Bioinformatics

doi.10.1093/bioinformatics/xxxxxx

Advance Access Publication Date: Day Month Year
Manuscript Category

Subject Section

Hummingbird: Efficient Performance Prediction for
Executing Genomic Applications in the Cloud

Amir Bahmani *'23, Ziye Xing *2>3, Vandhana Krishnan *23, Utsab Ray *°,
Frank Mueller®, Amir Alavi', Philip S. Tsao?, Michael P. Snyder 22, Cuiping

Pan4

'Stanford Healthcare Innovation Lab, Stanford University, CA

2Stanford Center for Genomics and Personalized Medicine, Stanford University, CA

3Department of Genetics, Stanford University, CA

“4Palo Alto Epidemiology Research and Information Center for Genomics, VA Palo Alto, CA and
5Computer Science Department, North Carolina State University, Raleigh, NC

*These authors contributed equally to this work.
Associate Editor: XXXXXXX

Received on XXXXX; revised on XXXXX; accepted on XXXXX

Abstract

Motivation: A major drawback of executing genomic applications on cloud computing facilities is the lack
of tools to predict which instance type is the most appropriate, often resulting in an over- or under- matching
of resources. Determining the right configuration before actually running the applications will save money
and time. Here, we introduce Hummingbird, a tool for predicting performance of computing instances with

varying memory and CPU on multiple cloud platforms.

Results: Our experiments on three major genomic data pipelines, including GATK HaplotypeCaller,
GATK MuTect2, and ENCODE ATAC-seq, showed that Hummingbird was able to address applications
in command line specified in JSON format or workflow description language (WDL) format, and accurately
predicted the fastest, the cheapest, and the most cost-efficient compute instances in an economic manner.
Availability: Hummingbird is available as an open source tool at:

https://github.com/StanfordBioinformatics/Hummingbird
Contact: mpsnyder@stanford.edu, cuiping@stanford.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Biomedical research has seen an increasing adoption of public cloud
platforms, owing to their capabilities in handling ever larger amounts of
data and more complex pipelines (Gunarathne et al., 2010; O’Driscoll
et al., 2013). Inherent to this data deluge is the cost associated with
computation. For example, in genomics, an important field within
biomedical research, the costs of data computing, together with storage
will soon outweigh the cost of genome sequencing (Stein, 2010; Van der
Auwera et al., 2013). Careful selection of resource-matching compute
instance types can significantly reduce computational costs. While public
cloud platforms provide a wide range of instance types with different
combinations of memory capacities and central processing units (CPU), it

remains a big challenge to choose the configuration that will perform the
task in an efficient and economic manner.

Multiple tools exist for predicting the best configuration for running
various applications in the cloud. However, they require extensive setup
and are not specifically designed for genomic pipelines (Alipourfard
et al., 2017; Hsu et al., 2017; Yadwadkar et al., 2017). Recently,
Ernest (Venkataraman et al., 2016) reported optimizing configurations
for genomic pipelines, such as ADAM and GenBase, but their method
required prior knowledge of input file structure, and, notably, it addressed
tools specifically based on the Apache Spark framework. For commonly
used genomic workflows built outside of Apache Spark, such as BWA and
Bowtie2, tools for optimizing configuration are needed.

Here, we present Hummingbird, a performance predictor for
identifying the best instance type for executing genomic pipelines in public
cloud platforms. We address performance requirements by measuring

© The Author 2020. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 1

“main” — 2021/2/22 — page 1 — #1

Sample et al.

the shortest runtime, the lowest cost, and the most efficient compute
expenditure (i.e., most cost-efficient). Our method can be applied to
run on multiple cloud platforms, including but not limited to, Google
Cloud Platform (GCP), Amazon Web Services (AWS) and Microsoft
Azure. In addition, Hummingbird accommodates various types of
bioinformatics pipelines, making it generalizable for finding the best
instance configuration for a broad spectrum of genomic applications.

2 Results
2.1 Architectural Design of Hummingbird

Hummingbird is designed to predict the cheapest, fastest, and most
cost-efficient machine types for genomics applications in the cloud
(Figure 1). It parses a pipeline configuration file supplied by the user
to extract essential parameters and then runs the pipeline accordingly on
user-selected cloud instance types while profiling application behavior.
Specifically, Hummingbird utilizes a component called Memory Profiler
to quickly identify instance types with inadequate memory and eliminates
them from further testing. For the remaining instance types, each with
a unique combination of memory and CPUs, Hummingbird compares
their runtimes and costs via performance profiling in the Recommendation
Engine component and recommends the best instance types for each
performance category.

We devised a few techniques to accelerate and reduce the cost of these
processes, which is described in the following two sub-sections namely
2.2 and 2.3.

2.2 Memory Profiler prunes out resource inadequate
instances

Inadequate memory is often the cause of pipeline failure. To address
this, we devised the Memory Profiler component in Hummingbird to first
focus on the instance family with the largest memory resources, e.g., the
high-mem instances in GCP, the RS instances in AWS or the Standard
E2—32 instances in Azure. Hummingbird measures the memory usage
in these instance types. Besides accepting whole input data, we also
provide a prediction method based on downsampling in order to make the
process more economic. This cost-effective prediction strategy randomly
downsamples whole input data in the fractions of 0.1%, 1% and 10%,
runs them through the instances, and extrapolates the memory usage for
the whole input using linear regression

(memory ~ logq(downsampling ratios))

The predicted memory usage is then used to prune instance types that do
not fulfill this resource requirement. Instance types that have a memory
above this threshold will then continue with performance profiling in the
Recommendation Engine.

2.3 Recommendation Engine measures performance of
instance types

Hummingbird uses 10% randomly downsampled input to generate
performance profiles. Runtimes are recorded for each instance type and
converted to cost and cost-efficiency for comparison (see Methods). In
addition to this default downsampling ratio, we also implemented a
dynamic downsampling approach for achieving a potentially faster and
more cost-effective turnover. This method starts with running the pipeline
on a 0.1% dataset randomly sampled from the whole input. Runtime
reduction with respect to increased amount of virtual CPUs (vCPU,
equal to a thread) is calculated, resulting in speedup efficiency (refer
to Methods). If speedup efficiency across any of the tested instances

Input

- workflow descriptor /

(WDL, command lines, ...) / /7\6)

- config files (Cloud/HPC / / Recommendation Engine
instance types, ...) | \

- datasets (fasta, fastq, /
bam, ...) Pick the {next}
1 Downsampling ratio

Systematically \‘
downsample input files

downsampled input on all

qualified instances in parallel

-
Launch the task using the
[Start with the first task of

the pipeline
.- v
Collect all the performance
“/ e mearotien @ metrics and create the cost
Run and profile the task using L matrix
sets of downsampled input on Y

the instance with the largest

available memory /%plh\
I - ~~ speedup (>= ST% \\\

Allocate an instance w/
a larger main memory

—] of ideal speedup)? —

OR Downsampling
\ze > DT%?/

Failed?

Extrapolate minimum main
memory required for the
whole input file

N 4

Prune instances which
have memory less than
the minimum required

il \ Yes
memory (\/ Next task? ? @
- = .

Cannot handle this l >
task on any of the /\ v
selected instances a Output
.@ Is instance q
Yes list empty? No .@ Print the best
\] configurations for each
\ / stage of the pipeline

Fig. 1. Hummingbird predicts the fastest, cheapest, and most cost-efficient compute
instances for genomics applications in the cloud. The complex components of Hummingbird
are the Memory Profiler and Recommendation Engine, denoted in the figure as (1) and (2),
respectively. The Memory Profiler analyzes memory usage to prune out instance types
with insufficient memory resources. The Recommendation Engine compares performance
metrics among compute instances so as to recommend the best performing machine types. In
both of these Hummingbird’s complex components, predictions are based on downsampled
datasets to reduce costs. After the processes linked to the Hummingbird’s two components
are completed for each task in the genomics application, Hummingbird moves on to the
next task, as indicated by (3) in the figure. Then, for this new task Hummingbird reiterates
through the components of Memory Profiler and Recommendation Engine. This cycle
repeats until all tasks in the pipeline are exhausted. Subsequently, Hummingbird returns the
fastest, the cheapest, and the most cost-efficient computing instances for each task in the
genomics pipeline.

exceeds the threshold, e.g., % , then the profiling stops, and all performance
metrics, such as runtime, cost, and cost efficiency, are subjected to final
analysis. Alternatively, Hummingbird will move on to the next round of
profiling by increasing the input to 1% randomly sampled whole input and
recalculating the speedup efficiency. Hummingbird will iterate this process
with up to three rounds that involves a downsampling limit of 10% of the
whole input to identify the best-performing instances. Eventually, the best
configurations derived from the last round are recommended to the user.

To maximize the benefit of Hummingbird, it is suggested to present the
pipeline by stages, so that recommendation for every stage of the pipeline
can be obtained.

2.4 Applications

We demonstrate the utility of Hummingbird via three genomics pipelines:
the Genome Analysis Toolkit (GATK) HaplotypeCaller for detecting
germline DNA variants (McKenna et al., 2010), the GATK MuTect2 for
detecting somatic DNA variants (Cibulskis ez al., 2013), and an ATAC-seq
pipeline developed in the ENCODE project for assessing genome-wide
chromatin accessibility (Davis et al., 2018). These pipelines represent the
most popular and comprehensive data processing pipelines in genomics,
each composed of multiple computational steps. In addition, while the two

“main” — 2021/2/22 — page 2 — #2

short Title

GATK pipelines were written in scripts of command lines, the ATAC-seq
pipeline was specified in workflow description language (WDL) (https:
//openwdl.org/)andits jobs are managed by a workflow management
system called Cromwell (Voss et al., 2017) (https://github.
com/broadinstitute/cromwell). We show that Hummingbird is
capable of tackling applications with varying complexities.

We profiled the three genomics pipelines on GCP through
Hummingbird using the downsampling technique as described. To derive
the ground truth, we also ran the whole input data in all instance types
included in our experiments (Supplemental Tables 1-3), which served
as validation for Hummingbird’s prediction results. If the bioinformatics
tools used by the pipelines supported multithreading, we turned it on to
maximize their performance. Each experiment was repeated three times
and the averages were reported. Collectively, there were 16 computational
steps in the three pipelines. As five data processing steps were common
to both the GATK HaploytypeCaller and Mutect2 pipelines, we analyzed
them jointly and called them the GATK pipelines. We note that although
different input datasets were used for profiling these two GATK pipelines,
e.g., a genome used for HaplotypeCaller versus a tumor-normal pair used
for Mutect2, this should not affect the performance evaluation as these
datasets represent typical genomics datasets.

Overall, Hummingbird achieved a prediction accuracy of 85.4%,
measured by the matching between the predicted instance types and the
ground-truth best instance types (Figure 2). Predictions for the fastest
instances were slightly worse compared to that for the cheapest instances
or the most cost-efficient instances. Particularly for the GATK pipelines,
this prediction always resulted in a longer runtime, although the highest
ones were still within the boundary of 20% error rate (Supplemental
Figure 1). Prediction for the fastest instance for the ATAC-seq pipeline
was significantly better (Supplemental Figure 2), indicating there was
no systematic bias in the method for the runtime prediction. We note
that most of these runtime differences were minor and under 10 minutes.
Therefore, for practical reasons, we treated the predicted optimal instance
as equivalent to the ground truth optimal instance as long as the error rate
was within 10%. However, the error rates are labeled on top of each cell
in Figure 2 and fully revealed.

When examined in detail on how efficiently these predictions could
be achieved, we found that the Memory Profiler component had a large
effect. For 12 of the 16 computational steps in the three pipelines,
instance pruning removed between 11% to 50% of instance types from
subsequent analysis, demonstrating that removal of resource-inadequate
instance types greatly narrows the scope of search. Note that in our
experiments we pruned instances based on memory for the whole input
inferred from systematically downsampled datasets. This modeling using
linear regression, though basic, achieved an error rate bounded at 20%
for many steps (Supplemental Figures 3-5). This approach of running on
downsampled datasets, while achieving a reasonable prediction accuracy,
sped up the process and reduced costs. We leveraged this approach for
both memory profiling and in validation via performance profiling. While
the Memory Profiler used 0.1%, 1%, and 10% downsampled datasets,
the Recommendation Engine used 10% of the randomly downsampled
data as a default. The total cost of these memory profiling steps for the
three pipelines (Supplemental Tables 4a and 6a, with each experiment
repeated three times, was only a fraction of that for running the whole
inputs (Supplemental Tables 4b and 6b). After the memory profiling, we
take note of the instance types that passed the full memory thresholds for
each stage in a pipeline. The subsequent performance profiling is only
performed on these selected instances, instead of the entire family of
instances. Since this reduces the number of jobs launched, it saves the
user from incurring added costs during performance profiling.

With the prediction results of Hummingbird, we now gained a better
understanding of how carefully choosing instance types could largely

impact the runtimes and costs (Figure 3). For example, running the
NA12890 genome on a set of fastest instances (i.e., speed-optimized)
recommended by Hummingbird can complete the GATK germline variant
calling in approximately 54 hours. However, if time is not the critical
factor and another 12 hours are permitted, the GATK HaplotypeCaller can
be run on the cost-optimized instances and, in return, the cost will reduce
by 40%. A similar pattern was observed for the ATAC-seq pipeline and
Mutect2 pipelines. Given these large differences, we conclude that it is
necessary and critical to profile pipeline performance on different instance
types so as to optimize for the data processing requirements. Particularly
for large scale data processing involving enormous volumes of data, the
cumulative differences could be paramount.

2.5 A cloud agnostic solution

To extend its utility in other cloud platforms, we implemented
Hummingbird in AWS and Azure Cloud, and carried out a proof-of-
concept study on BWA-MEM (Li, 2013). This is a tool for aligning DNA
sequencing reads to the reference human genome, a critical step in the
variant calling process. We randomly downsampled the sequence reads
of the NA12890 genome to 0.1%, 1% and 10%, and used Hummingbird
to profile the performance of running them as well as the whole input
in two families of memory-optimized instances in each cloud platform
(Supplemental Tables 1—3). For comparison, we extracted runtimes for
the same inputs on GCP from our previous experiments on the GATK
HaplotypeCaller pipeline. Although runtimes were different for the three
cloud platforms owing to different instance configurations, an obvious
reduction pattern with doubling compute resources was observed within
each family of instances (Supplemental Figure 6). In addition, speedup
efficiency was strong for nearly all instances tested (Supplemental Table
8). We compared the best instance types recommended by Hummingbird
from the three cloud platforms (Supplemental Table 11) and found them
to utilize very similar computational resources, suggesting Hummingbird
functioned well regardless of the cloud platforms. Based on these
experiences, we provide a guideline for further extending Hummingbird
to other cloud services.

3 Discussion

In this paper, we presented Hummingbird, an efficient tool for predicting
performance of compute instances for various genomic applications in
the cloud. We demonstrated its utility in finding the best performing
instances for three comprehensive genomic pipelines, including the
GATK germline and somatic variant calling pipelines, and the ENCODE
chromatin accessibility detection pipeline for ATAC-seq. We analyzed
its utility on GCP, and showed that it could be extended to other cloud
platforms such as AWS and Azure, rendering it agnostic to cloud platforms.
Hummingbird returns the best instance types that offer the fastest runtime,
the lowest cost, and the most cost-efficient services. Our examination
revealed that it achieved an overall prediction accuracy of 85.4%. The
adoption of downsampling methods combined with the inherent feature of
parallel computation in the cloud has made Hummingbird an efficient and
economical tool for performance prediction. The total runtime and cost
of the memory and performance profiling, both based on downsampled
datasets, were only a fraction of that for running the whole input data.
Moreover, we obtained significant benefits of using the instance types
recommended by Hummingbird, as observed by the differences in runtimes
and costs between the instances optimized for different purposes. In some
cases these differences were several-fold larger. Note that this comparison
was done between Hummingbird recommended instances, targeted either
at speed or cost; without further optimization effort, the gap could grow
larger.

“main” — 2021/2/22 — page 3 — #3

Sample et al.

GATK Fastest Instance

213% 7.19% 0.96% 17.95% 17.60% 0.32% 0.97%

Predicted

Predicted

True True

BQSR pega\\ef Nl\u\eo\'l

u
B gortS2 {08 Recovw

T, 2030

GATK Cheapest Instance

0% 0% 0% 0% 0% 0% | 26.56% 0%

Predicted Predicted

True True

BQSR peca\\ef NI\ ect?

NP ¢ ortSatT D
eNPgart N\a: Bos N)\p\‘f B oY

T

GATK Most Cost-efficient Instance

0% 0% 0% 0% 0% 5.95% 68.40% 0%

Predicted Predicted

True True

ANA - ST Dup SR Ner | L oci
NP gorts M’B sGP‘ p‘l\j‘E’O peca puted oy

200 gouie? N DB Yook yacs?

ATAC-seq Fastest Instance

0% 0% 016% 0.18% 3.43% 0% 1.00% 3.17%

Bc;w{\e'l FNT cam2t® ROl gacs? | SPY yenel |

GCP Instances

ATAC-seq Cheapest Instance ni-highopu-4
349% 0% 0% 0% 0% 0% 0% n1-highcpu-8
1 f | W nt-highcpu-16
| | | W ni-highopu-32
P
: } : ni-standard-4
i i i B ni-standard8
fet el eMel | ie ool ol | Sl | eddl | o\de M r-standard15
0299 oWt gar O yac oV B ristandard-32
. ni-highmem-4
ATAC-seq Most Cost-efficient Instance W omens
4.82% 0% 0% 0% 0% - 0% 35.65% | " hghmen-1s
. n1-highmem-32

SO0 qyer@P | \d

Fig. 2. Prediction accuracy of Hummingbird in selecting the best performing instances by measure of runtime, cost, and cost efficiency. The GATK pipelines are listed in the left column,

and the ATAC-seq pipeline is on the right. In each performance category, the predicted optimal instance for each pipeline step is listed in the upper row, and the ground-truth optimal instance

is listed in the lower. The instance types are represented by different color cells. Prediction error is indicated by the percentage difference on top of each cell. For instance types where the

difference was within 10% error rate, we treat the predicted instance the same as the ground truth instance but also indicate the difference. A failed run on Spr step was observed with the

predicted full memory, and therefore indicated by "—" in the figure.

Leveraging the fault-tolerant features of cloud computing techniques,
it handles network errors and allows multiple attempts to rerun tasks.
Hummingbird also harbors granularity in its profiling function. With
pipelines written or annotated in clear modules, it can parse and extract
each step of the pipeline and identify not only the best compute instance(s)
for the full pipeline but also for individual steps. The bioinformatics
pipelines used in our experiments involved sophisticated computational
steps and diverse programming languages. While some pipelines were
presented as scripts of original command lines, others were packaged in
WDL. For the former, annotation was added to the configuration JSON
file for Hummingbird to extract stages of the pipeline, and accordingly
profiled the individual stages. For the latter, Hummingbird used Cromwell
for parsing the workflow and subsequent execution of the stages.

Hummingbird accommodates input files of formats other than BAM
and FASTQ and this is possible by skipping the downsampling step which
is a caveat in terms of costs. However, the absence of the downsampling
step provides the user the flexibility to execute pipelines that require
varied input file formats (e.g., BED, VCF, CRAM). We plan to incorporate
downsampling of the above input file formats in the future. Hummingbird’s
GitHub page has examples of tools that perform conversions to different
formats that a user could utilize to run this framework.

Hummingbird is currently able to parse workflows written in WDL
using Cromwell. Hummingbird can potentially work with other workflow
managers as well, and that is something we plan to add in future versions.
Hummingbird can utilize a broad spectrum of bioinformatics tools and
recommend machine types in categories desired by a user. It owes much
of this generality to the container technology in the cloud, which packages
an application to run with isolated dependencies and meanwhile achieves
consistency. In the configuration file, the user can supply custom Docker

“main”

images for each stage of the pipeline or a single Docker image for the
entire pipeline.

Hummingbird does not restrict itself to specific workflows. However,
to utilize its downsampling feature, downsampling methods compatible
with workflow input files need to be included. We incorporated methods
for downsampling BAM and FASTQ files for our experiments with the
three genomic pipelines. Similarly, additional downsampling methods can
be incorporated to address the need of specific workflows. For this, we
provided a guideline on the GitHub site. In addition, we provided examples
of tools that help convert between various file formats.

Although the current methods implemented in Hummingbird
functioned well to a large degree, we acknowledge that prediction based
on downsampled datasets, while drastically reducing costs, can introduce
limitations. For example, memory profiling for the Spr step in the
ATAC-seq pipeline underestimated memory for the whole input by 80%,
which consequently included two instance types with insufficient memory
capacity, and eventually failed the runs with the whole input. This
discrepancy was due to the Spr step requiring a linear increase of memory
with data size. When applying a linear regression to the original values
(memory ~ (downsampling ratio)) rather than the logarithmic
transformed values (memory ~ log;(downsampling ratios)), we
obtained an almost 100% matched prediction. This was an exception,
as the remaining tools in the three genomics pipelines fit better with the
model of logarithmic transformation, indicating that they use memory
resources more efficiently. Although we expect the former case to be
less common and therefore have set the logarithmic transformation as
default, we provide other options in Hummingbird for cases where the
recommended instance type fails: (1) switching to the model of linear
regression to original values for memory prediction, (2) adding a certain

— 2021/2/22 — page 4 — #4

short Title

percentage of buffering memory on top of the predicted full memory, or (3)
running memory profiling directly on the whole input data. These options
enhance Hummingbird’s functionality.

Even though we designed a dynamic downsampling approach for
performance profiling, we found that of the 16 steps in the three pipelines,
only BWA-MEM effectively used this strategy. BWA-MEM showed
sufficient speedup efficiency in all instance types even for small datasets,
and therefore justified the extrapolation we obtained for the whole input
in performance evaluation. We found that for runs on the smallest dataset
tested, 0.1% randomly downsampled from a NA12890 genome of 707
million reads, one can accurately predict the performance behavior of
the whole input. However, for the other 15 steps of the pipelines, none
fulfilled the requirement of % speedup efficiency when running on smaller
datasets. All 15 steps eventually used a 10% downsampled dataset for
performance profiling. Upon further investigation, we reasoned that the
dynamic profiling approach works best if the tool utilizes multithreading
and the number of data points are sufficiently large to leverage the increase
of compute resources. Only a small fraction of the bioinformatics tools we
tested utilized multithreading, and perhaps only BWA-MEM has fully
developed this feature. Multithreading entails many benefits for scalable
computing, and its optimized resource utilization could have a significant
impact when large amounts of data processing are performed. Future
improvement for bioinformatics tools’ performances most likely include
multithreading. We envision that with these improvements, the dynamic
profiling feature in Hummingbird will be more broadly applicable and
further reduce the cost of performance profiling.

Another important factor to consider when profiling bioinformatics
tools and pipelines is Input/Output (I/O) throughput. In future versions
of Hummingbird we plan to collect I/O performance metrics via the
Hummingbird’s profiler component and utilize it in the recommendation
engine. This would enable Hummingbird to give the user recommendations
about which disk to use along with their instance(standard hard disk drive
(HDD) or solid-state drive (SSD).

Given the increasing demand of cloud computing and the need to
perform analysis on ever larger study cohorts, we believe our performance
prediction tool, Hummingbird, will contribute significantly to efficient
bioinformatics computing in the cloud. The benefit derived from resource
optimization should be particularly valuable for large consortia studies,
such as the Trans-Omics for Precision Medicine (TOPMed) Taliun et al.
(2019), the Centers for Common Disease Genomics (CCDG) Abel et al.
(2020)and the Million Veteran Program (MVP) Gaziano et al. (2016).

4 Methods
4.1 Datasets

FASTQ files for NA12890 from the Illumina Platinum Genomes
(Eberle et al., 2017) served as the input for the GATK HaplotypeCaller
pipeline. This dataset contains 707 million reads generated by
Mlumina HiSeq2000. All the FASTQ files are provided as open-
source datasets on a public Google Cloud bucket (Illumina platinum
genomes: https://console.cloud.google.com/storage/
browser/genomics-public-data/platinum-genomes.
Fastq files: https://storage.cloud.google.com/
genomics-public-data/references/GRCh371ite/
GRCh37-1lite.fa.gz.

BAM files for a paired tumor and normal sample from pancreatic
cancer, provided by the Texas Cancer Research Biobank (Becnel et al.,
2016), was used as the input for the GATK MuTect2 pipeline. The
tumor BAM contains 86 million reads, and the normal BAM contains
81 million reads, both sequenced by Illumina HiSeq 2000 technology

(Case #1 from the Texas Cancer Research Biobank:http://txcrb.
org/data.html).

FASTQ files of an ATAC-seq experiment on primary keratinocytes
from a male newborn from the ENCODE project (Davis et al.,
2018) (ATAC-seq experiment on primary keratinocytes from a male
newborn: https://www.encodeproject.org/experiments/
ENCSR356KRQ/) was used as the input for the ENCODE ATAC-seq
pipeline; the two replicates were merged into one file, resulting in 308
million reads.

4.2 Downsampling FASTQ and BAM files

The tool seqtk was used (version 1.3 (r106) (Segtktool:https:
//github.com/1h3/seqtk) to proportionally downsample FASTQ
files to a defined fraction, such as 1%. For BAM files, we used the tool
DownsampleSam from Picard (The picard command-line tools; https:
//broadinstitute.github.io/picard/) with the probability
argument (P) to control the sampling fraction, e.g., P of 0.01 for retaining
1% of the reads in the BAM file. All downsampling used selection of
random read-pairs. In Hummingbird’s Memory Profiler step, systematic
downsampling was set as 0.1%, 1% and 10%. In the Recommendation
Engine step, a default downsampling ratio was set at 10%; in addition,
when dynamic downsampling was enabled, performance profiling iterated
from 0.1%, 1% to 10% of randomly downsampled data and stopped
whenever the speedup efficiency met a preset threshold, which was set
at 2/3 in our experiments. For each downsampled dataset, three runs were
performed and the averaged value was used for performance analysis.
In contrast, this downsampling step on input files in Hummingbird can
be skipped if desired by the user. If the "fullrun" flag is set to true via
modification of the user configuration file, Hummingbird bypasses the
downsampling and proceeds to run on whole input files.

4.3 Pipelines

4.3.1 GATK HaplotypeCaller

Hummingbird was tested on the germline variant caller HaplotypeCaller
in the Genome Analysis Toolkit (GATK 4) in command line format
for calling germline SNVs (single nucleotide variants) and INDELSs
(insertions-deletions) (McKenna et al., 2010). The docker image
broadinstitute/gatk
recommended by the GATK development team were followed (Van der
Auwera et al., 2013). The reference genome used was GRCh37/hg19.

4.1.2.0 was used, and the best practices

4.3.2 GATK MuTect2

We investigated the somatic variant caller MuTect2 in the GATK 3.8 in
command line format for calling somatic SNVs and INDELs (Cibulskis
et al., 2013). GATK 3.8 supported multithreading, while GATK 4
eliminated this option and instead supported distributed computing
frameworks such as Apache Spark. Our testing of both GATK 4 and GATK
3.8 here captured different parallelization strategies.

4.3.3 ENCODE ATAC-seq

To demonstrate Hummingbird’s ability to support bioinformatics pipelines
presented in non-command line format, we tested on the ENCODE
ATAC-seq pipeline v1.1.3 written in WDL and execution of the workflow
jobs managed by Cromwell: https://github.com/ENCODE-DCC/
atac-seg-pipeline/tree/v1.1.3.

4.4 Cloud Platforms

Our experiments were conducted on two major cloud computing
platforms, GCP and AWS. In the context of cloud computing, both
GCP and AWS use the term vCPU to represent the implementation of

“main” — 2021/2/22 — page 5 — #5

Sample et al.

A Runtimes from different instances

speed optimized D cost.optimized

30
m Aggregated Runtime and Cost for Each Pipline
E]
gzo
g GATK HaplotypeCaller
§ 10 [i:| [I] Speed optimized Cost optimized
ES |
, D]Dj :D[D Runtime (h) 54.29 66.47
P ¥ & S 9 » 4» %Qk o Cost () 5433 22 53
] O Q_ < @ R & < &
600 R Q\\\% \\Qa » F Q,o of &
o Py
N o Q@Q\o <€ Mutect2
B Cosis f dif Cinst Speed optimized Cost optimized
osts from different instances .
Runtime (h) 1.83 5.63
D cost.optimized D speed.optimized Cost ($) 279 214
40
@30 ATAC-seq
& |
° Speed optimized Cost optimized
Q20 |
% Runtime (h) 30.44 47.19
Q
G [I] :D Cost ($) 40.61 16.46
0 P s PP S | I:I:I:I
A $ o
{9& &@ & deb g & Q?}\z, & @Q Q\\\ &a _po Q‘og« of P Q,}\'”Q &
foo‘ S @ee, & %Q& Qo &
& & @Q\& &
£

Pipeline Steps

Fig. 3. Best instance types optimized for different purposes have a large impact on runtime and cost.(A) runtimes from speed-optimized compute instance (blue) and cost-optimized compute

instance (red) for each workflow step. (B) Compute cost from cost-optimized instance (green) and cost-optimized instance (yellow) for each workflow step. (C) Runtime and costs for each

pipeline, with all steps combined.

a single thread virtual CPU on an instance (vVCPU concept on GCP:
https://cloud.google.com/compute/docs/faq, vCPU
concept on AWS: https://docs.aws.amazon.com/AWSEC2/
We
embraced this definition and implemented our system to consistently

latest/UserGuide/instance-optimize-cpu.html.

match the number of threads to the number of vCPUs if the software tool
supports multithreading. When a bioinformatics software tool does not
have a multithreading option, we typically choose two basic instances, 2
and 4 vCPUs instances, for example, to test performance.

4.4.1 Google Cloud Platform (GCP)
It offers a wide variety of compute instances,
categorized as high-CPU, standard and high-memory (high-mem) families.

which can be largely

By design, Hummingbird can execute on all instance types to evaluate
permutations of configurations. In practice, we selected instances with
8, 16 and 32 vCPUs in each category for showcasing the pipeline
performances. All instance types on GCP used in our experiments are
listed in Supplemental Table 1. For submitting jobs to a Google Compute
instance, we utilized the command-line tool dsub v0.3.5 (Dsub, Google:
https://github.com/DataBiosphere/dsub),
machine configuration, input and output paths, and the docker image can

in which the

be specified for the execution.

4.4.2 Amazon Web Services (AWS)

Hummingbird uses AWS Batch as the backend to run pipelines on a cluster
of instance types, as designated by the user. AWS also supports a wide
variety of instances, and here we chose R4 and RS, two memory-optimized
families, for the BWA-MEM experiment (Supplemental Table 2). Similar
to that in GCP, Hummingbird handles the transmission of input and output
files through storage buckets, in this case AWS S3. Other than the common
configurations such as the machine configuration, input and output paths,
etc., users will need to additionally supply a customized docker image with
AWS CLI installed.

“main”

4.4.3 Microsoft Azure

Hummingbird uses Azure Batch as the backend to run pipelines on a
pool of instance types, as designated by the user. Azure also supports
a wide variety of instances, and here we chose Ev3 and Dv3 that are
memory-optimized and standard families, respectively, for the BWA-
MEM experiment (Supplemental Table 3). Similar to storage buckets
in GCP, Hummingbird handles the transmission of input and output
files through Azure Blob Storage in this case. Other than the common
configurations such as the machine configuration, input and output paths,
etc., users will need to additionally supply a customized docker image with
Azure CLI installed.

4.5 Metrics for performance comparison between
instances

4.5.1 Runtime & memory

Runtimes and memory usage were documented by the lightweight
profiler GNU Time tool (/usr/bin/time). This tool was advantageous
including valgrind (Valgrind:
https://valgrind.org/), top (Top, task manager program in
UNIX systems: http://man7.org/linux/man-pages/manl/
top.l.html), free (Free tool:
man-pages/manl/free.1l.html), and cgroup (Cgroup, a Linux

over the other tools that we tested,

http://man7.org/linux/
kernel feature: http://man7.org/linux/man-pages/man7/
in that it was easy to install in a Linux-like
environment and compatible with the container environment in which

cgroups.7.html),

our genomic applications run. In the case of genomic applications that
can be run using a standalone program or script or installed software tool’s
command lines, runtimes were directly recorded. For genomic applications
defined in WDL managed by Cromwell, in order to capture runtime, we
used Cromwell’s option to submit a script to a local backend running on
a designated instance. The memory usage is recorded as the maximum
resident set during the lifetime of a process in kilobytes. Essentially, it

— 2021/2/22 — page 6 — #6

short Title 7

Table 1. Metrics for comparing performance among instance types

Instance type Num. of vVCPUs Exec. Time Ideal Speedup Speedup Efficiency Cost Cost Efficiency

P T s s

Tg(base) Ps Ts Hgipfz Sg:TZ HiBg Cs CEgZCfZ
P 7 s s

Tie Pig Tie Hig=732 Sie=7 e Cie CEie=52
P 7 s s

T2 P32 T2 Hzo="p32% Szo=z3 T Oz CEz=g

is the maximum heap size that the process has ever solely reached, and
operating system or other services’” memory usage is not included.

4.5.2 Cost

Runtimes were converted into costs according to the unit price of each
cloud instance type, as publicly listed at the time these experiments were
conducted (see Supplemental Tables 1-3 for details).

4.5.3 Speedup

Within each family of instance types, we set the instance with the least
vCPU as the base instance. Then, we defined the speedup as the execution
time run on the base instance over the execution time run on the investigated
instance.

4.5.4 Speedup efficiency

We also introduced speedup efficiency to quantify the performance
improvement in the unit processor, defined as the speedup over the fold
change of vCPU. Ideally, when doubling the vCPU, the runtime will reduce
to half, resulting in a speedup factor of 2 and a speedup efficiency of 1.
However, in practice, speedup is often less than its full potential. For our
experiments, we set the speedup threshold at % to define a significant
speedup efficiency.

4.5.5 Cost efficiency

To compare cost across all instances, we defined cost efficiency as the
speedup over cost. This parameter helped to determine which instance type
provided the most efficient speed increment in unit cost. The definitions
of the performance metrics are summarized in Table 1.

Acknowledgments

We acknowledge the Stanford Genetics Bioinformatics Service Center
(GBSC) for providing the gateway to GCP and AWS for this research. We
thank members of the Cherry lab’s ENCODE pipeline engineering team at
Stanford University including J. Michael Cherry, J. Seth Strattan, Ulugbek
K. Baymuradov, Jin-Wook Lee, Otto Jolanki and Casey Litton for feedback
during the initial design and providing deep insights to the ENCODE
pipeline features and architecture. We thank Keith Bettinger from the
GBSC for his help in resolving infrastructure issues. We thank Derek Luan
for his help in evaluating memory prediction methods and on improving
the documentation during his GRIPS internship program at the GBSC
during summer 2019. We thank members of the MVP bioinformatics team
of Stanford University and VA Palo Alto for constructive feedback.

Funding

This work was supported by the Veterans Affairs Office of Research
and Development Cooperative Studies Program, and by a grant from
the National Human Genome Research Institute at the United States

National Institutes of Health (U24 HG009397). The content is solely
the responsibility of the authors and does not necessarily represent the
official views of the National Human Genome Research Institute or the
National Institutes of Health. This research also received support by the
generosity of Eric and Wendy Schmidt by recommendation of the Schmidt
Futures program. The funders had no role in design, data processing,
implementation, decision to publish, or preparation of the manuscript.

References

Abel, H. J., Larson, D. E., Regier, A. A., Chiang, C., Das, 1., Kanchi, K. L.,
Layer, R. M., Neale, B. M., Salerno, W. J., Reeves, C., et al. (2020). Mapping
and characterization of structural variation in 17,795 human genomes. Nature,
583(7814), 83-89.

Alipourfard, O., Liu, H. H., Chen, J., Venkataraman, S., Yu, M., and Zhang, M.
(2017). Cherrypick: Adaptively unearthing the best cloud configurations for big
data analytics. In 14th {USENIX} Symposium on Networked Systems Design and
Implementation ({NSDI} 17), pages 469-482.

Becnel, L. B., Pereira, S., Drummond, J. A., Gingras, M.-C., Covington, K. R.,
Kovar, C. L., Doddapaneni, H. V., Hu, J., Muzny, D., McGuire, A. L., et al.
(2016). An open access pilot freely sharing cancer genomic data from participants
in texas. Scientific data, 3(1), 1-10.

Cibulskis, K., Lawrence, M. S., Carter, S. L., Sivachenko, A., Jaffe, D., Sougnez, C.,
Gabriel, S., Meyerson, M., Lander, E. S., and Getz, G. (2013). Sensitive detection
of somatic point mutations in impure and heterogeneous cancer samples. Nature
biotechnology, 31(3), 213-219.

Davis, C. A., Hitz, B. C., Sloan, C. A., Chan, E. T., Davidson, J. M., Gabdank, I.,
Hilton, J. A., Jain, K., Baymuradov, U. K., Narayanan, A. K., et al. (2018). The
encyclopedia of dna elements (encode): data portal update. Nucleic acids research,
46(D1), D794-D801.

Eberle, M. A, Fritzilas, E., Krusche, P., Killberg, M., Moore, B. L., Bekritsky,
M. A, Igbal, Z., Chuang, H.-Y., Humphray, S. J., Halpern, A. L., et al. (2017).
A reference data set of 5.4 million phased human variants validated by genetic
inheritance from sequencing a three-generation 17-member pedigree. Genome
research, 27(1), 157-164.

Gaziano, J. M., Concato, J., Brophy, M., Fiore, L., Pyarajan, S., Breeling, J.,
Whitbourne, S., Deen, J., Shannon, C., Humpbhries, D., et al. (2016). Million
veteran program: A mega-biobank to study genetic influences on health and disease.
Journal of clinical epidemiology, 70, 214-223.

Gunarathne, T., Wu, T.-L., Qiu, J., and Fox, G. (2010). Cloud computing paradigms
for pleasingly parallel biomedical applications. In Proceedings of the 19th ACM
International Symposium on High Performance Distributed Computing, pages
460-469.

Hsu, C.-J., Nair, V., Freeh, V. W., and Menzies, T. (2017). Low-level
augmented bayesian optimization for finding the best cloud vm. arXiv preprint
arXiv:1712.10081.

Li, H. (2013). Aligning sequence reads, clone sequences and assembly contigs with
bwa-mem. arXiv preprint arXiv:1303.3997.

McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky,
A., Garimella, K., Altshuler, D., Gabriel, S., Daly, M., et al. (2010). The
genome analysis toolkit: a mapreduce framework for analyzing next-generation
dna sequencing data. Genome research, 20(9), 1297-1303.

O’Driscoll, A., Daugelaite, J., and Sleator, R. D. (2013). ‘big data’, hadoop and
cloud computing in genomics. Journal of biomedical informatics, 46(5), 774-781.

Stein, L. D. (2010). The case for cloud computing in genome informatics. Genome
biology, 11(5), 207.

Taliun, D., Harris, D. N., Kessler, M. D., Carlson, J., Szpiech, Z. A., Torres, R.,
Taliun, S. A. G., Corvelo, A., Gogarten, S. M., Kang, H. M., et al. (2019).

“main” — 2021/2/22 — page 7 — #7

Sample et al.

Sequencing of 53,831 diverse genomes from the nhlbi topmed program. BioRxiv,
page 563866.

Van der Auwera, G. A., Carneiro, M. O., Hartl, C., Poplin, R., Del Angel, G., Levy-
Moonshine, A., Jordan, T., Shakir, K., Roazen, D., Thibault, J., et al. (2013).
From fastq data to high-confidence variant calls: the genome analysis toolkit best
practices pipeline. Current protocols in bioinformatics, 43(1), 11-10.

Venkataraman, S., Yang, Z., Franklin, M., Recht, B., and Stoica, I. (2016).
Ernest: Efficient performance prediction for large-scale advanced analytics. In
13th {USENIX} Symposium on Networked Systems Design and Implementation
({NSDI} 16), pages 363-378.

Voss, K., Auwera, G. V. D., and Gentry, J. (2017). Full-stack genomics pipelining
with gatk4+wdl+cromwell [version 1; not peer reviewed]. ISCB Comm J, 6(1381).

Yadwadkar, N. J., Hariharan, B., Gonzalez, J. E., Smith, B., and Katz, R. H. (2017).
Selecting the best vm across multiple public clouds: A data-driven performance
modeling approach. In Proceedings of the 2017 Symposium on Cloud Computing,
pages 452-465.

“main” — 2021/2/22 — page 8 — #8

short Title

Prediction of Fastest Instances for GATK Pipelines

A=0.32%
25

20

N
[6)]

A=17.67%

True
Predicted

-
o

Runtime (hours)

A=711%
A=2.09%
NA=0.98%
5
A=0.55%
0 1]
BWA

SortSam MarkDup BaseRecal ApplyBQSR HaplotypeCaller Mutect2

A=18.57%
s

Supplemental Figure 1. Fastest compute instance for each step of the GATK pipelines: ground-truth vs Hummingbird prediction. The percentage differences in runtimes are indicated
on top of each group.

“main” — 2021/2/22 — page 9 — #9

10 Sample et al.

Prediction of Fastest Instances for ATAC-seq Pipelines

125 A=0%

10.0

7.5 £=0%

I True
A=3.27% Predicted
5.0

Runtime (hours)

A=0%

25

A=-0.11%
A=5.88% A=0% A=-0.36% A=2.70%
[— e e

0.0

trim_adapter Bowtie2 filter bam2ta xcor macs2 spr overlap idr

Supplemental Figure 2. Fastest compute instance for each step of the ATAC-seq pipeline: ground-truth vs Hummingbird prediction. The percentage differences in runtimes are indicated
on top of each group.

“main” — 2021/2/22 — page 10 — #10

short Title

11

Memory Usage (GB)

BWA-MEM Memory Profiling and Prediction

- BWA-MEM 8 vCPUs ot o
30 #-- BWA-MEM 16 vCPUs P 24.91%
—e— BWA-MEM 32 vCPUs /
=25 o
a /
- B
§20 / 1 10.31%
z P
515 s 5
= e 1 6.66%
10
1% 10% 100%
Downsample Percentage
GATK HaplotypeCaller Memory Profiling and Prediction
18 - HaplotypeCaller 8 vCPUs
-4~ HaplotypeCaller 16 vCPUs p—
18— HaplotypeCaller 32 vCPUs 35:510/:
14
12
38.91%
10
8
2
0.1% 1% 10% 100%

Downsample Percentage

GATK Data Pre-processing Memory Profiling and Prediction

% SortSam 2vCPUs
10| —®- Sorsam 4vCPUs ‘
MarkDuplicate 2 vCPUS
MarkDuplicate 4 CPUS 19.07%
- BaseRecalibrator 2 VCPUs 19.17%
8{* BaseRecalibrator 4 vCPUs.
—~ ApplyBQSR 2 vCPUs
8 ApplyBQSR 4 vCPUs 27.12%
g 6 23.15%
&
3
b §
g
4 -
§° &
=) 1 18.35%
2 " 1251%
-9.57%
0 -8.46%
0.1% 1% 10% 100%
Downsample Percentage
GATK Mutect2 Memory Profiling and Prediction
“ - Mutect2 8 vCPUs
-4 Mutect2 16 vCPUs 20.67%
—e— Mutect2 32 vCPUs
=12
)
S
)
&10 -35.12%
=)
fad
o
5
s 8
s I -16.90%
X
*. X
0.1% 1% 0% 100%

o 1
Downsample Percentage

Supplemental Figure 3. Memory Prediction for GATK pipelines. Memories for running each pipeline step in the GCP nl-highmem family instance were recorded for datasets sampled
at 0.1%, 1% and 10% of the whole input file. Linear Regression (memory ~ log;q(downsampling ratios)) was applied to predict the memory for the whole input (100%). For
comparison purposes, the actual memories for running the whole input were also recorded and are displayed. The predicted memory and the actual memory are connected by a line and the
difference is indicated by the percentage value next to it. The instance types being tested by varying number of vCPUs are indicated by the legend boxes.

“main” — 2021/2/22 — page 11 — #11

12 Sample et al.

ATAC-seq Memory Profiling and Prediction 043% ATAC-seq Memory Profiling and Prediction
SowieZ GvCEls 50/ - Filter 8 vCPUs -
. 4 Filter 16 VCPUs 5.73%
&~ Bowlia? 16VCPLs -~ —e— Filter 32 vCPUs 15.45%
4.4{ —=— Bowtie2 32 VCPUs e 45
- : 297%
= i [y
@
C42] o %4-0
k3 =3
g 8
B 235
240 -0.02% g
§ N s
g N]
g) 230
38{ &
« 0.10%
36
0.1% 1% 10% 100% 1% 10% 100%
Downsample Percentage Downsample Percentage
ATAC-seq Memory Profiling and Prediction ATAC-seq Memory Profiling and Prediction
30| - Bam2ta8vCPUs %= Xcor 8 VCPUs
| s~ Bamata 16 vCPUs 15.0{ - Xcor 16 vVCPUs 40.35%
—e— Bam2ta 32 VCPU: 28.90% o Xcor 32 vCPUs
am2ta 32 vCPUs 29.22%
25 20.21% 125] ~> Macs22vCPUs % .
= & | —* Macs24\CPUs e
(L 9100
i 2
g g
3 375
218 z
£ E 50
5 g
S0 =
25
05 o0
0.1% % 10% 100% 0.1% 1% 10% 100%
Downsample Percentage Downsample Percentage
120 ATAC-seq Memory Profiling and Prediction ATAC-seq Memory Profiling and Prediction
) Spr2vCPUs Overlap 2 vCPUs. 1276%
@ Spr4vCPUs o~ Overlap 4 vCPUs 276%
10.0 08 Idr 2 vCPUs
Idr 4 VCPUs
5180 o .
o -83.57% So6
3 -83.57% S
316.0 g
= | 3
3 3
£44.0 £04
] 2
= 18.68%
2.0 . 1 18.64%
e e N 0.2 =
00 - — = g
0.4% 1% 10% 100% 0.1% 1% 10% 100%

Downsample Percentage Downsample Percentage

Supplemental Figure 4. Memory Prediction for the ATAC-seq pipeline. Similar to the memory prediction for the GATK pipelines, memories for running each step of the
ATAC-seq pipeline in the GCP nl-highmem family instance were recorded for datasets sampled at 0.1%, 1% and 10% of the whole input file. Linear Regression (memory ~
logyg(downsampling ratios)) was applied to predict the memory for the whole input (100%). For comparison purposes, the actual memories for running the whole input were also
recorded and are displayed. The predicted memory and the actual memory are connected by a line and the difference is indicated by the percentage value next to it. The instance types being
tested varying by number of vCPUs are indicated by the legend boxes.

“main” — 2021/2/22 — page 12 — #12

short Title 13

Memory Prediction Accuracy in Hummingbird

40
30
20

10

pipeline
. GATK-HaplotypeCaller
GATK-Mutect2
ATAC-seq
-30

Prediction Error (%)
|
N
o

-40
-50
-60
-70
-80
2 & D 2O DO DO DO DO DO N D DN DN
& & +&i&i&?\~"’b{?\§’?§ibﬁ&2§@/\'@’{b&/ 'V\’(;,’%@‘/Q,\’\’Q,«’%«é"/ 'L’Nf’u’ﬁ?\@"/@«’\},\ﬂf&/ qr’\'«z{{bgé/o\/\’@/%é"/ éL/gQ‘/gQ(\&/\oQ/ F
VN N A A LSS D AT Q@@o‘&o (SIS §s\®§® DN ,b@(@}&'],‘ it __c:@«z&@rz& L
NNV NN FEENI & P CF R
B R A R O S&as7
O L3O 0@ oL O SRR
QO%OQ'&@’D&Q&Q»@* QIR
QO
Pipeline Step

Supplemental Figure 5. Memory prediction based on systematically downsampled datasets. The instance types being tested are denoted in the x-axis, with the numbers indicating the
number of vCPUs in the instance type.

“main” — 2021/2/22 — page 13 — #13

14

Sample et al.

Normalized Runtime

Normalized Runtime
o o 3 I3
N S () (o]

©
o

Normalized Runtime
o
N

o
[N}

e
o

GCP

0.1%-97s - 0.1%-96s
1% -886s 1% -862s
10% - 8.68e+03 s 10% - 8.74e+03 s
100"
? © 2 J A© 44
&° 5 o o« o o’
Q& o ta «° & R
0.1%-204s 01%-163 s
1% -1.57e+03 s : 1% -1.39e+03 s
10% - 1.54e+04 s e\ 10% - 1.35e+04 s
Y
e e e 3 e 3 e o
=)) = (O = KO O
A2 A A2 A A A e A
O & 2R & N & S o o 2P o L2 & 2
Azure
UUW b-203s 01%-168 s
1% -1.81e+03 s 1% -1.61e+03 s
10% - 1.76e+04 s
10% - 1.68e+04 s

))
o b 0»\6 b

R 3%

S S S
o> 6\63‘ ?:;L:‘

@ 0.1%

@ 1%

@ 10%

100%

Supplemental Figure 6. Normalized runtimes of BWA-MEM on downsampled and whole input FASTQ data in various instance types on AWS cloud (A) and GCP cloud (B). The whole

input dataset was NA12890 from the Illumina Platinum Genomes. In total, it contained 707 million reads, and the downsampled datasets were randomly sampled from the whole input in

0.1%, 1% and 10%. Two families of instances were considered for each cloud platform. Within each family of instances, compute resources (i.e., vVCPU and memory) were doubled. Note

that these instance types did not match exactly across the three cloud platforms. runtimes were normalized within each platform and dataset against the left-most instances in the figure (i.e.,
r4.xlarge for AWS, and nl.standard.8 for GCP).

“main” — 2021/2/22 — page 14 — #14

short Title 15

Supplemental Table 1. GCP instance types tested in our experiments (pricing as of 2020-05-07 on us-west-2 region)

Instance Family Instance Type vCPUs Memory(GB) Price(hourly)

nl-highcpu-2 2 18 $0.0709

high-CPU nl-highcpu-4 4 3.6 $0.1418
nl-highcpu-8 8 7.2 $0.28
nl-highcpu-16 16 14.4 $0.57
nl-highcpu-32 32 28.8 $1.13
nl-standard-2 2 7.5 $0.10
nl-standard-4 4 15 $0.19
Standard nl-standard-8 8 30 $0.38
nl-standard-16 16 60 $0.76
nl-standard-32 32 120 $1.52
nl-highmem-2 2 13 $0.12
nl-highmem-4 4 26 $0.24
high-mem nl-highmem-8 8 52 $0.47
nl-highmem-16 16 104 $0.95
nl-highmem-32 32 208 $1.89

Supplemental Table 2. AWS instance types tested in our experiments (pricing as of 2020-05-07 on US East (Ohio) Region)

Instance Family Instance Type vCPUs Memory(GiB) Price(hourly)

4 r4.xlarge 4 30.5 $0.27
r4.2xlarge 8 61 $0.53
r4.4xlarge 16 122 $1.06
r4.8xlarge 32 244 $2.13

5 r5.xlarge 4 32 $0.25
r5.2xlarge 8 64 $0.50
r5.4xlarge 16 128 $1.01
r5.8xlarge 32 256 $2.02

Supplemental Table 3. Azure instance types tested in our experiments (pricing as of 2020-12-20 on West US 2 Region)

Instance Family Instance Type vCPUs Memory(GiB) Price(hourly)

Dv3 D4 v3 4 16 $0.192
D8 v3 8 32 $0.384
D16 v3 16 64 $0.768
D32 v3 32 128 $1.536
Ev3 E4 v3 4 32 $0.252
E8 v3 8 64 $0.504
El16 v3 16 128 $1.008
E32v3 32 256 $2.016

Supplemental Table 4. Runtime and cost for the memory profiling step for GATK pipelines in highmem instances. Sum cost: alignment: $11.19, intermediate steps:
$2.83, HaplotypeCaller: $94.28, Mutect2: $9.54

BWA SortSam MarkDup BaseRecal ApplyBQSR HaplotypeCaller Mutect2
runtime (min) 35.17 40.35 30.88 5.56 57.24 445.54 22.75
Cost ($) $11.19 $0.83 $0.65 $0.11 $1.24 $94.28 $9.54

“main” — 2021/2/22 — page 15 — #15

16 Sample et al.

Supplemental Table 5. Runtime and cost for the memory profiling step for ATAC-seq pipelines in highmem instances. Total cost: $35.75

trim_adaptor Bowtie2 Filter bam2ta xcor macs2 spr overlap idr
Runtime (min) 24.62 77.16 3874 6.12 477 5552 217 207 551
Cost ($) $4.61 $18.19 $7.79 $1.26 $0.99 $2.37 $0.09 $0.09 $0.36

Supplemental Table 6. Performance profiling in all memory-matching instances for both the GATK pipelines. Total costs for the major pipeline steps were the
following - alignment: $18.02, intermediate steps: $4.25, HaplotypeCaller: $189.89, and Mutect2: $8.86

BWA SortSam MarkDup BaseRecal ApplyBQSR HaplotypeCaller Mutect2

Instance types 6 3 3 4 4 7 8
Runtime (min) 145.7 45.97 37.62 5.87 72.19 468.55 23.89
Cost ($) $18.02 $1.16 $0.90 $0.18 $2.01 $159.89 $8.86

Supplemental Table 7. Performance profiling in all memory-matching instances for ATAC-seq pipeline. Total cost ($): $70.89

trim_adaptor Bowtie2 Filter bam2ta xcor macs2 spr overlap idr

Instance types 9 8 8 9 8 3 5 5 5
Runtime (min) 28.14 17126 5634 9.18 6.61 5683 22 212 7.64
Cost ($) $9.48 $36.66 $16.34 $2.60 $1.93 $3.04 $0.17 $0.16 $0.51

Supplemental Table 8. AWS: Speedup and Cost Efficiency, to measure how effectively the tool accelerates given increased compute resources, are displayed for each
instance type for the BWA-MEM runs. Within each cloud platform and for every downsampled dataset, the fastest instance with the least number of vCPUs was set as
the baseline. All other instances were compared relative to the baseline by calculating the time speedup over vCPU fold changes. Our empirical experience suggests
a speedup efficiency of or over % as a strong positive indicator, implying the tool is able to effectively increase its performance when given more computational
resources

. Speedup Cost Efficiency
Instance Type vCPU Memory (GiB) | 0.1% 1% 10% | 0.1% 1% 10%
r4.xlarge 4 30.5 0.80 0.88 0.88] 0.27 0.11 0.09
r4.2xlarge 8 61 1.50 1.64 1.64| 048 0.19 0.15
r4.4xlarge 16 122 253 334 347 0.68 0.40 0.34
r4.8xlarge 32 244 2.77 574 6.72| 041 0.59 0.64
r5.xlarge 4 32 1.00 1.00 1.00 | 0.45 0.15 0.12
r5.2xlarge 8 64 190 2.04 2.07]0.82 0.32 0.26
r5.4xlarge 16 128 295 400 413|098 0.61 0.51
r5.8xlarge 32 256 421 725 8.17| 1.00 1.00 1.00
Supplemental Table 9. GCP version of Supplemental Table 8
Speedup Cost Efficiency
Instance Type vCPU Memory (GiB) | 0.1% 1% 10% | 0.1% 1% 10%
nl-standard-8 8 30 098 097 1.00| 0.46 0.27 0.24
nl-standard-16 16 60 1.73 201 215(0.72 0.57 0.55
nl-standard-32 32 120 289 376 4.09| 1.00 1.00 1.00
nl-highmem-8 8 52 1.00 1.00 099 | 0.39 0.23 0.19
nl-highmem-16 16 104 1.82 2.00 2.11] 0.63 0.45 0.43
nl-highmem-32 32 208 3.11 385 411093 0.84 0.81

“main” — 2021/2/22 — page 16 — #16

short Title

17

Supplemental Table 10. Azure version of Supplemental Table 8

. Speedup Cost Efficiency

Instance Type vCPU Memory (GiB) | 0.1% 1% 10% | 0.1% 1% 10%
D4 v3 4 16 082 0.89 095]0.12 0.01 0.10

D8 v3 8 32 1.94 209 201|033 0.06 0.22
D16 v3 16 64 3.41 399 422|052 0.25 0.48
D32 v3 32 128 6.72 796 8.62| 1.00 1.00 1.00
E4 v3 4 32 1.00 1.00 1.00 | 0.13 0.05 0.08

E8 v3 8 64 1.92 198 207|025 0.10 0.18
E16v3 16 128 372 408 431|047 0.22 0.38
E32v3 32 256 632 741 822 0.67 0.36 0.69

Supplemental Table 11. Instance types recommended by Hummingbird from three different cloud platforms to run BWA-MEM on NA12890 (707 million reads)

Fastest Instance

Instance type

Cheapest Instance

vCPU Memory Runtime (h)

Instance type

vCPU Memory Cost

GCP nl-highmem-32

AWS r5.8xlarge

Azure Standard-E32-v3

32
32
32

208 GB
256 GiB
256 GiB

5.87

4.46

5.49

nl-standard-16

r5.2xlarge

Standard-E4-v3

16
8
4

60 GB $8.73
60 GiB $8.73
32GiB $7.70

“main” — 2021/2/22 — page 17 — #17

