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Abstract—Personalized genomic datasets are growing in size at
an accelerating pace presenting a dilemma between the need for
fast retrieval requiring ‘“near data” and cost of storage, which
decreases for ‘‘distant media” with larger capacity but longer
access time. Instead of database technology, the bioinformatics
community has developed an industry standard for compressing
and indexing of genetic variant files that store the difference
between a person’s genome to a human reference genome. These
standardizations rely on generic data compression schemes.

This work contributes novel domain-specific compression and
indexing algorithms that retain the structure and semantics of
genetic variation data while supporting common query pat-
terns. A line-based run-length partial compression technique
for variant genotype data using a novel indexing strategy is
developed and shown to perform well on large sample sets
compared to the industry standard. The evaluation over genomic
datasets indicates compression at a comparable size for our data
representation while resulting in speedup of ~2X in indexed
queries compared to the industry standard. This underlines that
our representation could replace existing standards resulting in
reduced computational cost at equivalent storage size.

I. INTRODUCTION

In recent years, genomic datasets have rapidly grown in
size as genetic sampling, sequencing, and analysis has become
more integrated into common health and medical processes
ranging from emergency room to periodic checkups [1], [2].
This places demands on data infrastructure for availability
and short query responses while requiring large storage space.
Hence, large medical data are being moved into the cloud,
where storage scales and is widely available. Information of
such data is accessed using indexing to select relevant records
without reading in the entire data set.

This work specializes compression and indexing techniques
of genetic data for genomic sequencing pipelines used in
genetic variation research. This work makes the following
contributions:

« A novel row-based run-length partial compression tech-
nique is developed with similar performance to block-
based full compression.

o A row-based indexing strategy for genetic variant data is
devised that leverages both key binning and sparse file
offsets.

o Indexing using our novel data representation and algo-
rithms is shown to result in 2X-3X superior performance
over conventional storage techniques.

II. BACKGROUND

Human DNA is largely assembled into 23 pairs of chromo-
somes, consisting of macromolecules represented symbolically
by the letters A, T, C, and G. Genomic sequencing pipelines
are used to identify the genetic makeup of an individual,
resulting in DNA sequences recorded in variant calling format
(VCF). Often, only DNA variations relative to the human
reference genome and identified with sufficient accuracy/read
depth [3] are recorded. Normally, these variations are in the
range of 3-5 millions, in contrast to the 3 billion base pairs in
the human reference genome. Fig. 1 depicts a reference chro-
mosome (lower part) and the imaginary difference (colored)
of an individual, where differences can be thought of as being
tabulated (right side). These are stored in VCF files.

Chromosome 1 Chromosome 2

Gene  Gene Gene . Gene Gene Gene
 unchanged TC.CCT@CEAGA.CT 1‘
W :insertion  te--o-eoeooooeooo C chr | pos variant
- modify
B : deletion TAAGCCAC CG AGAACCT 1 2 A->C
B : 1 3 AG->A
1 7 A>T
Reference Chromosome 1 1 |8 C->CA
1 10 G->GG
1 14 AC->A

Fig. 1: Conceptual Description of Genome Differencing

VCF files are laid out as a mapping of genetic variation
descriptions that may or may not contain variations, where an
NzxM matrix of N variants and M samples summarizes the
differences. Fig. 2 depicts an excerpt of a VCF file with meta
data followed by a sequence of homologous groups (HG) of
individuals that have the alternate letter(s) in their primary or
secondary strand when the encoding is non-zero (indicating
the index of an alternate reference letter), otherwise (in case
of zero) the sequence is identical to the reference.

III. RELATED WORK

The most common compression format for VCF files is
called BGZF and is part of the Samtools project [4]. This
format aggregates VCF data lines and concatenates them in
GZIP blocks, which means that any block needed by a query
has to be decompressed before data can be processed.
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#CHR POS 1D REFALT .. HGOI HG03 HG04 HGOS
1 10075112 A G ..0[0 10 0]0 00
1 10115121 G A ..0[0 o0j0 11 oo

1 10838 rsddirsd6 GA GAAG..2(0 02 02 0l
Fig. 2: Stylized Excerpt of a VCF File

Another common compression format is BCF, a binary
format (documented page 27 of the VCFv3 specification [5]).
It creates lookup keys in a metadata dictionary but other-
wise concatenates variant description and sample genotyping
before committing it to a compression block. Subsequent
data processing often requires indexing into BGZF and BCF
files, which is supported by the Tabix tool [6] within the
Samtools suite. Tabix uses both a linear index and a six-level
binning strategy, where each level from the top down uses
logarithmically smaller bin sizes than the level above it. This
significantly reduces seeks and limits the number of bytes read.

Other related work includes an assessment of domain-
specific indexing for genomics data [7], which develops
faster range-based lookups based on semantic information of
genomic regions compared to generic/traditional techniques.
Sparse indexing/binning has been used in databases [8], [9],
where sparse indices are stored in dense files but not with
filesystem support for sparse storage. QEMU [10] leverages
sparse file support for reducing disk utilization for guest
filesystems, yet without object keys or indexing. Nobre et
al. [11] assess tensor unit acceleration capabilities of Nvidia
Turing GPUs for binary neural networks calculating the Basian
K2 score between SNPs to better understand associations
between phenotypes and genotypes. Their work is complemen-
tary to ours as tensor unit acceleration can be equally applied
to our VCFC representation, albeit without the overhead of
prior decompression, again illustrating the advantage of our
technique. Industry is developing APIs for native key-value
SSD storage at the Flash Translation Layer (FTL) [12], which
could be combined with our structural compression technique
to become even more effective by offloading indexing into the
FTL.

IV. DESIGN

A. Compression (VCFC)

Our novel compression strategy, VCFC (VCF Compressed),
focuses specifically on the M sample columns within a VCF
file as the nine leading non-sample columns are (nearly) con-
stant in size. VCFC takes advantage of underlying assumptions
about the content of VCF files, namely:

1) There is more than 1 sample (patient) represented in the
file. Typically, a few hundred up to many thousand sam-
ples are in a file with many identical values providing
opportunities for run-length compression.

2) Alternate bases for a given variant are ordered in de-
creasing order of frequency.

3) Samples do not differ from the genome reference file in
most positions and a genotype value of O is the most
common case (same letter as the reference).

VCFC only compresses the sample columns as data size
scales with more input data in the form of sample genomes,
i.e., the N variant lines remain constant in the file while
more columns M are added by new sample data. In particular,
while the 1000 Genomes Project [13] has published nearly 90
million variants, M remains relatively small with a run-length
of only up to 2504. If more samples are added, the size of
the uncompressed dataset experiences a linear increase due to
similarities of new samples to existing ones.

We determine that, within the 1000 Genomes Project chro-
mosome 1 VCEF file, genotype 0|0 is an order of magnitude
more common than 0|1, 1|0, 1|1 followed by others at
yet an order of magnitude lower rates. Hence, we restrict our
strategy to only compress those 4 genotype values as they
also provide the most significant opportunities for run-length
compression as they tend to occur back-to-back.

Fig. 3 depicts, for the running example, the VCF file (top)
with highlights indicating any potential for compression and
our equivalent VCFC (bottom) with compressed data (one byte
each consisting of flag and length bits). Here, the VCF file of
184 bytes was reduced to our VCFC file of 43 bytes. In larger
VCEF files, this ratio increases drastically as runs of repeated
values become longer.

Original:

10075 rs12 A G 100 PASS AC=2;AN=12; GTole 1|6 0le 6le ol of1
10115 rs21 G A 100 PASS AC=2;AN=12; Gr 0le 0]e 1|1 ele 0]6 0o
10213 rs24 C T 100 PASS AC=1;AN=12; GT 0|6 0|0 0le ole el|e 1]e
10319 rs28 C T 100 PASS AC=1;AN=12; GT ole 0|6 ole 0|6 o[l 6]o

10527 rs32  C A 100 PASS GT 0|6 1|1 1|60 ©0le ole o|e
10568 rs40 C A 100 PASS AC=1;AN=12; GT 1/0 ©le ole ele olo ©fe
10607 rs42 G A 100 PASS AC=1;AN=12; GT 0|6 0|6 0le 1|6 o|e o|e

10838 rs44;rs46 GA GAA,G 100 PASS AC=1,5;AN=12; GT 2]@ 02 BJ2 o|1 2]6 8]2

[ = Y

: no variance from reference
: reference and first alternate, or both first alternate

Compressed:

1 10075 rs12 A G 100 PASS AC=2;AN=12; GT
110115 rs21 G A 100 PASS AC=2;AN=12; GT
110213 rs24 C T 100 PASS AC=1;AN=12; GT
110319 rs28 C T 100 PASS AC=1;AN=12; GT
110527 rs32 CA 100 PASS AC=3;AN=12; GT
1 10568 rs40 C A 100 PASS AC=1;AN=12; GT
110607 rs42 G A 100 PASS AC=1;AN=12; GT
1

H
10838 rs44;rs46 GA GAA,G 100 PASS AC=1,5;AN=12; T 28 @J2 @2 210 0|2

Fig. 3: VCFC Example Visual

B. Line-Based Contiguous Binned External Indexing

We have developed a novel data design for VCFC using
compression based on an external, secondary index file. This
external file stores a linear index of bins, each pointing to a
record in the compressed VCFC file. The index entries map
a chromosome and position to a byte offset within the VCFC
compressed file of the line where that combination occurs.
A pointer record encodes the chromosome, the position of the
variant on the chromosome, and a byte offset. A binary search
is employed for index queries since the entries in the index
and the data in the file are both sorted.



V. EXPERIMENTAL FRAMEWORK

A. Implementation Correctness

The evaluation of correctness for the VCFC compression
and indexing techniques was performed via thorough experi-
mentation. The first correctness was established by compress-
ing a set of VCF files from the 1000 Genomes Project with
VCEFC, then decompressing with our VCFC, and checking the
final output against the original VCF file with line-by-line
differencing, which provided a perfect match. Further, a variety
of VCF queries were issued via Tabix and it was validated that
our technique matched the expected output.

B. Systems Evaluation

The VCFC implementation was realized in C++11, com-
piled using the GNU C++ compiler and libraries version
4 .8.5 on CentOS 7 with Linux kernel 4.10 . 13. For timing
evaluations, optimization level 3 was enabled with —03. No
other nonstandard build flags were applied.

The evaluations were performed on a node of a cluster
described in Tab. I. The implementation is single-threaded,
i.e., only one core (irrespective of hyperthreading on/off) was
used for execution. Only one execution was run at a time to
minimize CPU context switching and cache contention and to
eliminate I/O bandwidth contention.

Cluster Node 1:

e CPU: 2 x Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz, 16 cores,
32 threads (hyperthreading on). 20MiB L3 cache

e Storage: SAMSUNG MZPLKI1T6HCHP-00003 (NVME), 1.6 TB

TABLE I: Cluster node used in evaluation experiments

Each timing-related evaluation was run 10 times and aver-
aged. For tests with small number of data points, we report the
standard deviation explicitly. For all other tests with hundreds
data points or more, also averaged over 10 runs, the standard
deviation for dense queries was observed to be a few hundred
microseconds to occasionally a few milliseconds, and for
sparse queries in the order of a few milliseconds.

C. Evaluation Data

The data used to evaluate the new compression and indexing
strategies included both synthetic and real-world VCF objects.

Synthesized VCF files were created by generating /N vari-
ants and M samples, with reference bases and alternate
bases chosen at random, with up to A alternate bases with
decreasingly probabilities, and with the same A for each
variant in the VCF file. Synthetic files have shorter run lengths,
which may underestimate the compression ratio compared to
real data. Hence, synthetic data was only used for correctness
evaluations.

Real-world VCF files were used both for evaluating cor-
rectness and for measuring storage and time metrics. The
input files were from the 1000 Genomes Project [13] Phase
3 all-sample VCF files, which contain 2504 samples and
approximately 89 million variants over all chromosomes.

VI. RESULTS

Tab. II first depicts the compression ratio of the three
schemes in the second column, which are all high and only
a few percent apart. This underlines the effectiveness of our
VCFC, which only compresses the sample columns for 0/1
combinations while variant site and description columns are
not compressed. The latter can be queried without decompres-
sion, e.g., for filtering a chromosome or position range.

TABLE II: Compression ratio (in %), times (avg./std.dev. over
10 runs in sec.), VCF 1000 Genomes Project, chromosome 22

ratio time (seconds)
read N/A 6.15 £ 0.24
BGZF | 98.15% | 127.29 + 0.50
BCF 98.42% | 238.43 £ 0.52
VCFC | 96.87% | 192.96 + 0.82

The table also depicts the method-agnostic read overhead
(row 2) of the uncompressed file, which is subsequently
compressed in our binned external indexing format, which
imposes compute overhead for the compression and write
overhead for the respective device and filesystem.

Overheads are dominated by compression, where BCF com-
pression took 1.9X as long as BGZF, and VCFC took 1.5X
as long as BGZF. BCF performs two phases of compression,
leading to more computational work. But VCFC has a much
higher standard deviation than others since writes are on a line-
by-line basis, making them smaller (latency oriented) and more
numerous than the block-based writes (bandwidth oriented) of
BGZF and BCF.

A. Indexing

We assess the cost of index queries for binned indices
using different key phases. We perform a sensitivity study on
binned indexing because the bin size is an input parameter
for tuning compression resulting in a spectrum of overheads.
We search through the index by seeking from the start of
the bin in the compressed file and decompress lines only
at the seek destination. For each query, we assess the time
to search through the index to find the bin which contains
a target position, P (depicted in blue in figures). Since we
use a binary search algorithm, the number of bins searched
increases logarithmic. Overall, the index search had relatively
small overhead. Notice that the cost of reading meta overhead
is omitted because the overhead is constant for every query.

Each bin size was evaluated with a uniform distribution
of 200 position queries across the chromosome 22 VCF file,
and each query was evaluated 10 times and averaged. In this
first set of experiments, the kernel disk page cache was not
flushed between runs as we wanted compression (computation)
to dominate, not I/O (unlike in later experiments).

Fig. 5 shows the time (y-axis) of queries for different
bin sizes (x-axis). Each bar reports the average over 2000
queries for index search (blue/bottom), decompression (or-
ange/middle), and seek time (green/top). We observe that index
search time contributes only a small constant cost to queries
while compressing dominates the cost (2 ms) for small bin
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Fig. 4: Single Variant Lookups by Position

sizes while bin sizes of 450 and 1000 add a seek cost of
another 1ms or 2ms, respectively. For reference, with the
1000 Genomes Project chromosome 22 VCF file the VCFC
binned index with bin size 10 and 100 is 1.4 MiB and 140
KiB, respectively. An ideal bin size, e.g., 1000, is a trade-off
between query performance and space consumption (as well
as spatial locality if subsequent queries reference the same bin,
as assessed in range-based queries below).
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Fig. 5: Single variant query time profile related to index bin
size (Node 1, NVME, EXT4)

B. Query Performance

Fig. 4 depicts the query performance (in ms, y-axis) for
different variant positions (range 1.9 — 5.4 x 107, x-axis) and
different techniques (see color-coded legend). For each data
series, colored dots depicts single-query results approximated
via (slightly increasing) dashed lines to reflect their near-
range averages. The two reference techniques, BGZIP and
BCF with Tabix indexing, result in query responses around
300ms while our VCFC approach averages just above 100ms,
a 3X improvement as a result of our structured compression
techniques. Variant positions have an insignificant impact of
these times.

VII. CONCLUSION

This work showed that a novel encoding technique for
genetic variant data based on structure- and semantic-aware

compression results in comparable file sizes while novel
indexing improves response times for common queries by
2X-3X. This underlines that our representation could replace
existing standards resulting in reduced computational cost at
equivalent storage size.
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