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ABSTRACT

Locking cache lines in hard real-time systems is a common
means to ensure timing predictability of data references and
to lower bounds on worst-case execution time, especially in
a multi-tasking environment. Growing processing demand
on multi-tasking real-time systems can be met by employ-
ing scalable multi-core architectures, like the recently intro-
duced tile-based architectures. This paper studies the use
of cache locking on massive multi-core architectures with
private caches in the context of hard real-time systems. In
shared cache architectures, a single resource is shared among
all the tasks. However, in scalable cache architectures with
private caches, conflicts exist only among the tasks sched-
uled on one core. This calls for a cache-aware allocation
of tasks onto cores. Our work extends the cache-unaware
First Fit Decreasing (FFD) algorithm with a Naive locked
First Fit Decreasing (NFFD) policy. We further propose two
cache-aware static scheduling schemes: (1) Greedy First Fit
Decreasing (GFFD) and (2) Colored First Fit Decreasing
(CoFFD). This work contributes an adaptation of these al-
gorithms for conflict resolution of partially locked regions.
Experiments indicate that NFFD is capable of scheduling
high utilization task sets that FFD cannot schedule. Ex-
periments also show that CoFFD consistently outperforms
GFFD resulting in lower number of cores and lower system
utilization. CoFFD reduces the number of core requirements
from 30% to 60% compared to NFFD. With partial locking,
the number of cores in some cases is reduced by almost 50%
with an increase in system utilization of 10%. Overall, this
work is unique in considering the challenges of future multi-
core architectures for real-time systems and provides key
insights into task partitioning with locked caches for archi-
tectures with private caches.

Categories and Subject Descriptors

D.4.7 [Operating Systems]: Organization and De-
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1. INTRODUCTION

Multi-core architectures have become prevalent in embed-
ded system design. This is evident from the variety of multi-
core processors available today, such as the 4-core MPCores
and Cortex processors from ARM, the 8-core P4080 Pow-
erPC from Freescale and the 64-core TilePro64 from Tilera
[1], which find applications in power control systems, satel-
lites and network packet processing. However, hard real-
time system designers have been skeptical in adopting these
architectures. Unpredictability of multi-core caches have
been a significant contributing factor to this skepticism.

Research on cache contention has primarily considered
shared caches. This simplifies the problem as all tasks are
considered to be contending for the shared cache space.
Most contemporary research aims at optimizing the analy-
sis on aforementioned systems [6, 9]. Such schemes become
inapplicable to scalable multi-cores, such as shown in Fig-

ure 1.
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Figure 1: Tile-based Architecture

These architectures use private L14+L2 caches. Any
task allocation algorithm on such architectures requires
prior knowledge of each task’s Worst Case Execution Time
(WCET). However, the WCET of a task obtained by static
cache analysis depends on cache analysis of all other tasks on
a particular core. In this work, it is assumed that private L2
caches are large enough with high associativity (16-32 ways)
to hold the data space and instructions of hard real-time
tasks. This simplifies the analysis of L2 caches as any access
to the L2 cache is a hit after a compulsory miss on warm-up.
Thus, a tighter upper bound on the Worst Case Execution
Time (WCET) can be established by modeling references re-
solved at the L2 level as hits after the warm-up phase of the
first job execution in a periodic task system. Still, the access
latency of L2 caches is an order of magnitude higher than
that of L1 caches so that bounds on WCET are not as tight



as they could be. To further tighten WCET bounds, cache
locking of selected lines in L1 can be employed on scalable
multi-core platforms.

In general, cache locking techniques provide predictability
to a task’s cache access behavior. Cache locking can be real-
ized at various granularities. Studies on uni-processor cache
locking have assumed the entire L1 cache to be locked [16,
17]. Another study on cache locking for shared caches has
assumed locking individual cache lines [19]. Locked caches
on uni-processors identify sets within a single cache way for
a given task set to improve predictability and, indirectly,
utilization /response time of tasks while ensuring schedula-
bility on a single core. In contrast, our work extends to
scalable multi-core architectures where tasks are statically
partitioned. Our work focuses on distributing tasks over dis-
joint cores while considering their locked state. A real-time
system developer may choose to lock a set of cache lines
to tighten WCET bound. This work uses these tightened
WCET bounds to statically allocate tasks on a disjoint set
of cores.

Prior literature on uni-processor locking techniques fo-
cuses on filling a single cache way while reducing the overall
utilization of a core. Reduction of the system utilization
can be achieved by placing all tasks with conflicting locked
cache regions on different cores on scalable architectures.
However, such a scheme would consume a large number of
cores and result in under-utilization of computing resources.
Also, multiple cache ways per L1 cache can be dedicated
to locking. Hence, the objective of allocating tasks on scal-
able multi-cores has to be balanced between the following
objectives:

1. Reduction of the number of cores; and
2. Reduction of the overall system utilization.

Static task partitioning has been considered as a viable
scheduling option for real-time tasks on multiple cores. Such
scheduling schemes aim at minimizing the number of cores
for a set of tasks with given worst-case execution time
(WCET). However, partitioning tasks with locked cache re-
gions involves resolving the conflicts between locked regions
of different tasks.

One of the most commonly used partitioning algorithm is
the First Fit Decreasing (FFD) algorithm. First, we extend
this algorithm with an approach called Naive Locked FFD
(NFFD). Prior to allocation, NFFD decides to use cache
locking for tasks that have prohibitively high utilization
without locking. It avoids conflict analysis among locked
regions by placing each locked task on a different core be-
fore allocating unlocked tasks using FFD. We call this al-
gorithm cache-unaware as it avoids any form of analysis on
locked cache regions. Then, we develop and evaluate two
cache-aware partitioning algorithms: (1) Greedy First Fit
Decreasing (GFFD), and (2) Colored First Fit Decreasing
(CoFFD). GFFD tries to allocate tasks onto a minimum
number of cores [3]. This scheme lacks prior information
on the number of cores of a concrete processor but rather
reasons abstractly about the minimum number of cores of
a hypothetical processor design. CoFFD, a more sophisti-
cated scheme, exhibits a novel approach based on graph col-
oring that delivers task partitioning. In contrast to GFFD,
CoFFD initially assumes a given number of cores for an
architecture. The algorithm then tries to allocate a given
task-set onto the fixed number of cores. In case of failure,

the number of cores is incremented and the attempt to allo-
cate tasks to cores is repeated. If the objective is to achieve
minimum utilization, tasks should be allocated with all can-
didate regions locked as this lowers their WCET.

Table 1 depicts a comparison of the number of allocated
cores for different task sets of 32 tasks using FFD, NFFD,
GFFD and CoFFD on an architecture that uses system pa-
rameters shown in Table 2. We consider two utilizations for
each task: one with locking for all the regions specified by
the developer (uiocked) and another without locking any of
those regions (Uuniocked). A task is termed to be of high,
medium and low utilization when (0.55 > uockeqa > 0.40),
(0.40 > Ulocked = 0.25) and (0.25 > Ulocked = 0.15)7 re-
spectively. The first column depicts the number of tasks in
the task sets. The remaining columns show the number of
cores consumed by the task set under FFD, NFFD, GFFD
and CoFFD, respectively. We observe that FFD fails to al-
locate high utilization task sets as Uyniocked €xceeds the uti-
lization bound of 1 for such tasks. This is because it forces
regions to be unlocked while the other policies allow locking.
NFFD performs better than FFD for low utilization tasks as
well. The table shows that the number of cores allocated by
cache-aware schemes is significantly lower than the alloca-
tions performed by cache-unaware schemes. As the objective
is to minimize the number of cores, the two algorithms are
adapted to consider both %ocked and Uyniocked during allo-
cation. The algorithms select one of these versions to avoid
lock conflicts while ensuring that utilization constraints are
met. We observe that CoFFD consistently results in allo-
cating fewer cores than GFFD. Task sets composed of high
utilization tasks allocate fewer cores under CoFFD with at
most 3% higher system utilization than GFFD. For low uti-
lization task sets, CoFFD allocates fewer cores and lowers

system utilization by up to 40% over GFFD.
Table 1: Locking and Conflict Analysis for 32 Tasks

Number Number of Cores Required
of Tasks FFD NFFD | GFFD | CoFFD
High util. | Failed 32 22 20
Med. util. 31 31 21 20
Low. Util. 23 22 14 12

We also propose a mechanism to resize locked regions so
that they become partially unlocked. This scheme is appli-
cable when the programmer can provide the maximum num-
ber of references to a locked cache line. The two algorithms,
GFFD and CoFFD, were adapted to exploit this per-line ref-
erence frequency information, based on which they choose
whether to retain the lock of a line or unlock it due to lock
conflicts of lines between disjoint tasks. We observe that
such a mechanism can further reduce the number of allo-
cated cores. It may even allow GFFD to perform at par
with CoFFD. Overall, we provide key insights into task par-
titioning with locked caches for large-scale multi-core archi-
tectures with private caches.

Summary of contributions: This research makes the
following contributions in the context of hard real-time sys-
tems with cache locking:

1. This work is the first to employ locked caches on mas-
sive multi-core architectures for hard real-time sys-
tems.

2. We propose GFFD, an allocation scheme that parti-
tions a given set of tasks with conflicts in their locked
cache regions so that the number of allocated cores is
kept low. This algorithm is further adapted to resolve



conflicts by (i) unlocking entire task or (ii) resizing
locked regions.

3. We propose Colored First Fit Decreasing (CoFFD)
that (i) derives task allocations for a given number
of cores resulting in a feasible schedule, (ii) enhances a
coloring algorithm to deliver balanced allocation and
(iii) reduces the number of cores relative to Greedy
First Fit Decreasing (GFFD).

4. We propose a novel mechanism that allows tasks to re-
solve conflicts by partially unlocking the locked regions
and inflating their WCETSs accordingly. This method
aims at improving the schedulability of task sets on
a given number of cores when resolution of conflicts
by partial unlocking result in lower system utilization
than unlocking an entire task.

2. RELATED WORK

In the past decade, there has been considerable research
promoting locked caches in the context of multi-tasking real-
time systems. Static and dynamic cache locking algorithms
for instruction caches have been proposed to improve system
utilization in [16, 15]. Several methods have been developed
to lock program data that is hard to analyze statically [20].
Further techniques have been developed for cache locking
that provide performance comparable to that obtained with
scratchpad allocation [17]. Recently, cache locking has also
been proposed for multi-core systems that use shared L2
caches [19]. This trend is a strong proponent of cache locking
as a viable solution in future real-time system designs on
multi-cores.

Choffnes et al. have proposed migration policies for mul-
ticore fair-share scheduling [7]. Their technique strives to
minimize migration costs while ensuring fairness among the
tasks by maintaining balanced scheduling queues as new
tasks are activated. Calandrino et al. propose scheduling
techniques that account for co-schedulability of tasks with
respect to cache behavior [2, 4]. Their approach is based on
organizing tasks with the same period into groups of cooper-
ating tasks. All these methods improve cache performance
in soft real-time systems. Li et al. discuss migration policies
that facilitate efficient operating system scheduling in asym-
metric multicore architectures [11, 12]. Their work focuses
on fault-and-migrate techniques to handle resource-related
faults in heterogeneous cores and does not operate in the
context of real-time systems. Eisler et al. [8] develop a
cache capacity increasing scheme for multicores that scav-
enges unused neighboring cache lines.

Paolieri et al. [14] have proposed TDMA-based bus and
L2 cache access to improve predictability on multi-core ar-
chitectures. Their work focuses on supporting hard real-time
applications on multi-cores but assumes shared L2 caches
with contention due to accesses by different tasks. Ouyang
et al. [13] have proposed extending Quality of Service sup-
port to mesh-based interconnects but their study is limited
to the on-chip network traffic.

3. SYSTEM DESIGN

In this section, we describe our system architecture and
assumptions to WCET analysis for this study. The objec-
tive of this work is to best utilize a private cache architec-
ture. This corresponds to the current trend in potentially
mesh or tile-based multi-core designs. Tile-based architec-
tures consist of a large number tile processors (cores). Each

tile consists of an in-order processor, a private L1, a pri-
vate L2 cache and a router (see Figure 1). Each tile acts
as a node on a mesh interconnect. Recent work has added
Quality-of-Service (QoS) policies to mesh-interconnects [13].
We have identified these trends as the driving force for the
simplification of our system. We assume an architecture that
has private caches and has a QoS-based interconnect. We
assume that the first level of cache allows a certain num-
ber of ways of the associative cache to be locked as shown
in Figure 2. We also assume that the L2 caches are large
enough with high associativity so that the address space of
allocated hard real-time tasks on a core fit within the L2
cache. Thus, we assume that the off-chip references occur
only while accessing sensory data, which accounts for a very
small fraction of the total references. Also, these systems
can have inclusive or non-inclusive L2 caches. With inclu-
sive caches, the locked regions in L1 need to be locked in L2
as well.

Private
Level-1 Data

Caches With
one-way
lockable

’rivate
Inclusive
Level-2
Caches With
Lock support|

Private
Inclusive
Level-2
Caches With
Lock support

Figure 2: A Lock-based Architecture

Our algorithms are applicable to a system considering
both data and instruction caches. However, for the sim-
plicity of analysis we assume that instruction references for
hard real-time tasks are all hits at the first level of cache.
We also assume that loads to the lines that have not been
locked in the L1 cache bypass the L1 cache (as in a previous
research work [10]). This allows cores with lower core uti-
lization to co-schedule non-real-time tasks along with hard
real-time tasks without affecting the deterministic behavior
of the latter. Such hybrid execution of application tasks has
been considered in recent research [14]. We assume that
a hard real-time task can only lock one cache line per set.
Thus, for a 8KB L1 cache with an associativity of two, a
hard real-time task can lock up to 4KB of cache content.

We assume that all hard real-time tasks are periodic. Each
task’s deadline is the same as its period, i.e., an invocation
of a task’s job has to finish before its next invocation. We
further assume that the system runs a scheduler per core.
Each of these schedulers independently schedules the tasks
allocated to this core. We assume them to utilize Earliest
Deadline First (EDF) scheduling. EDF optimally schedules
tasks for uni-processor, i.e., the utilization bound for each
core is defined by the following equation: > 7, % <1,
where C; and P; are the WCET and the period of the ith
task, respectively. Deadlines are assumed to be the same as
the periods.

For the algorithms, each task needs to provide
the following information: <listiocked—sets, WCE T ocked,
WCETuniocked>- liStiocked—sets 1S the list of sets where
the programmer intends to lock a cache line for the task.
WCETockeqa and WCET niockea are the WCETSs of a task



when all the lines of list;ocked—sets are locked and unlocked,
respectively. WC ET)ockea does not include the overhead of
loading the contents of a task because it is a one-time cost
incurred at system start-up.

We also assume that the real-time tasks are pairwise in-
dependent. Hence, these tasks do not cause any coherence
traffic on the interconnect.

4. TASK PARTITION ALGORITHMS
4.1 Cache-Unaware Schemes

Static task partitioning algorithms for multi-core architec-
tures have been widely studied. Most of these approaches
consistently aim at minimizing the number of cores uti-
lized [3]. They use bin-packing schemes considering a sin-
gle utilization value per task. These algorithms for dis-
tributed systems are cache unaware. In the following sec-
tion, we present two cache-unaware schemes, namely FFD
and NFFD.

4.1.1 First Fit Decreasing (FFD)

FFD is a commonly used algorithm for allocating tasks
on distributed cores. This implementation assumes that the
tasks are unlocked, i.e., we consider all tasks with a uti-
lizations of wyniocked Using WC ET yniocked- This algorithm
takes task (7), already allocated set of cores Nprocs and a flag
that decides whether task to be allocated in a locked state
or unlocked state if it adds a new core to Nprocs. The FFD
algorithm picks tasks in decreasing order of their %uniocked
and allocates them using Algorithm 1. Line 1 sorts the cores
in Nproc in decreasing order of core utilization. Lines 3-8 it-
erate over the cores until the task is allocated or until all
cores have been considered and task could not be allocated.
A task is allocated to a core if a core’s utilization does not
exceed 1 (utilization bound for EDF). If a task could not be
allocated to any core in Nprocs, lines 9-13 add a new core to
Nprocs and the task is allocated to it in an unlocked state.

Input: 7 : task, Nprocs : processors, isLock: boolean
Output: Np,ocs number of processors

1 Nprocs.sort(decreasing utilization) ;

2 foreach Np,ocs j do

3 if Success = false then
4 if i uyniocked < 1 - jou then
5 allocate task ¢ to core j;
6 Ju = Ju + i Uunlocked;
7 Success := true ;
8 break;
end
end
end

9 if Success = false then

10 allocate Newproc;
11 Nprocs := Nprocs U Newproc;
12 allocate task i to Newproc;
13 if isLock = true then
| Newproe.t = i-Uiocked;
end
else
| Newproc-u = Z'-Uunlocked;
end
end

Algorithm 1: FFD Task Allocation (baseFFD)

4.1.2 Naive Locked FFD (NFFD)

We extend FFD with a simple approach of using locked
caches. Tasks are defined to be locked or unlocked prior to
their allocation. Thus, all the tasks have a single WCET
before allocation, which is WCETsckeq for a locked task
or WCET niockea otherwise. Bin packing has difficulties
to co-locate multiple tasks with high utilization. Any task
whose utilization is greater than 1 is deemed to be locked.
Each of these locked tasks is allocated to a separate core
as the algorithm is cache-unaware. The algorithm proceeds
to allocate the set of unlocked tasks with an initial value of
Nprocs, the number of cores assigned to locked tasks.

4.2 Cache-Aware Task Partitioning

We next present two cache-aware mechanisms. Ini-
tially, our algorithms consider two values, WCFET,ckeqa and
WCETyniockea- In Section 4.2.4, we discuss a mechanism
with the objective of reducing the impact of conflicts. The
listiocked—sets item is used to deduce a conflict matrix Meon s
for locked tasks. A conflict among the locked sets indicates
the existence of common locked cache set(s). Each empty
entry in Meony (%, j) signifies the absence of conflicts between
tasks ¢ and j while every filled entry signifies existence of a
conflict.

4.2.1 Greedy First Fit Decreasing (GFFD)
We first illustrate GFFD by example using a conflict

graph. An undirected conflict graph of four nodes/vertices
is depicted in Figure 3.
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Figure 3: Greedy First Fit Decreasing in Operation

A conflict graph in the context of task partitioning is a
graph G = (V; E), where every vertex/node v € V corre-
sponds uniquely to a task and an edge(i;j) € F indicates
that tasks ¢ and j are in conflict and cannot be allocated onto
the same core. The objective is to map nodes into buckets
while keeping the number of buckets low. The FFD algo-
rithm arranges nodes in traversal order via heuristics before
allocating them. In this example, the algorithm establishes
an allocation order of nodes 2, 1, 0 and 3. At each step, the
node in question checks if it can be placed within any of the
existing buckets. A node can be allocated to a bucket if the
bucket does not contain any node that conflicts with it. In
the example, node 0 gets allocated to a bucket that contains
node 2, which does not conflict with 0. In case all buckets
conflict, a new bucket is created, e.g., during the allocation
of nodes 1 and 3.

We developed a modified version of the FFD algorithm.
We call this Greedy First Fit Decreasing (GFFD). Algo-
rithm 2 presents the details of the algorithm. This algo-
rithm takes a task set, the number of locked ways per cache
and a conflict matrix Mcons as an input. If the number of
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Figure 4: Chaitin’s Coloring in Operation with 2 Colors

tasks is N, then Mcony is a N X N matrix with each entry
representing a conflict between two tasks. A value of 1 rep-
resents a cache conflict among locked regions of tasks, while
a 0 represents otherwise. The idea is to incrementally add
cores to the schedule starting with an initial number of cores,
Nprocs, of 1. Lines 3-13 proceed to allocate tasks in FFD
fashion using wjocked.- Line 8 uses a procedure IsAllocat-
able() that returns the cache way that is still unassigned to
any locked lines of tasks that conflict with any locked lines of
task 4. In case a valid cache way is found and the allocation
of the task with the locked region passes the schedulability
test, the task is allocated to the core. If, however, all the
lockable cache-ways of the core’s L1 are in conflict or the
schedulability test fails, the algorithm tries to allocate the
task to another core until it runs out of cores in Nprocs. If
the task remains unallocated, line 15 uses Algorithm 1 to
allocate the task. The value of true for the third parameter
to base F'F'D forces the task to be allocated in locked state
when a new core is added to Nprocs-

Input: M : Set of Tasks, Assoc : Number of locked
ways per cache, Mconys : conflict Matrix
Output: Np,ocs number of processors
1 Nprocs =1 3
2 M .sort(decreasing ujocked);
3 while M is not empty do

4 Success = false ;
5 Nprocs.sort(decreasing utilization) ;
6 i := M .front;
7 foreach Nprocs j do
8 if k:=IsAllocatable(j,i,Assoc,Mconys) # —1
then
9 if i uiockeda < 1 - jou then
10 allocate task 7 to core j in kth way;
11 J.U = J.u + . Ulocked;
12 Success = true ;
13 break ;
end
end
end
14 if Success = false then
15 | Nprocs := base FF D(i, Nprocs,true);
end
end

Algorithm 2: Greedy First Fit Decreasing (GFFD)

4.2.2 Colored First Fit Decreasing (CoFFD)
GFFD identifies task conflicts only after a task has been

committed for allocation, even though a conflict matrix is
already present. The algorithm does not have a prior notion
of the number of cores available within the system. Fur-
thermore, the order in which tasks are assigned to cores is
still based on task utilization. We can do better. When
tasks contend for cache regions, analysis of the cache con-
flict graph yields superior, conflict-guided allocations. Such
analysis considers tasks in a conflict-conscious order that en-
sures they can co-exist with each other for a given number of
cores. To this end, we adapted a graph coloring approach by
Chaitin [5] that is widely used in register allocation, which
is based on the following theorem:

CHAITIN’S THEOREM 1. Let G be a graph and v € V(G)
such that deg(v) < k, where deg(v) denotes the number of
edges of vertex v. A graph G is k-colorable if and only if G
- v 1$ k-colorable.

This theorem provides the basis for graph decomposition
by repeatedly deleting vertices with degree less than £ until
either the graph is empty or only vertices with degree greater
than or equal to k are left. In the latter case, the graph can-
not be colored. However, by removing a task from a conflict
graph using some heuristic, a new coloring attempt can be
made for the remaining of the graph. Figure 4 shows how
Chaitin’s theorem can be used in practice. In this example,
the conflict graph is the same as in the FFD example in
Figure 3. This new example shows how Chaitin’s approach
allocates the set of nodes to two buckets/colors. At first, the
algorithm fills up a stack removing one node at a time. A
node is a viable candidate for being pushed onto the stack
if and only if the degree is less than 2. When a node is re-
moved, it reduces the degree of its neighbor in the remainder
of the graph. Since all nodes can be pushed onto the stack,
the graph is two-colorable (cf. Chaitin’s theorem). Dur-
ing the following steps, nodes are popped off the stack and
associated with a color/bucket. In our example, Chaitin’s
algorithm successfully allocates nodes to two buckets. In
contrast, three buckets were required by the FFD algorithm.

Algorithm 3 shows the task coloring mechanism, which
is responsible for finding non-conflicting tasks that can be
grouped together in a given number of colors. The number
of colors is equal to the number of locked cache ways that
can be filled within a given number of cores. Lines 4-13 fill
up two data-structures, colorStack and spilledList. Every
iteration of this loop finds a task that can be placed on
either of these stacks. Line 5 searches through the list of
unallocated tasks and finds the task with lowest degree. A
task with minimum degree is pushed onto colorStack if and
only if its degree is less than NumO fColors. Otherwise,



the algorithm finds a task using a heuristic that focuses on
minimizing a metric. For example, in algorithm 3 the metric
Ulocked/degree is minimized at line 10. The objective of
this heuristic is to decrease the conflict degrees of as many
tasks as possible and, at the same time, to pick a task that
causes the minimum increase in the system utilization while
remaining unlocked (wyniocked). This task is then added
to the spilledList. While removing the tasks from M, we

decrease the conflict degree of neighbors.

Input: M : Set of Tasks, NumO fColors : Number of
Cores x Number of locked ways per cache,
Meconys @ conflict Matrix

Output: colorList , spilledList, rejectedT askList

1 colorStack := empty;
2 spilledList := empty;
3 colorList := empty;
4 while M is not empty do
5 t := lowest degree task by linear search of M ;
6 if t.degree < NumO fColors then
7 push t onto colorStack ;
8 remove ¢ from M and Meons ;
end
9 else
10 t := task with minimum (uyniocked/degree) ;
11 push t onto spilledList ;
12 remove ¢ from M and Mcons ;
end
end
13 aveCoreUtil = 716357"05;82?07&7
14 while colorStack is not empty do
15 t := Pop colorStack ;
16 repopulate Mcons ;
17 curColor:=0;
18 for curColor = 0 — NumO fColors — 1 do
19 if None of the neighbors has this color then
20 curCore := curColor mod number Of
Cores ;
21 if curCore.u < aveCoreUtil and curCore.u
+ t.u < 1 then
22 t.color := curColor ;
23 color List[curColor] :=t ;
24 Add t.u to curCore.u ;
25 break ;
end
end
end
26 if t.color is not a valid Color then
27 | push t onto rejectedT’askList ;
end
end

Algorithm 3: Task Coloring Algorithm

Once all tasks have been distributed among either of the
stacks, lines 13-27 put the tasks in colorStack into different
colorLists. Assigning a task from colorStack to a color List
is equivalent to allocating the task to a core as each color
corresponds to a lockable cache way. The colorLists are
associated with cores in a round robin manner, i.e., if the
number of lockable cache ways per task is equal to two and
the number of cores is three, then there are a total of six
colorLists. The first, second and third colorLists are as-

sociated with the first cache way on cores one, two and
three, respectively. The fourth, fifth and sixth colorLists
are associated with the second cache way on cores one, two
and three. Lines 15-16 pop a task from the colorStack and
re-populate the conflict edges in the graph with the tasks
that have already been colored. The algorithm then loops
through all the colors until it finds a color that has not been
allocated to any of its neighbors in the graph. Line 20 picks
the core associated with that color. For a task to be assigned
a color, the task has to pass the EDF schedulability test.
Furthermore, the current utilization of the core has to be
less than aveCoreUtil, where aveCoreUtil is computed at
line 14. These conditions prevent color Lists from becoming
unbalanced. Chaitin’s algorithm in its purest form is

e unaware of the tasks in the spilledList and
e unable to deliver a balanced colorList.

E.g., if none of the tasks are conflicting then all tasks can be
given the same color. Conditions at line 21 allow the tasks to
be evenly distributed across cores. If either of the conditions
fail, then the algorithm moves on to the next color until all
the colors have been tried. If a task cannot be assigned a
valid color, it is moved to rejectedl askList.

Input: rejectedTaskList, Assoc : Number of locked
ways per cache, Mconys : conflict Matrix, Nprocs
: number of cores
1 rejectedTaskList.sort(decreasing Uiocked);
2 foreach rejectedTaskList i do

3 Nprocs.sort(decreasing u); Success = false;
4 foreach Njrocs j do
5 foreach Assoc k do
6 if IsAllocatable(j,i,Assoc,Mconys) # —1
then
7 allocate task i to core j in kth
associativity;
8 Ju = jJ.u + 1.Uocked;
9 Success = true;
10 goto line 11;
end
end
end
11 if Success==false then
12 | put task ¢ on spilledList ;
end
end
13 spilledList.sort(decreasing wyniocked);
14 foreach SpilledList i do
15 if Nprocs # baseFFD (i,Nprocs,false) then
16 | return Failed Allocation;
end
end

17 return Successful Allocation;
Algorithm 4: Colored First Fit Decreasing (CoFFD)—
Uncolored Lists

The task coloring stage outputs partially filled cores and
a list of tasks in rejectedT askList and spilledStack. These
are subsequently used by the second part of the alloca-
tion shown in Algorithm 4. Algorithm 4 first tries to allo-
cate tasks from the rejectedTaskList. It sorts the tasks of
rejectedT askList in decreasing order of their ujockeq. Each



iteration of the loop starting at line 2 then picks a task in
order and tries to allocate it in FFD fashion on Nproes. If
a task cannot be allocated to a core, it is moved to the
spilledList. Once the rejectedTaskList is empty, all the
tasks in spilledList are allocated using base F'F'D. If all the
tasks in spilledList are allocated, the task set is deemed to
be schedulable on a given number of Np,ocs cores. Other-
wise, Nprocs is incremented by the caller of CoFFD. This
process repeats until a schedule has been found.
Figure 5 depicts a step-by-step working example:

(a) Tasks are grouped in a conflict graph. Our example
has five tasks with ujockeq utilizations of 0.5, 0.3, 0.4,
0.2 and 0.2. Each task conflicts with its neighboring
task. Therefore, tasks form a chain of conflicts in the
graph.

(b) Our graph coloring algorithm is applied to split the
tasks in ColorLists. The task set is split into two
colors alternating between adjacent tasks in the same
colorList.

(c) We assume a multi-core system with single-way lock-
ing in the L1 cache. Since the aggregate utilization
is 1.6, Nprocs is initialized with the ceiling of system
utilization, which is 2. The tasks in each color List are
sorted in decreasing order of uiockeqa- The cores are
filled in a round-robin fashion. The green colorList
fits within core zero. Tasks in the red colorList are al-
located to core one. Tasks with higher utilization (0.5
and 0.4) are allocated to core one while the task with
utilization 0.2 is moved to the rejectedTaskList as it
exceeds the utilization bound of 1.

(d) The algorithm now tries to allocate the task from
rejectedTaskList to core zero. It fails due to task
conflicts with an already allocated task and due to the
availability of only one cache way for locking.

(e) At this stage, the task is moved to the spilledList. The
task’s utilization is increased to Uyniocked because the
previous steps show that the task cannot be allocated
on given cores without unlocking its locked regions.
This changes its utilization from 0.2 to 0.4.

(f) The task is allocated on core 0 with this inflated uti-
lization because such allocation does not violate the
utilization bound on core 0.
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Figure 5: Task Coloring in Operation

4.2.3 Algorithmic Complexity

Bin packing is known to be NP-hard. Any known optimal
solution is exponential in complexity. Besides experimen-
tal evaluations, it is important to assess the complexity of
sub-optimal, heuristic approaches to assess their scalable in
terms of number of tasks and cores. In the following, the
algorithmic complexity of GFFD and CoFFD are assessed.

For the purpose of complexity analysis, let the number of
tasks be X and the number of cores be Y. Let ¢ be the task
to be allocated next.

Algorithmic Complexity of GFFD: The outer loop
in algorithm 2 iterates over all tasks. The inner loop from
8-13 iterates over all cores. The function IsAllocatable it-
erates over the task task conflict set, Mconys, bounded by
the number of tasks, to detect if ¢t conflicts with any of the
tasks allocated to a core, i.e., IsAllocatable has an algorith-
mic complexity of O(X). Thus, the combined algorithmic
complexity of GFFD is O(Y X?)).

Algorithmic Complexity of CoFFD: CoFFD consists
of algorithms 3 and 4. The former algorithm colors the tasks
while allocating them to cores. It has two loops. The first
loop between lines 4 and 12 iterates over all tasks. The
nested computations of linear search at line 5, reduction
of number of conflicts for tasks conflicting with ¢ at line 8
and 12, and linear search at line 10 are bounded by the
number of tasks, i.e., they have an algorithmic complexity
of O(X) for a combined complexity of O(X?) for the first
loop. The second loop between lines 14 and 27 iterates over
all tasks while pushing them onto a stack. The nested loop
within iterates over the set of colors, which is bounded by
the number of cores, Y. The nested conditional at line 19
iterates over the set of neighboring nodes in the repopulated
graph whose cardinality is bounded by the number of tasks,
X. This implies an algorithmic complexity of O(Y X?) for
the second loop, which dominates the complexity of the first
loop, i.e., is the overall algorithmic complexity of algorithm
3. The algorithmic complexity of algorithm 4, sequentially
invoked next, is O(Y X?) following the same argument as
for GFFD since their algorithmic structure are equivalent in
terms of loop iterators, i.e., the rejected task list is bounded
by the number of cores. The loop iterating over the spilled
list is bounded by the number of tasks but its complexity
is dominated by the previous loop. Thus, the algorithmic
complexity of CoFFD is O(Y X?).

Thus, both the cache-aware algorithms deliver us the task
partitioning with algorithmic complexity of O(Y X?).

4.2.4 Optimized Region Resizing for Multi-cores

So far, we have assumed that conflicting tasks can only
share a resource either by locking all specified regions or
keeping all of them unlocked. This is useful when locked
regions should remain transparent to the programmer. We
can improve on our results if programmers can accurately
estimate the upper bound on the number of references to
each locked cache line (e.g., based on upper loop bounds),
which we later demonstrate by showing the effect of region
resizing in the evaluation section. This requires the speci-
fication of the number of references (Nr.ss) for each locked
cache line in listjocked_set- We can then compute the refer-
ence frequency, Ry, of a locked cache line for task t as

Ry = prels

‘When the alfocation of a task with WC ETjckeq has failed,
we need not inflate the WCET of the task directly from




WCETocked t0 WCET yniocked- Instead, we can resolve con-
flicts at a much finer granularity. If a task C has a conflict
with another task A at set m, and if Ry for set m of task
C is higher than Ry for set m of task A, then task C will
retain its locked line while task A will lose one. If multiple
cache ways are lockable, the locked cache line with the min-
imum Ry is replaced. This increases the utilization of the
task with the newly locked line.

Optimization-induced changes to task allocation
algorithms: Since a task will lock multiple cache lines, al-
location of a task to a core may affect different tasks on
different cache sets. Hence, the schedulability test has to
use the temporary WCETSs of all the affected tasks before
making permanent changes. The IsAllocatable procedure
performs a locked cache analysis and delivers the tempo-
rary WCETs along with a list of cache resizing specifications
if the schedulability test succeeds. In case the test fails,
the list of updates is rejected and no permanent changes
are made to the WCETs. In Algorithm 3, the heuristic
for selecting spilled tasks will change since partial lock-
ing of cache lines affects multiple tasks instead of dilat-
ing the WCET of just one. Thus, we spill the task whose
(Number_of_con flicting_cache_lines/degree) is minimal.

We can use the algorithms presented above in several
ways. If tasks can meet their deadlines only under locking
with WCET ocked, then these algorithms will allocate them
with WCETockeq. If WCET ockeda and WCET niocked are
provided, then both fully locked and fully unlocked scenarios
can be assessed by the algorithms. Dealing with execution
times at coarser levels seems more attractive to the devel-
opers. This allows them to select lockable lines with rough
estimate of the access patterns. Also, it may not be possible
to deduce an accurate number of references or the estimates
can be highly pessimistic, especially when data regions are
being accessed sparsely. Conversely, if data regions are be-
ing frequently referenced and references are uniformly dense
around locked regions, then the region resizing can be used
in conjunction with GFFD and CoFFD.

S. TASK-SET GENERATION

Due to the unavailability of a full blown real-time ap-
plication for massive multi-core architectures, we decided
to utilize synthetic task sets in our experiments. This al-
lows us to vary various parameters like the size of locked
regions, number of tasks, and conflicts, which in turn test
corner cases of our algorithms. The impetus towards mas-
sive multi-core architectures will allow such applications to
be prevalent in the future. We assume that static analysis
tools such as [18] deliver the WC ET ocked; WCET uniocked
and Ry, which is beyond the scope of this paper. Table 2
shows the architectural and task-set parameters of our ex-
perimental framework.

We generated the synthetic task-set values (period, locked
execution time and unlocked execution time) as follows:

1. Task sets with varying number of locked sets were gen-
erated with 1 to 4 locked regions. Each locked region
is given a random number of references. Every cache
line is subjected to a uniform number of references to
model spatial locality effects.

2. The total number of references were derived by aggre-
gating the number of references incurred within the
locked regions of the task. Since the programmer will
be locking the regions in L1 (highest utilization ben-
efit), we assume that these locked lines consume 80%

Table 2: System Parameters

| Parameter | Value |
Processor Model in-order
Cache Line Size 32B
L1 Cache Size/Associativity | 8KB/2-way
Lockable associativity 1/2
L1 Access latency 1 cycle
L2 Access Latency 10 cycles
External Memory Latency 100 cycles
Max. sets locked by a task 114/128
Min. sets locked by a task 8/128
Max. size of locked region 57 sets
Min. size of locked region 8 sets
Max. size of task sets 42
total tasks generated 126
Max. locked regions by a task 4
Min. locked regions by a task 1

of the total data loads. Out of the remaining 20%,
we assume 18% are hits in the L2 cache and 2% are
references to sensory data that goes off chip. We also
assume that every 5th instruction is a load. This lets
us infer number of instruction fetches that incur L1
cache hits (see Section 3). These assumptions allow us
to derive a W C ET}ocreq for a task.

3. To derive the WC ETyniocked, Wwe assume unlocked re-
gions to hit in L2 cache. If two locked regions are
accessed by two different paths, then the increase in
WCET is due to just one region (the one that dom-
inates the references), not both. Thus, we randomly
select tasks to accommodate such behavior. This also
results in varied increases in execution time between
WCET ockeqa and WCETyniocked across tasks.

4. Next, we assign periods to each task ¢ to group them
into different utilization categories: high utilization
(0.55 > u; > 0.40), medium utilization (0.40 > u; >
0.25), and low utilization (0.25 > u; > 0.15).

5. We assume that the tasks do not have any inter-task
dependencies.

6. We assume a task utilization equal to a task’s density,
i.e., a task’s deadline is equal to its period.

We present our experimental results for a system that sup-
ports single locked cache ways. Such a scheme is also appli-
cable when considering horizontal cache partitioning, where
all the lockable ways in each set are dedicated to a task.

Cache-unaware vs. Cache-aware: First, we compare
the cache-unaware schemes (FFD, NFFD) against cache-
aware ones (GFFD, CoFFD). Table 3 shows the best al-
locations produced by schemes within the two categories,
i.e., NFFD (cache-unaware) and CoFFD (cache-aware). On
average, the number of cores used by cache-aware schemes is
40% less than that of contemporary allocation schemes ap-
plicable for distributed core mechanisms. We also observe
that the contemporary FFD fails to allocate high utilization
task sets. It performs worse than NFFD for low utilization
task sets as shown earlier in Table 1.

Allocations while retaining locked state: Table 4 de-
picts the results of our algorithms when tasks are allocated
in locked state, i.e., with an execution time of WC ET}ocked-
The first column shows the number of tasks in the task-set.
The second and third columns show the number of cores
allocated by GFFD and CoFFD, respectively, when a task-
set is composed of high utilization tasks only. The fourth



Table 3: Allocated Cores: Cache-aware/-unaware

# of high util. med. util. low util.

tasks|unaware[aware|unaware[aware|unaware[aware
4 4 3 4 2 3 2
8 8 5 8 4 5 3
12 12 8 12 5 8 4
16 16 10 16 8 12 6
20 20 13 20 11 16 8
24 24 15 23 15 19 10
28 28 19 27 19 21 11
32 32 20 31 21 22 12
36 36 21 35 22 23 15
42 42 25 41 24 24 17

and fifth columns represent the same for medium utiliza-
tion tasks, and the sixth and seventh columns for lower uti-
lization tasks. Lower core allocations are depicted in bold
font. In all cases, CoFFD results in fewer cores allocated
than GFFD, especially as the number of tasks increases. As
more tasks are added to the system, the conflict graph be-
comes denser. CoFFD avoids conflicts strategically due to
its coloring scheme while the greedy scheme results in a less
conflict-conscious allocation.

Table 4: Allocated Cores: CoFFD/GFFD, All Tasks
Locked

# of high util. med. util. low util.

tasks | GFFD | CoFFD | GFFD | CoFFD | GFFD | CoFFD
4 3 3 3 2 3 2
8 6 5 5 4 4 4
12 9 8 6 5 5 5
16 11 10 9 8 8 8
20 13 13 12 11 12 11
24 16 15 16 15 16 15
28 20 19 20 19 20 19
32 22 20 22 21 22 21
36 24 21 24 22 23 22
42 27 25 25 24 24 23

Allocations with all or none: This experiment allows
allocation of tasks either with locking of all regions or while
leaving all of them unlocked. After a locked allocation with
WCETiockea is attempted, algorithms can fall back to an
unlocked allocation with WC ET niockea for a given task in
case conflicts have prevented the allocation on a given core.
Table 5 depicts the results with best results in bold face.
The first column shows the number of tasks in the task-
set. The second and the third columns show the number
of cores allocated by GFFD and CoFFD, respectively. Sets
with higher/medium utilization tasks result in similar alloca-
tions. This is because it is difficult for the higher utilization
tasks to be allocated under the inflated execution budget of
WCETyniocked- However, tasks with lower utilizations can
be allocate tasks with WC ETyniocked- The fourth and the
fifth columns depict the system utilization delivered under
the allocations of the algorithms. The last column shows
the decrease in system utilization achieved by CoFFD over
GFFD. The results indicate that CoFFD beats GFFD not
only in terms of allocating fewer cores but also in improving
system utilization by over 18% for task-sets with large num-
bers of tasks. This is because GFFD inflates the execution
budget of tasks that cannot be allocated to cores under lock-
ing. In addition, conflict analysis prior to allocation allows
the algorithm to apply heuristics to reduce the number of
tasks that remain unlocked. The results of CoFFD are due
to combined heuristics for selecting spilled tasks. Heuris-

tic 1 selects the task with the least m value,

which emphasizes the task’s degree. This prevents the num-
ber of cores to be increased when non-conflict placements
are still feasible. Algorithmically, CoFFD avoids spills of
tasks onto the stack (see Algorithm 4). Heuristic 2 selects
the task with the least WCET niockeq value. Of the two
heuristics, CoFFD selects the one that results in the alloca-
tion of fewer cores. For example, most task sets in Table 5
resulted in the allocation of fewer cores under heuristic 1,
but the last task set would have resulted in the allocation
of 18 cores whereas heuristic 2 reduced this allocation to 17.
This behavior was also observed while allocating tasks with

locked region resizing (see below).
Table 5: CoFFD vs. GFFD: Selected Tasks Un-

locked

# of | GFFD | CoFFD | GFFD | CoFFD Util.
tasks Util. Util. decreased
by CoFFD

4 2 2 1.48 0.88 40.54 %

8 3 3 2.05 2.027 0.88 %
12 5 4 3.77 3.06 18.83 %
16 7 6 5.07 4.13 18.54 %
20 9 8 7.33 5.86 19.64 %
24 11 10 8.6 7.04 18.13 %
28 12 11 10.2 8.65 15.19 %
32 14 12 11.57 9.7 16.16 %
36 15 15 12.67 10.27 18.94 %
42 17 17 14.04 11.87 20.37 %

Region Resized Locking: The next experiment as-
sessed the optimization of resizing locked regions for con-
flicted tasks. We observed that sets with high utilization
tasks result in dilation of WCET when locking fails, which
reduces their chances of being allocated. In Table 6, we
show the results for task-sets with low utilization tasks as
they benefited the most from region resizing. The first col-
umn shows the number of tasks in the task-sets. The second
and the third columns show the number of cores allocated
when partial locking is used by GFFD and CoFFD, respec-
tively. The fourth and fifth columns show the number of
allocated cores when tasks are not allowed to unlock any of
their regions. The results indicate that for higher number
of tasks, partial locking after resizing reduces the number
of required cores by 50%. It is interesting to note that the
greedy algorithm performed as well as CoFFD with com-
bined heuristics 1 and 2. This is due to the fine-grained
arbitration of conflict regions under resizing. For task-sets
with medium utilization tasks, CoFFD and GFFD allocate a
similar number of cores for all task-sets. Yet, CoFFD results

in 1%-14% reduced system utilization.
Table 6: Region Resizing

Number GFFD CoFFD GFFD | CoFFD
of w/ Partial | w/ Partial [ w/ locks | w/ locks
Tasks Locking Locking only only
4 2 2 3 2

8 3 3 4 4
12 4 4 5 5
16 6 6 8 8
20 7 7 12 11
24 8 8 16 15
28 10 10 20 19
32 10 10 22 21
36 12 12 23 22
42 13 13 24 23

6. CONCLUSIONS

The use of multi-core architectures is not yet prevalent in
real-time systems since guaranteeing predictability of hard
real-time tasks on such architectures remains a challenge.



Cache locking is a technique that is commonly employed to
improve the predictability of real-time task execution. This
work is the first to study allocation of real-time tasks with
locked caches on distributed cache systems. Contemporary
static scheduling schemes may not use locked caches. How-
ever, this renders certain high utilization tasks unschedula-
ble as their unlocked WCET is prohibitively high. A sim-
plistic solution would be to allowing locking of such tasks
and placing locked tasks onto different cores. We call this
Naive locked FFD (NFFD) as it locks certain tasks with
high utilizations and is cache-unaware.

This paper proposes two cache-aware algorithms for task
allocation in a multi-core environment where tasks are al-
lowed to lock cache lines in a specified subset of cache ways
in each core’s private L1 cache. The first algorithm, GFFD,
is an enhanced version of the First Fit Decreasing (FFD)
algorithm. The second, CoFFD, is based on a graph color-
ing method.Our best scheme, CoFFD, reduces the number
of core requirements from 25% to 60% compared to NFFD
with an average reduction of 40%. CoFFD consistently per-
forms better than GFFD as it lowers both the number of
cores and system utilization.

We also propose a mechanism that allows locked regions
to be resized. This scheme is applicable when the program-
mer can accurately provide the number of references to a
locked cache line, yet does not want to be concerned with
fine-grained locking decisions. The two algorithms were fur-
ther adapted to use task and reference information to choose
whether to retain a line in locked or unlocked state for con-
flicting regions. With such partial locking, the number of
cores in some cases is reduced by almost 50% with an in-
crease in system utilization of 10%. Owverall, this work is
unique in considering the challenges of future multi-core ar-
chitectures for real-time systems and provides key insights
into task partitioning with locked caches for architectures
with private caches.
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