, there are
multiple works on improving predictability of memory controllers. PRET [16]
employs a private banking scheme, which eliminates bank sharing interference.
Wu et al. [17] take a similar approach but both approaches differ in schedul-
ing policy and page policy. There are several other works closely related to our
work [18], [19], [20]. AMC [20] focuses on improving the tightness of WCET es-
timation by reducing interference via bank interleaving and reducing inferences
using a close-page policy. The drawback of this proposal is that instead of treat-
ing banks as resources, it treats memory as a resource. Akesson et al. [18] present
a similar approach to guarantee a net bandwidth and provide an upper bound
on latency. They use bank interleaving to increase the available bandwidth. For
bounding latency, they use a Credit-Controlled Static-Priority arbiter [21]. The
drawback of this approach is also is same as that of AMC.

Goossens et al. [19] presents a proposal to improve the average performance
of hard and soft real time system(s) on a FRT (firm real-time) controller with-
out sacrificing hard/firm real time guarantees. It utilizes bank interleaving and
proposes a new conservative closed page policy to maintain locality within a cer-
tain window. The drawback of this approach is that it does not eliminate bank
conflicts completely.

Caches also impact performance and there are several studies regarding the
same at both hardware and software levels [22], [23], [24], [25], [26], [27], [28],
[29], [30]. The basic idea behind software-based approaches is cache coloring.

Buono et al. [31] experiment with different Tilera allocations for their Fast-
Flow framework that provides an abstraction for task-based programming.

In contrast to the above references, our work focuses on the impact of NoC
contention for bank-aware and controller-aware allocation using multi-threaded
codes. This makes it significantly different from prior studies and does not allow
a direct comparison.

7 Conclusion

In this paper, we presented a prototype bank-aware and controller-aware user
space allocator for increased memory performance on the Tilera architecture.
It restricts tiles to access memory of specific banks in addition to a specific



controller, thus minimizing bank sharing while balancing and enhancing available
bandwidth and performance.

Using this allocator, we performed experiments with the STREAM and the
NAS IS OMP benchmarks. Based on our results, we conclude that bank-aware
allocation improves performance, increases memory bandwidth utilization, and
reduces NoC contention, the latter of which has not been studied before and is
becoming a problem for large-scale multicores with many memory controllers.
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