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Abstract—A major drawback of executing existing genomics
pipelines on cloud computing facilities is that the onus of
efficiently executing it on the best configuration lies on the user.
Lack of knowledge regarding which cloud configuration is best
to execute a pipeline often results in an unnecessary increase in
cost due to selecting a more expensive cloud tier than needed.
Resources in the cloud are expensive, so determining the best
configuration before actually running the pipeline saves money
and time. To this end, we introduce Hummingbird, a framework
that predicts the best configuration to execute genomics pipelines
on Google cloud.

I. INTRODUCTION

Recently, the medical field has seen an increase in the
availability of software to execute medical pipelines. Con-
sidering that medical pipelines handle large amounts of data
and require significant amounts of time to execute, researchers
have recently come to realize the benefit of executing medical
pipelines on the cloud [7]. However, one of the main chal-
lenges with cloud computing is selecting an efficient and cost-
effective set of resources, i.e, a configuration that utilizes as
few resources as possible to deliver the output most efficiently.
To this end, we propose Hummingbird, a framework that
provides the user with the best configuration for executing a
genomics pipeline.

Prior work has been done on investigating the usefulness
of cloud computing for genomics applications. ODriscoll, et.
al [11] and Lincoln Stein [12]] highlighted the challenges
associated with cloud computing and big data technologies
in biology and genomics. In contrast, significant work has
been done in predicting efficient configurations for different
types of applications [14], [3], [8], [15], but no framework has
specifically catered to genomics pipelines.

Hummingbird makes three major contributions:

(1) Downsampling: Hummingbird develops a technique to
reduce the time required for the training phase prior to predic-
tion. By reducing the size of the input files, Hummingbird can
execute a genomics pipeline more quickly, thus decreasing the
cost of training within our prediction framework.

(2) Prediction Model: Once downsampling is complete, Hum-
mingbird uses the downsampled input files to run the entire
pipeline on different types of Google cloud instances. Once
the execution is complete, Hummingbird compares the exe-
cution time of all the instances and identifies three different
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configurations: “fastest”, “‘cheapest”, and “fast and cheap” (a
compromise between getting the fastest execution time and the
cheapest cost).

(3) Reduced Cost: By providing users with a fast-and-cheap
configuration, Hummingbird helps users reduce costs while
ensuring that their computation completes quickly.

II. METHOD
A. Overview of the Proposed System

Figure [I| depicts an overview of Hummingbird. In this
section, we will review the various stages of the framework.

1) The user initially provides the pipeline he/she wishes to
execute in the form of a configuration file.

2) Once Hummingbird extracts the different stage(s) of the
pipeline from the configuration file, it searches a database
to determine if configurations for that particular stage
exist. If so, Hummingbird directly gives the user a list
of configurations from which to choose. Otherwise, it
proceeds with Stage 3.

3) Hummingbird then parses the entire user-provided con-
figuration to obtain the information required to launch
a cloud job. The user also must specify which stages
of the pipeline support multi-threading. Once the names
and locations of the input files are known, Hummingbird
downsamples the input files. The details of downsampling
are given in Section [[I-B

4) When downsampling is complete, Hummingbird runs the
pipeline with the downsampled input files.

5) Once the pipeline has finished executing, Hummingbird
calculates the cheapest, fastest, and the fast-and-cheap
configurations based on the measured execution times.
Explanation of the different configurations are provided
in Section [[II

B. Downsampling Design

One of the main contributions of Hummingbird is to
downsample the input files so that the entire pipeline can
be executed quickly, thus reducing both the execution time
and the cost of the training phase. As we focus on genomics
applications, Hummingbird downsamples inputs of genomics
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Fig. 1: An Overview of Hummingbird

applications systematically. The two data formats most com-
mon in genomics applications are fastqg.gz and BAM.

Any fastq.gz inputs are truncated, i.e., only the first n lines
comprise the downsampled file. Downsampling the file to one
million lines was empirically determined to provide the best
result as it drastically reduced the time required for training
while still following the same trends as pipeline executions on
the full input. All fastq files contain 4 lines per sequence. Since
sequences are not dependent on one another, we can remove
any number of lines while downsampling, without affecting the
correctness of the output and the behavior of the application.

BAM files are another way of storing biological sequences,
just like fastq files. BAM files have a header and an align-
ment section. The alignment section has 11 mandatory fields.
These files are downsampled using the DownsampleSam tool
available in the GATK docker image. A separate cloud job
must be launched just for downsampling the BAM files. The
amount of downsampling can be controlled by the probability
(P) argument. A P of 0.1 indicates ten percent of the reads
in the BAM file will be kept in the downsampled file, thus
reducing the size of the BAM file tenfold. Just like fastq files,
the alignment section of BAM files is not dependent on other
alignment sections, which facilitates downsampling.

III. EXPERIMENTAL FRAMEWORK

Pipelines: Two of the most popular variant discovery
workflows in genomics are part of the GATK [10] best
practices provided by the Broad Institute [13]. For our ex-
periments, we selected GATK 3.7 that uses HaplotypeCaller
to call germline SNPs (single nucleotide polymorphisms) and
indels (insertions-deletions). The popular pipeline MuTect2
is a somatic SNP and indel caller that fuses the somatic
genotyping engine of the original MuTect [5] with aspects
of the GATK HaplotypeCaller algorithm. Also, the pipeline
that employs MuTect2 overlaps significantly with the one
that uses HaplotypeCaller. These variant calling pipelines can
be run on the cloud or on a high-performance computing
cluster. However, each step in any of the above variant calling
pipelines utilizes different software tools, and optimizing the

corresponding computational resources can save time and
costs. We illustrate next how our Hummingbird tool provides
suggestions on which computational resources to use if running
on Google cloud.

Datasets: For the GATK pipeline, we obtained the open-
source Illumina Platinum Genomes [6], which are available on
public Google cloud buckets [1]. The reference file we utilized
was GRCh37-lite, also available publicly in Google cloud. For
MuTect2, we used the bam files provided by the Texas Cancer
Research Biobank [4].

Cloud job submission via dsub: Hummingbird lever-
ages Google cloud as the cloud service provider. dsub is a
command-line tool to submit jobs on Google cloud. Submitting
jobs with dsub requires the project name, the zone in which the
virtual machine (VM) is to be launched, input bucket, output
bucket, logging bucket, docker image name, machine configu-
ration and a command/program to execute. Upon receiving this
information, Google cloud executes that command on a docker
image launched on a VM with the machine configuration
specified by dsub.

Google cloud: Google cloud offers a wide variety of
instances with different costs, which can be separated into
three main categories: high-CPU, standard and high-mem. The
CPU platform is the same across all three categories, but the
amount of main memory (RAM) available to a VM differs.
Table [I] indicates the instance types used in our experiments.
We consider high-CPU, standard and high-mem with 8, 16 and
32 VCPUs due to our limited budget as considering all instance
types would result in an excessive number of permutations
with high cost. Of course, by design, Hummingbird could
execute all instance types available in Google cloud, i.e., all
permutations of configurations.

TABLE I: Google Cloud Instance Types

Machine Type | VCPUs|Memory(GB)|Price(hourly)
nl-highcpu-8 | 8 720 $0.2836
nl-highcpu-16 16 14.40 $0.5672
nl-highcpu-32 | 32 28.80 $1.1344
nl-standard-8 3 30 $0.3800
nl-standard-16 16 60 $0.7600
nl-standard-32 | 32 120 $1.5200
nl-highmem-8 8 52 $0.4736
nl-highmem-16| 16 104 $0.9472
nl-highmem-32| 32 208 $1.8944

IV. EXPERIMENTAL RESULTS AND ANALYSIS

Once the input files have been downsampled, Hummingbird
runs the pipeline using those reduced inputs on three different
instance types (VCPU counts) for each of the three different
categories (high-CPU, standard and high-mem). Once each
execution time is recorded, a table is created for each instance
category that summarizes speedup, scaling and cost concisely.
An abstract summary of these metrics is depicted in Table
[ The first column indicates the number of VCPUs on each
instance. Ty indicates an instance with 8 VCPUs, and so on.
Ideal Speedup is the speedup that the instance would show
under perfect scaling without resource sharing and is calculated
as the ratio of the number of VCPUs in the current instance
over the number of VCPUs in the base instance. In practice,
speedup does not necessarily follow the ideal curve. To this
end, the real speedup is calculated as the ratio of execution



time of the base instance over the execution time of the current
instance. Since the real speedup differs for each instance, we
further normalize the speedup in the next column to facilitate a
comparison between all instances. The normalized speedup is
used to determine the instance with the most benefit and how
many resources should be committed before a given pipeline
stops scaling.

TABLE II: Decision Table

Ideal Real Execution|Normalized
Machine | Speedup| Speedup Time Speedup |Cost
Tg(base) 1 Sg=T8/Tg Eg 1 Cg
T16 2 S16=Ts/T16| Eie Si6 Cis
T3z 4 S32=Tg/T32 E32 S32/2 Cs2

Hummingbird recommends three different configurations
to the user:
e Cheapest: Hummingbird chooses the cheapest configuration
over the three categories and then selects the instance type
(number of VCPUs) one with the lowest cost.
e Fastest: Hummingbird chooses the fastest configuration over
the three categories and then selects the instance type with
least execution time.
e Fast and Cheap: Hummingbird chooses the category with
the highest normalized speedup, i.e., the instance which scaled
best, and then selects the instance type with the lowest cost.

(Picard Stage 1 and 3) and MarkDuplicates (Picard Stage 2).
The latter locates and tags duplicate reads in a BAM or SAM
file. Table depicts the results for the first stage, where
the Picard tools are used. For Picard Stage 1, Hummingbird
correctly predicts highmem-32 as the fastest. The cheapest
prediction by Hummingbird is 32.9% more costly than the
actual cheapest one. The fast-and-cheap prediction is -2%
faster but 63.5% higher in cost than the correct choice for
whole input.

TABLE 1V: Picard Stage 1 Results

Hummingbird Whole Input
Config Exec Time (s) Config Exec Time (s)
Cheapest| standard-8 10.363 highcpu-8 | 26,015.502
Fastest |highmem-32 9.187 highmem-32| 24,292.8
Fast &
Cheap | highmem-8 10.157 highcpu-8 | 26,015.502

3) BOSR: The GATK base quality score recalibration
(BQSR) is a data pre-processing step that detects systematic
errors made by the sequencer when it estimates the quality
score of each base call. The two stages of BQSR use BaseRe-
calibrator and PrintReads for the first and second stages, re-
spectively. Table [V]shows that Hummingbird correctly predicts
two of three configurations for stage 1 of BQSR. The fastest
prediction is 7.3% slower than the actual fastest one.

TABLE V: BQSR Stage 1 Results

GATK: Hummingbird provides a stage-by-stage recom-
mendation for every pipeline. This is better than one recom-
mendation for the entire pipeline because what might be fast
or cheap for one stage may not be fast or cheap for another
stage.

Tables reflect Hummingbird’s recommendation vs.
the recommendation populated by executing that stage of the
pipeline on the whole input, recording the execution time, and
then manually calculating the cheapest, fastest, and fast-and-
cheap configurations.

1) BWA: BWA (Burrows-Wheeler Aligner) [9] is a fast,
short read aligner. For our experiments, we chose BWA-
MEM because it is widely used for sequence alignment and
is also recommended in the GATK best practices for both
germline and somatic variant calling pipelines. Table in-
dicates that Hummingbird predicts the cheapest configuration
correctly for BWA. It also recommends highcpu-32 to be the
fastest, whereas the actual fastest configuration is standard-
32, which is 3.1% faster than highcpu-32. For the fast-and-
cheap, Hummingbird recommends standard-16 while standard-
8 would have been the correct choice according to the table.
Hummingbird results in 5.1% higher cost and 47% faster
execution, which is actually a good choice.

TABLE III: BWA Results

Hummingbird Whole Input
Config |Exec Time (s)| Config [Exec Time (s)
Cheapest | standard-8 26.075 standard-8 | 92,124.358
Fastest | highcpu-32 15.757 standard-32| 30,286.578
Fast &
Cheap |standard-16 19.094 standard-8 | 92,124.358

2) Picard: Picard [2] is a set of command line tools (in
Java) for manipulating high-throughput sequencing (HTS) data
and formats such as SAM/BAM/CRAM and VCF. We used
two different Picard tools in our GATK pipeline, SortSam

Hummingbird Whole Input
Config |Exec Time (s) Config Exec Time (s)
Cheapest| standard-8 776.193 standard-8 29,003.23
Fastest | highcpu-32 608.741 highmem-32| 15,944.26
Fast &
Cheap |standard-16 751.42 standard-16 | 20,113.56

4) HaplotypeCaller: The GATK HaplotypeCaller cite-
GATK is capable of calling SNPs and indels simultaneously
via local de-novo assembly of haplotypes in an active region.
Table shows that Hummingbird predicts two configura-
tions correctly for Haplotype. The fast-and-cheap prediction
is 37.7% lower in cost but 24.5% slower.

TABLE VI: Haplotype Results

Hummingbird Whole Input
Config Exec Time (s) Config Exec Time(s)
Cheapest| standard-8 2,306.35 standard-8 73,105.23
Fastest |highmem-32| 2,069.97 |highmem-32| 43,179.96
Fast &
Cheap | standard-8 2,306.35 standard-16 | 58,676.61

MuTect2: Mutect2 [5] has the ability to call short somatic
SNPs and indels in a tumor-normal pair. In Mutect2, using a
normal sample or a panel of normals helps filter germline vari-
ants specifically. Table shows that Hummingbird predicts
all three configurations correctly for MuTect.

TABLE VII: MuTect2 Results

Hummingbird Whole Input
Config  |Exec Time (s) Config Exec Time (s)
Cheapest| highcpu-8 1,348.591 highcpu-8 40,754.48
Fastest |highmem-32 957.078 highmem-32| 13,674.71
Fast &
Cheap | highcpu-16 | 1,164.396 | highcpu-16 | 24,087.63

Downsampling: The downsampling concept can theoret-
ically be applied to other pipelines. The only caveat is that
the input file itself must not have dependencies. E.g., if we
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Fig. 2: Downsampling for MuTect2

remove half of the input file and execute the pipeline on the
remaining half, the execution should follow the same trends as
the execution on the whole input. If trends were to differ across
inputs, one could not conclusively determine which instance
is the cheapest or fastest.

Figure |2 depicts the comparison between execution on the
downsampled input (blue, left y-axis) and execution on all the
input files (red, right y-axis) for MuTect2. The BAM file we
experimented with contained approximately 80 million lines,
which were downsampled to 800k lines for faster training of
Hummingbird. The figure indicates that the execution times
for the full and the downsampled inputs follow the same
trends. This facilitates predictions based on executing the
downsampled files on the entire pipeline.

V. RELATED WORK

Prior work exists on predicting the best configuration to
run an application on the cloud, but none of them provide
a cost effective prediction for genomics frameworks. While
Ernest [14] and CherryPick [3] (and others) work on a variety
of pipelines from different fields, they require extensive con-
figurations. Ernest reports results for genomics pipelines such
as ADAM and GenBase. However, Ernest requires knowledge
about which data points are to be collected, i.e., knowledge
about the input file structure. In contrast, Hummingbird is
capable of selecting the datapoints to run the entire pipeline
on. CherryPick employs Bayesian optimization to find the
best configuration. CherryPick could in principle be applied
to genomics pipelines, but does not report any such results.
However, CherryPick also requires extensive configurations
and multiple steps to find the best configuration. This increases
both training time and training cost. None of these prior
approaches use downsampling.

VI. DISCUSSION

Hummingbird provides a range of configurations that users
can choose from according to their requirements. In this paper,
we compared Hummingbird’s results with those obtained by
executing the application on the whole input file and found
that Hummingbird was able to predict the best configuration
in many cases. Some mispredictions are off by only a few
percent or may even be a better trade-off between cost and
speed while others diverge more significantly, which indicates
that our heuristics could be improved (subject to future work).

To date, we have only tested genomics applications. By
design, Hummingbird can be used for other cloud applications
as well. We currently vary the number of VCPUs and the
amount of main memory and suggest a best configuration. In
the future, we plan to tune other factors so that we can provide
the user with an even better optimized solution.

VII. CONCLUSION AND FUTURE WORK

Hummingbird has the ability to downsample inputs and
provides an efficient and effective prediction model based on
a much reduced cost of running the pipeline for training.
We have shown the benefit of downsampling inputs and that
ultimately aided in recommending different configurations to
the user for execution of a genomics pipeline.
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