
VCFC: Structural and Semantic Compression and
Indexing of Genetic Variant Data

Kyle Ferriter∗, Frank Mueller∗, Amir Bahmani†, and Cuiping Pan‡
∗North Carolina State University, Raleigh, NC, USA, mueller@cs.ncsu.edu

† Stanford Healthcare Innovation Lab, Stanford University, CA, USA, abahman@stanford.edu
‡ Palo Alto Epidemiology Research and Information Center for Genomics, VA Palo Alto, CA, USA, cuiping@stanford.edu

Abstract—Personalized genomic datasets are growing in size at
an accelerating pace presenting a dilemma between the need for
fast retrieval requiring “near data” and cost of storage, which
decreases for “distant media” with larger capacity but longer
access time. Instead of database technology, the bioinformatics
community has developed an industry standard for compressing
and indexing of genetic variant files that store the difference
between a person’s genome to a human reference genome. These
standardizations rely on generic data compression schemes.

This work contributes novel domain-specific compression and
indexing algorithms that retain the structure and semantics of
genetic variation data while supporting common query pat-
terns. A line-based run-length partial compression technique
for variant genotype data using a novel indexing strategy is
developed and shown to perform well on large sample sets
compared to the industry standard. The evaluation over genomic
datasets indicates compression at a comparable size for our data
representation while resulting in speedup of ≈2X in indexed
queries compared to the industry standard. This underlines that
our representation could replace existing standards resulting in
reduced computational cost at equivalent storage size.

I. INTRODUCTION

In recent years, genomic datasets have rapidly grown in

size as genetic sampling, sequencing, and analysis has become

more integrated into common health and medical processes

ranging from emergency room to periodic checkups [1], [2].

This places demands on data infrastructure for availability

and short query responses while requiring large storage space.

Hence, large medical data are being moved into the cloud,

where storage scales and is widely available. Information of

such data is accessed using indexing to select relevant records

without reading in the entire data set.

This work specializes compression and indexing techniques

of genetic data for genomic sequencing pipelines used in

genetic variation research. This work makes the following

contributions:

• A novel row-based run-length partial compression tech-

nique is developed with similar performance to block-

based full compression.

• A row-based indexing strategy for genetic variant data is

devised that leverages both key binning and sparse file

offsets.

• Indexing using our novel data representation and algo-

rithms is shown to result in 2X-3X superior performance

over conventional storage techniques.

II. BACKGROUND

Human DNA is largely assembled into 23 pairs of chromo-

somes, consisting of macromolecules represented symbolically

by the letters A, T, C, and G. Genomic sequencing pipelines

are used to identify the genetic makeup of an individual,

resulting in DNA sequences recorded in variant calling format

(VCF). Often, only DNA variations relative to the human

reference genome and identified with sufficient accuracy/read

depth [3] are recorded. Normally, these variations are in the

range of 3-5 millions, in contrast to the 3 billion base pairs in

the human reference genome. Fig. 1 depicts a reference chro-

mosome (lower part) and the imaginary difference (colored)

of an individual, where differences can be thought of as being

tabulated (right side). These are stored in VCF files.

Fig. 1: Conceptual Description of Genome Differencing

VCF files are laid out as a mapping of genetic variation

descriptions that may or may not contain variations, where an

NxM matrix of N variants and M samples summarizes the

differences. Fig. 2 depicts an excerpt of a VCF file with meta

data followed by a sequence of homologous groups (HG) of

individuals that have the alternate letter(s) in their primary or

secondary strand when the encoding is non-zero (indicating

the index of an alternate reference letter), otherwise (in case

of zero) the sequence is identical to the reference.

III. RELATED WORK

The most common compression format for VCF files is

called BGZF and is part of the Samtools project [4]. This

format aggregates VCF data lines and concatenates them in

GZIP blocks, which means that any block needed by a query

has to be decompressed before data can be processed.

9781-4244-3941-6/09/978-1-7281-6215-7/20/$31.00 © 2020 IEEE

V. EXPERIMENTAL FRAMEWORK

A. Implementation Correctness

The evaluation of correctness for the VCFC compression

and indexing techniques was performed via thorough experi-

mentation. The first correctness was established by compress-

ing a set of VCF files from the 1000 Genomes Project with

VCFC, then decompressing with our VCFC, and checking the

final output against the original VCF file with line-by-line

differencing, which provided a perfect match. Further, a variety

of VCF queries were issued via Tabix and it was validated that

our technique matched the expected output.

B. Systems Evaluation

The VCFC implementation was realized in C++11, com-

piled using the GNU C++ compiler and libraries version

4.8.5 on CentOS 7 with Linux kernel 4.10.13. For timing

evaluations, optimization level 3 was enabled with -O3. No

other nonstandard build flags were applied.

The evaluations were performed on a node of a cluster

described in Tab. I. The implementation is single-threaded,

i.e., only one core (irrespective of hyperthreading on/off) was

used for execution. Only one execution was run at a time to

minimize CPU context switching and cache contention and to

eliminate I/O bandwidth contention.

Cluster Node 1:
• CPU: 2 × Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz, 16 cores,
32 threads (hyperthreading on). 20MiB L3 cache
• Storage: SAMSUNG MZPLK1T6HCHP-00003 (NVME), 1.6 TB

TABLE I: Cluster node used in evaluation experiments

Each timing-related evaluation was run 10 times and aver-

aged. For tests with small number of data points, we report the

standard deviation explicitly. For all other tests with hundreds

data points or more, also averaged over 10 runs, the standard

deviation for dense queries was observed to be a few hundred

microseconds to occasionally a few milliseconds, and for

sparse queries in the order of a few milliseconds.

C. Evaluation Data

The data used to evaluate the new compression and indexing

strategies included both synthetic and real-world VCF objects.

Synthesized VCF files were created by generating N vari-

ants and M samples, with reference bases and alternate

bases chosen at random, with up to A alternate bases with

decreasingly probabilities, and with the same A for each

variant in the VCF file. Synthetic files have shorter run lengths,

which may underestimate the compression ratio compared to

real data. Hence, synthetic data was only used for correctness

evaluations.

Real-world VCF files were used both for evaluating cor-

rectness and for measuring storage and time metrics. The

input files were from the 1000 Genomes Project [13] Phase

3 all-sample VCF files, which contain 2504 samples and

approximately 89 million variants over all chromosomes.

VI. RESULTS

Tab. II first depicts the compression ratio of the three

schemes in the second column, which are all high and only

a few percent apart. This underlines the effectiveness of our

VCFC, which only compresses the sample columns for 0/1

combinations while variant site and description columns are

not compressed. The latter can be queried without decompres-

sion, e.g., for filtering a chromosome or position range.

TABLE II: Compression ratio (in %), times (avg./std.dev. over

10 runs in sec.), VCF 1000 Genomes Project, chromosome 22

ratio time (seconds)
read N/A 6.15 ± 0.24
BGZF 98.15% 127.29 ± 0.50
BCF 98.42% 238.43 ± 0.52
VCFC 96.87% 192.96 ± 0.82

The table also depicts the method-agnostic read overhead

(row 2) of the uncompressed file, which is subsequently

compressed in our binned external indexing format, which

imposes compute overhead for the compression and write

overhead for the respective device and filesystem.

Overheads are dominated by compression, where BCF com-

pression took 1.9X as long as BGZF, and VCFC took 1.5X

as long as BGZF. BCF performs two phases of compression,

leading to more computational work. But VCFC has a much

higher standard deviation than others since writes are on a line-

by-line basis, making them smaller (latency oriented) and more

numerous than the block-based writes (bandwidth oriented) of

BGZF and BCF.

A. Indexing

We assess the cost of index queries for binned indices

using different key phases. We perform a sensitivity study on

binned indexing because the bin size is an input parameter

for tuning compression resulting in a spectrum of overheads.

We search through the index by seeking from the start of

the bin in the compressed file and decompress lines only

at the seek destination. For each query, we assess the time

to search through the index to find the bin which contains

a target position, P (depicted in blue in figures). Since we

use a binary search algorithm, the number of bins searched

increases logarithmic. Overall, the index search had relatively

small overhead. Notice that the cost of reading meta overhead

is omitted because the overhead is constant for every query.

Each bin size was evaluated with a uniform distribution

of 200 position queries across the chromosome 22 VCF file,

and each query was evaluated 10 times and averaged. In this

first set of experiments, the kernel disk page cache was not

flushed between runs as we wanted compression (computation)

to dominate, not I/O (unlike in later experiments).

Fig. 5 shows the time (y-axis) of queries for different

bin sizes (x-axis). Each bar reports the average over 2000

queries for index search (blue/bottom), decompression (or-

ange/middle), and seek time (green/top). We observe that index

search time contributes only a small constant cost to queries

while compressing dominates the cost (2 ms) for small bin

