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Abstract—In a distributed computing environment, real-time
tasks communicate via a network infrastructure whose stabil-
ity significantly impacts timing predictability. Network stability
includes two aspects. First, the network has to guarantee the
deadline requirements of real-time message transmissions in the
absence of network failures. Second, the network needs to support
dynamic recovery when network failures occur. This work
generalizes previous static routing approaches, which address
the first aspect of the network stability, by developing a dynamic
failure recovery policy and a protocol to address the second aspect
of the network stability. We derive new real-time forwarding
paths without compromising the capability of network devices to
guarantee deadlines of concurrent real-time transmissions. We
implement this mechanism on a network simulation platform and
evaluate it on real hardware in a local cluster to demonstrate its
feasibility and effectiveness. Experiments confirm the ability to
bound recovery delays based on the network parameters.

Index Terms—Distributed Real-Time Systems, Software-
Defined Networking, Bounded Network Failure Recovery

I. INTRODUCTION

A common feature of real-time tasks running in distributed
systems is that they require their message flows to be trans-
mitted in a timely manner so that these tasks can be finished
before their deadlines. A message flow consists of periodic
messages from one real-time task to another. In distributed
real-time systems, the set of such messages flows has to
be known a priori so that reservations ensure end-to-end
transmission times compliant with deadline constraints. In
order to realize such a transmission, several scheduling mech-
anisms have been proposed to control how the underlying
network transmits messages on network devices, e.g., rate-
controlled service disciplines [4], [16] and earliest-deadline-
first (EDF) packet scheduling [5], [17]. However, network
dynamics increase the complexity of designing a reliable real-
time network. Consider an Ethernet link or switch failure.
Message flows that originally utilized the failed hardware can
no longer be transmitted to their destinations. This results in
deadline misses for the corresponding real-time tasks unless
a failure handling policy is adopted, such as: (1) Multiple
disjoint forwarding paths can be utilized to transmit multiple
copies of every real-time message of a flow to avoid deadline
misses caused by a single network failure [10]. As long as
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at least one path is error-free, at least one message arrives
at the destination within its transmission deadline. (2) The
system can start a dynamic routing procedure to promptly es-
tablish new real-time transmission paths for affected message
flows [3], [11], [5]. The first approach has a lower resource
utilization rate since it requires one to reserve network re-
sources on all forwarding paths for the same real-time message
flow. The second approach has a longer transmission delay
since it requires the system to go through a recovery phase
to derive new forwarding paths before the messages can be
re-transmitted.

The first approach that transmits the same message flow via
multiple disjoint paths is necessary for real-time tasks with
short deadlines. In this case, the time of reserving new real-
time paths for these tasks could already exceed their deadlines.
However, in order to handle potential network failures in the
future, a dynamic routing algorithm can be adopted. This way,
new real-time paths can be established to replace the failed
ones.

Upon experiencing a network failure, a failure detection
mechanism first needs to recognize the failure and identify
affected real-time message flows. Then, a recovery mechanism
triggers a dynamic routing algorithm to derive an alternate
path for every affected flow. During the routing phase, packets
carrying the routing request and the transmission demand of
the message flow (e.g., message period and size) are sent.
A network switch, upon receiving a routing packet, needs to
perform an acceptance test to determine if this message flow
can be transmitted via this switch considering its resource lim-
itation (e.g., buffer size, compute capability, and link speed).
The routing algorithm needs to reserve network resources on
a path along switches for the message flow, and it needs to
derive the new path in a timely manner if transmission along
the original path failed.

The failure recovery mechanism needs to derive new paths
for multiple message flows, which can result in resource
conflicts on the switches. Fig. 1 demonstrates one potential
resource conflict situation. Message flow-1 was transmitted on
the path A→B→E and flow-2 via E→B→A before switch B
failed. Once B fails, the recovery mechanism causes the source
nodes of both flows to send out routing packets. The new
paths would be A→C→D→E for flow-1 and E→D→C→A
for flow-2 if both switches C and D had enough resources.
Now consider the situation when neither C nor D have enough
resources to forward both flows. When the routing packet for
flow-1 has reserved the resource on switch C while the routing
packet for flow-2 has reserved the resource on switch D,
resource conflicts have occurred on switches C and D between
the two flows. An effective conflict resolution is required to
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continue the failure recovery process. Assuming flow-1 is more
critical than flow-2, an ideal conflict resolution should only
reserve resources on path A→C→D→E for flow-1 instead of
reserving resources for flow-2 or none of the two flows.
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D

Flow-1

Flow-2

Fig. 1: Resource Conflict Example

Contributions: We propose a hybrid failure handling policy
to address these problems with the objective to provide robust,
fully distributed resilience to real-time flow. The basic idea
is as follows. We divide real-time message flows into two
classes according to their urgency, also suitable for mixed
criticality, and adopt different recovery policies for them when
a network failure occurs. For the real-time message flows in
the first class with short deadlines (Class-A), we statically
reserve multiple disjoint paths for each flow. For the real-
time message flows in the second class with long deadlines
(Class-B), we reserve a single path for each flow. When a
network failure occurs, the routing requests of Class-A flows
initially have a lower priority for deriving new paths than the
requests of Class-B flows. The intention is to derive new
paths for Class-B flows with a larger success rate and a
guaranteed upper bound for the recovery time if the network
resources allow, since their tasks are blocked waiting for a new
path to re-transmit their messages whereas Class-A messages
can use their alternate path. In addition, we adopt a timer-
based algorithm to reserve resources distributed on different
switches and resolve resource conflicts. This paper focuses
on a dynamic failure recovery mechanism, which derives new
forwarding paths for real-time message flows.

We obtained a copy of a real-time packet scheduler [9] that
operates within software-defined network routers to establish
real-time flow guarantees. We develop a failure recovery mech-
anism in this environment that processes routing packets while
still transmitting regular real-time message flows such that
their timing requirements are met. We adopt a server dedicated
to processing routing packets and transmitting background
traffic (i.e., non-realtime packets) when no routing packets are
pending. Similar to the Total Bandwidth Algorithm [12], we
assign a constant fraction of the network resources to this
dedicated server so that the transmission of regular real-time
packets is not affected. This is detailed in Section II.

II. DESIGN

This section first presents the background and then details
the design of a dedicated server for failure recovery of static
routing algorithm and packet scheduling. After that, it details
the failure recovery mechanism and the timer-based conflict
resolution algorithm. This section is concludes with the timing
analysis for failure recovery.
A. Background

We consider three types of packets transmitted in distributed
systems. (1) Packets transmitted by real-time tasks: These

packets can be classified as message flows. A message flow
consists of all the messages periodically released by the same
real-time task. Thus, these messages have the same source and
destination, relative transmission deadline, and are transmitted
via the same forwarding path in the underlying network in the
absence of network failures. Our model requires that the set
of real-time flows is known a priori. We use the term real-
time packets or real-time messages interchangeably to refer to
these packets. (2) Routing packets: When a network failure
occurs, routing packets are injected into the network to derive
new forwarding paths for affected real-time flows. Both real-
time packets and routing packets carry their relative deadlines.
The packet scheduler on network devices must schedule these
packets accordingly in order to avoid deadline misses. (3)
Packets transmitted by tasks with no deadline requirements
(i.e., background packets or background traffic): The packet
scheduler can drop background traffic when resource con-
tention occurs.

Without loss of generality, we use the term node to refer
to either a compute node that executes distributed tasks or
a network device that transmits the packets. We require that
clock times on nodes are synchronized by either the support
of hardware (e.g., global positioning system (GPS) of phasor
measurement units in the power grid) or a clock synchroniza-
tion protocol (e.g., the Network Time Protocol [8] running at
system startup time as well as periodically as a real-time task).

Given a set of real-time message flows and the configuration
of the underlying network (i.e., the network topology and
buffer capacity of each node), past work has proposed a
static routing algorithm to derive the forwarding paths for
these flows and a packet scheduler to deliver these flows by
their local deadlines [9]. The main idea is that the end-to-end
transmission delay of a real-time packet can be accurately
controlled by processing the packet at the designated time
on every node along its forwarding path. Fig. 2 depicts the
timeline for a real-time packet arriving at time t[v] on node v,
a node on the forwarding path. The static routing algorithm
derives the local relative deadline R[v] offline and calculates
the latest transmission time A[v] based on the local deadlines
of the packet on all nodes along the path.

After arrival, the real-time packet is considered not ready to
be processed by the packet scheduler until time A[v]− R[v],
when the packet is marked ready with a local deadline of
R[v]. The packet scheduler employs an EDF algorithm to
process all ready real-time packets. This involves searching
the node routing table to determine the forwarding policy for
the packet (e.g., the output link for the packet). Since the static
routing algorithm guarantees that all the real-time packets can
be processed before their local deadlines, the packet scheduler
can move this packet into the output queue at time A[v].
The packet is eventually sent onto the output link at time
A[v] + δ[v], where δ[v] is the queuing time for the packet
in the output buffer. With this algorithm, the scheduler can
control the duration for which any real-time packet can stay
on a node, thus avoiding resource contention between real-time
packets.

The packet scheduler provides a best-effort delivery service
to background traffic in two aspects. First, the scheduler only
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Fig. 2: Real-time Packet Phases on Node

processes background packets when no real-time packets are
ready to be processed. Second, when resource contention oc-
curs due to a burst of background traffic, the packet scheduler
drops only background packets.

The packet scheduler handles routing packets the same as
background packets. Since routing packets are transmitted
only when the failure recovery mechanism is triggered due
to network failures, they could potentially compete with real-
time packets for network resources. However, due to the timing
requirements of routing packets, they cannot be dropped
arbitrarily like background packets. In Section II-B, we present
the extension to the packet scheduler to accommodate routing
packets.

B. Packet Scheduling Extension

We utilize a dedicate server, the “routing packets server”
(RPS), on each node to process routing packets for dynamic
failure recovery. This server can be represented by RPS(α, β),
where α is the maximal portion of the buffer that can be used
to store routing packets on each node and β is the maximal
portion of the compute capability that the node uses to process
routing packets.

Building on a previous static routing algorithm [9], which
derives the forwarding paths for real-time flows, we accom-
modate the resource demands of server RPS(α, β). First, the
aggregate size of real-time messages that are resident on any
node v cannot exceed (1 − α)B[v] at any time, where B[v]
is the total buffer size of node v. Second, when processor-
demand analysis for EDF scheduling for real-time flows is
performed, the total processor utilization of real-time flows
cannot exceed (1− β).

Furthermore, the following rule determines which packet is
dropped when buffer contention occurs on a node. (1) When
the arriving packet is a background packet, drop it directly.
Background packets have the lowest priority compared to
real-time packets and routing packets. The node processes
background packets in a FCFS order. (2) When the arriving
packet is either a real-time packet or a routing packet, drop
background packets to meet the buffer requirement of the
arriving packet first. If the buffer is still insufficient, drop
routing packets. This happens when the aggregate size of
routing packets exceeds the upper memory bound αB[v]. We
assign different priorities to routing packets. The scheduler
drops the routing packets from lowest priority to highest
priority until the buffer size is sufficient for the incoming real-
time or routing packet. Section II-C presents the prioritization
rule for routing packets.

These policies and the packet dropping rule guarantee that
real-time packets can neither be dropped nor miss their dead-
lines once their forwarding paths have been derived offline,
since the aggregate size of routing packets does not exceed

αB[v] and the node does not utilize more than a proportion
of the compute capability β to process routing packets.

1 Message Scheduler Task (node v)
Inputs: Packet Input Queue Q, process quota rpq, next

transmission time Ā
2 t← current time
3 target real time packet x← nil
4 target background packet y ← nil
5 target routing packet z ← nil
6 for each packet m in Q do
7 if m is a real-time message then
8 if t ≥ Am[v]−Rm[v] and (x = nil or

Am[v] < Ax[v]) then
9 x← m

10 end
11 else if m is a routing packet then
12 if m is not pending and (z = nil or

m.Priority > z.Priority) then
13 z ← m
14 end
15 else if y = nil then
16 y ← m
17 end
18 end
19 flag ← false
20 if x 6= nil then
21 process and move x into intermediate queue
22 flag ← true
23 end
24 forward message with transmission time Ā to output

interface.
25 rpq ← rpq + (current time - t) * β
26 if x = nil and z 6= nil and rpq ≥ Trps then
27 RPS: process routing packet z with worst case

execution time Trps

28 rpq = rpq - processing time
29 flag ← true
30 end
31 if y 6= nil and flag = false then
32 move y into output interface
33 end
34 update local resource table driven by timers
35 rpq ← rpq + (current time - t) * β
36 if z = nil and rpq > Trps then
37 rpq ← Trps

38 end
Algorithm 1: Pseudocode for extended message scheduler

Algorithm 1 depicts the packet scheduler extended with
the RPS(α, β) server. A node executes this algorithm in
an infinite loop. Algorithm 1 uses variable rpq to store the
remaining CPU quota available for processing routing packets.
This quota is accumulated in a ratio of β relative to the time the
scheduler has spent on processing packets. A routing packet
can only be processed if the quota rpq exceeds the worst case
execution time of the RPS task (i.e., Trps, shown in line 26).
In Algorithm 1, lines 8 - 10 choose the real-time packet
with shortest deadline among all ready real-time packets (i.e.,
packets in the queue whose release time Am[v] − Rm[v] has
passed). Lines 11 - 14 choose the ready routing packet with the
highest priority. Routing packets can be marked as temporarily
pending to reduce resource conflicts, which will be discussed
in Section II-D. Lines 15 - 16 choose a background packet
in a FCFS order. After this, the scheduler processes the real-
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time packet x, sends it to the intermediate queue (lines 20
- 23) and moves the real-time packets from the intermediate
queue to the output interface at the latest possible time (i.e.,
when there is just enough time left to accommodate their worst
case transmission time). Then, the scheduler invokes RPS to
process the routing packet z if the quota is sufficient, i.e.,
rpq ≥ Trps (lines 26 - 30). The scheduler only forwards a
background packet y if no real-time or routing packets have
been processed in the current loop cycle (lines 31 - 33).

Lines 36 - 38 in Algorithm 1 reset rpq to Trps if no routing
packet is currently in the input queue. This is to prevent a
delay real-time packet processing when rpq is accumulated to
a large amount and a burst of routing packets arrives at the
node just at that point in time. Thus, this algorithm enforces
that the utilization of RPS never exceeds β.

C. Routing Packets Scheduling

In our system, network failures are detected at the desti-
nation nodes of real-time flows. Since the static routing al-
gorithm can derive the expected end-to-end transmission time
of a message in any real-time flow, the flow destination can
determine whether any of its messages is missing by utilizing
synchronized clocks. When this happens, the destination node
sends a routing packet into the network to derive a new path for
that flow. In addition to the destination and source nodes of that
flow, routing packets carry information on the criticality class
and the relative deadline of that real-time flow. Two criticality
classes are supported by the routing packet server RPS. Since
we assume that multiple copies of the same message of a
Class-A flow have been transmitted via multiple disjoint paths
and at least one of them arrives at the destination within its
expected transmission time, RPS assigns a lower priority to
the routing packets for Class-A flows than for for Class-B
flows. After all, the latter tasks are blocked waiting for a new
path to be discovered before they can transmit the messages.
Routing packets for flows of the same class are processed in an
EDF order (according to the relative deadlines of the flows).
Routing packets for the same flow are processed in a FCFS
order.

Furthermore, routing packets carry the period of the cor-
responding real-time flow and the size of a message in that
flow. RPS on a node uses this information to perform an
acceptance test, which checks if the aggregate size of all
real-time messages does not exceed the (1 − α)B[v] bound
and the utilization does not exceed (1 − β), as presented in
Section II-B, for a real-time flow transmitted via this node. We
use the predicate acceptable(v, f) to represent the acceptance
test, which returns true iff flow f passes the test on node
v. If the acceptance test is passed, this node becomes one of
the node candidates for the real-time flow. The goal of the
routing algorithm is first to find a new path that consists of
node candidates between source and destination of the flow.
The routing algorithm then reserves the resources on a single
new path for that flow.

We use different types of routing packets in different phases
of the routing algorithm. These types are explore, request,
cancel, and reserve routing packets. The functionality of

explore packets is to collect the information of node candi-
dacy when they are injected into the network. The candidate
information is stored in the data section of the routing packets.
To prevent infinite forwarding loops, the Time-To-Live (TTL)
field of explore packets is initialized to the number of nodes
in a given network. An explore packet is silently absorbed at
a node either when that node is the target node of the packet
or its TTL decreases to 0.

The functionality of request packets is to notify a node
candidate that a real-time flow requests to utilize this node
to transmit the flow. The functionality of reserve packets is
to reserve the resources on a node candidate for a real-time
flow. Thereafter, this flow can utilize that node to transmit its
messages with a deadline guarantee. When RPS processes a
request packet, it stores the information of the corresponding
real-time flow into a local table and marks the table record as
requested. After the request packet has requested resources
on all the node candidates on the path and arrives at the target
node, a reserve packet is sent back to change the record
status from requested to reserved. Once a reserve packet
is sent out, the system can subsequently utilize that path to
transmit the corresponding real-time flow. The objective of
cancel packets is to notify a candidate node that the resources
requested along this path have been canceled due to conflicts
caused by routing packets for another real-time flow with
higher priority.

Example: Fig. 3 shows this for flow-1: E-F -A. When node
F fails, failure recovery to derive a new path between nodes E
and A is triggered at node A (the destination of the flow). Node
A, after marking the resources for flow-1 as requested at
time 0, sends request routing packets. These request packets
subsequently mark the resources on nodes C, D, B, E as
requested for flow-1 at time 2, 4, 5, 6, respectively (shown in
Fig. 3b). Then, since the routing packet from node D arrives
earlier on node E relative to the routing packet from node
B, node D, after reserving its resources for flow-1 at time
12, sends a reserve routing packet back to node D, which
traverses backwards and reserves the resources on nodes D,
C, A for flow-1 at time 14, 16, 18, respectively (shown in
Fig. 3c). A new real-time path E-D-C-A is established for
flow-1.

The resources requested for flow-1 on node B must even-
tually be released so that they can be used to resolve requests
of other real-time flows. In order to do this, when a node
processes a request packet, the node sets up a timer in its
local table for the requested resources. We use notation T2
to represent this timer. When T2 for flow-1 expires at node
B, the resources requested for flow-1 are released (i.e., the
request record is removed from the local table of the node).
This avoids the overhead (and bandwidth) of cancel packets.

Multiple Failures: Gaps exist between the time when
resources on a node are requested and when they are eventually
reserved or canceled since these routing packets are processed
in a distributed fashion (e.g., the resources on node C are
requested at time 2 while they are reserved at time 16 in
Fig. 3). Resource conflicts could happen during these time
gaps. Notice that our approach is agnostic of the cause of
conflicts, i.e., failure of a node common to two paths vs. failure
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Fig. 3: Flow-1 A-F -E disrupted due to failure of F , new path established via A-C-D-E.
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(b) Cancel Requests for Flow-1

Fig. 4: Higher prio request for flow-2 from A to G causes conflict at C with lower prio request for flow-1 after F failed (as
before); to resolve, cancel flow-1 request A-C-D-E before its path is reserved; flow-2 acquires A-C-G before flow-1 gets

A-B-E.

of two different nodes on two paths are handled in the same
manner. Fig. 4a depicts one such case for a conflict between
flow-1 (see above) and flow-2, where the latter is requesting
a path from A to G. A request packet to find a new path for
flow-2 arrives at node C at time 7. Node C must process this
request packet according to the priority of both flows. Had
flow-1 had a higher priority, the request packet for flow-2
would have been discarded at node C since the requirement
for flow-1 should be met first. But this is not the case. Instead,
flow-2 has a higher priority, so the resources requested by
flow-1 are canceled since they have not been reserved yet (no
green path established yet). Thus, cancel routing packets are
injected into the network by node C to cancel the requests
for flow-1. Fig. 4b depicts the cancellation of the requested
resources for flow-1 on nodes C, D, and E at time 8, 10, 12,
respectively. Subsequently, node E sends a reserve packet
for the path A-B-E for flow-1 when it receives the request
packet from node B. Node G sends a reserve packet for the
path A-C-G for flow-2.

In Fig. 3c, the reserve packet for flow-1 is processed by
node E at time 12 and by node A at time 18. The requested
resources for flow-1 must not be canceled during this period.
Otherwise, the reserve process cannot succeed. We adopt a
timer T1 to guarantee this. When a node processes a request
packet, the node sets up timer T1 in its local table for the
requested resources. When T1 expires at a node, the resources
requested for that flow on the node become exclusive. No
other request packets even with a higher priority can cancel
exclusive resources. To guarantee that the reserve process
can always succeed, the target node will not send back a
reserve packet corresponding to a request packet until T1
has expired. To avoid exclusive resources being released due
to the expiration of timer T2, the time difference, T2−T1, must
exceed the aggregate processing time for the reserve packet
on every node on the path. The resources in either exclusive
or reserved state can be utilized to transmit the corresponding
real-time flow.

Fig. 5 summaries the resource state transitions during the
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failure recovery process. Timer T3 is used to change from
the reserved state back to the available state when the node
has not utilized these resources to transmit any message from
the corresponding flow once the timer expires due to network
failures. T3 is reset to a value according to the period of
the flow (e.g., twice the flow period in our implementation)
whenever the node processes a message from that flow.

Available

Requested

Exclusive

Reserved

Request Packets

T1 Expires

Reserve Packets

Cancel Packets

T2 Expires

T3 Expires

T2 Expires

Fig. 5: Resource State Transitions

D. Failure Recovery Policy
With the failure recovery mechanism presented in Sec-

tion II-C, we adopt a one-way failure recovery policy for
Class-B flows and an alternate-path recovery policy for Class-
A flows. The objective of these policies is to provide a fast
recovery for Class-B flows, which are awaiting a new path to
retransmit their messages, while reducing the total amount of
the resources that are marked as exclusive at the same time
in the network, since the exclusive state prevents the resources
to be reserved by another flow with even higher priority.

The one-way recovery for a flow f in Class-B consists of
the following steps:

(1) When the destination node of f does not receive a
message for f at the expected arrival time, it injects request
routing packets on the network. These packets carry the ID of
the missing message and the flow, which is used as the unique
identifier for this instance of failure recovery.

(2) When an intermediate node processes a request packet
and flow f passes the acceptance test on the node, the node
associates the incoming port of the packet with the requested
resources and stores this information in the local resource
table. When the requested resources are associated with just
one incoming port, the request packet is forwarded to all
output ports. Otherwise, no request packet is forwarded (to
avoid duplicates).

(3) When a request packet arrives at the source node of flow
f at time t, the source node creates a corresponding reserve
packet and marks it pending with an expected response time
t + T1. If a cancel packet for this path arrives at the source
node before t+ T1, the reserve packet is ignored when it is
processed. Otherwise, reserve is sent to the destination node
via a path constructed from the incoming ports associated with
the resources. When multiple incoming ports are associated
with the resources on any node, the port first associated is
chosen to forward the reserve packet to the next node.

(4) The source node can immediately utilize the path to
transmit messages once a reserve packet is sent. Since real-

time messages and the reserve packet are processed by differ-
ent servers in the scheduler, a node can utilize the resources in
exclusive state to transmit real-time messages. These resources
are eventually reserved when the reserve packet is processed.
Thus, the transmission of the reserve packet concludes this
failure recovery instance. No further routing packets for the
same instance are required to be processed.

When network conflicts occur on any node during this
process, that node must inject cancel packets to remove the
corresponding resource requests. When an intermediate node
processes a cancel packet, it removes the incoming port of
the packet. If no more incoming ports are associated with the
requested resources, the node removes the request information
from the local table and forwards the cancel packet to all
output ports. Otherwise, the request information is kept in the
local table and no cancel packets are forwarded.

Class-A flows utilize a two-phase recovery protocol. Let
a Class-A flow have an initial set of n alternate paths with
a requirement to maintain at least k alternative paths, where
k < n. Since Class-A messages are multicasted along the
set of alternative paths, the destination node can count the
number of redundant messages received. We distinguish these
two cases:

(1) If a Class-A flow degrades to p paths, where k ≤ p < n,
then the same one-way failure recovery protocol is initiated by
the destination node, yet with a lower priority than Class-B
routing requests for path discovery. After all, with p the flow
still has k or more paths and is not disrupted.

(2) If only p′ paths with p′ < k remain or if a destination
node D of such a flow does not receive a message at the
expected time, then the recovery protocol is re-issued with a
higher priority than Class-B routing requests. Should lower
priority requests be encountered on routing paths during this
discovery, then these requests are upgraded to the higher
priority and cancel requests are issued for lower requests that
have not been confirmed yet by a reservation.

This policy integrates both classes of flows under a com-
mon recovery protocol, yet allows prioritization of recovery
requests decoupled from the priorities of regular message
delivery. And while we distinguish only Class-A/B flows
here, a hierarchy of classes with a matrix of specific priorities
per class and per redundancy level p ∈ {0..n} could be
supported.

E. Timing Analysis

Considering the limitations of the network resource capacity
and the unpredictability of network failures, our mechanism
cannot provide a guaranteed service that always derives new
forwarding paths for all real-time flows affected by network
failures. However, the choice of parameters α, β, T1, and T2
can be selected to ensure that a desired number of message
flows can recover their paths. A larger value of α allows more
routing packets to reside on a node at any time. β is the CPU
quota replenishment rate for the routing packet server. Trps

β is
the time for the server to accumulate sufficient quota to process
one routing packet. T1 determines the delay for a reserve
packet that is sent back to select the new path. T2 determines
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the delay before the exclusive resources become available for
other flows. Thus, it determines the least inter-arrival time of
network failures that our system allows.

When a network failure occurs, all flows that were transmit-
ted via the failed nodes or links need to recover their paths. Our
system provides a guaranteed upper bound for the recovery
time of a flow in Class-B when network resources suffice and
provides a best-effort recovery service for a flow in Class-A.
For a flow f(i) in Class-B, its recovery time RTB(i) can be
upper bounded by the sum of (1) the aggregate processing time
on each node on the path that transmits the request packet
for the corresponding final reserve packet, (2) the aggregate
propagation delay on the links of that path, and (3) delay T1
before sending the final reserve packet. Eq. 1 expresses this
upper bound.

RTB(i) ≤ TDB(i) + T1, where

TDB(i) =
∑

0≤j<n(i)

(x(i, j) ∗ Trps
β

+ e) + L(i). (1)

TDB(i) denotes the end-to-end transmission delay for the
request packet. n(i) represents the number of nodes in the
path of the request packet. x(i, j) indicates the number of
routing packets for higher priority flows processed by node
j in the path before processing f(i)’s request packet. Thus,
x(i, j) ∗ Trps

β is the time for the node to replenish the process
quota for f(i)’s request packet. e is the execution time of the
task in Algorithm 1 (including the routing packet processing
time Trps for the request packet). L(i) is the aggregate
propagation delay on that path.

The following algorithm determines x(i, j) in Eq. 1 offline.
Given a network failure, the affected flows can be sorted
increasingly by their relative deadlines, f(0), f(1), ..., f(s−1),
where s is the number of affected flows. If two flows have the
same relative deadline, the flow with a smaller id exists first
in the sorted sequence. Thus, i flows have shorter deadlines
than flow f(i). Since the packet scheduler processes routing
packets in an EDF order, the routing packets of flow f(i) need
to wait for the routing packets of the previous i flows to be
processed first on the same node. Given a flow with a higher
priority f(k), where 0 ≤ k < i, the jth node in our system can
receive up to k+ 1 request packets and k+ 1 cancel packets
on any one of its incoming links that the destination node of
flow f(k) can reach during the failure recovery. Let p(j, k) be
the number of those incoming links. Thus, the total number
of routing packets of all flows with higher priorities than flow
f(i) is upper bounded by

∑
0≤k<i(2 ∗ (k + 1) ∗ p(j, k)). In

addition, since the packet scheduler is non-preemptive, the
routing packet of flow f(i) can potentially wait for the process
of one routing packet of any flow with a lower priority. Eq. 2
summaries the upper bound for x(i, j).

x(i, j) ≤ 1 + 2 ∗
∑

0≤k<i

(k + 1) ∗ p(j, k). (2)

Furthermore, we adopt the following algorithm to determine
the upper bound for the number of nodes, the corresponding
propagation delay of the path, and the number of incoming
links on every node for every affected flow (i.e., to determine
n(i) and L(i) in Eq. 1 and p(j, k) in Eq. 2).

(1) Remove the network components (links or nodes) as-
sumed to have failed from the network topology. Sort the
affected flows increasingly by their relative deadlines into
flows f(0), f(1), ..., f(s). Perform steps (2)-(5) for every flow
f(i) in the sorted order.

(2) Perform a depth-first traversal of the network graph
starting from the destination of flow f(i). For every node this
traversal is visiting, we conduct an acceptance test for flow
f(i). If flow f(i) fails the acceptance test on a node or that
node is the source node of flow f(i), the traversal does not
search deeper. A node is marked as a candidate for flow f(i)
if f(i) passes the acceptance test on that node. The resources
that flow f(i) requires on candidate nodes are excluded in the
acceptance test for subsequent flows.

(3) The depth-first traversal simulates the forwarding pro-
cess for routing packets of flow f(i). Thus, the number of
incoming links for flow f(i) on every node can be determined
after the traversal.

(4) Find the path from the destination to the source node of
flow f(i) of the longest recovery time RTB(i). The path must
contain only candidate nodes for flow f(i). A modification of
Dijkstra’s shortest path algorithm can achieve this.

(5) n(i) and L(i) are calculated as the number of nodes and
the propagation delay on the path found in step (4).

The upper bound for the recovery delay in Eq. 1 can only be
guaranteed if no routing packets for flow f(i) are dropped and
no resource requested by a flow with a lower priority becomes
exclusive. Thus, the buffer reserved for routing packets on
every node must be greater or equal to the aggregate size of
all routing packets for f(i) and all other flows with higher
priorities. The transmission delay for the request packet must
not exceed T1 as expressed by Eq. 3.

x(i, j) ∗ size ≤ α ∗B[j] ∧ TDB(i) ≤ T1. (3)
Eq. 3 can check if the upper bound for the recovery delay

for a flow in Class-B is guaranteed for a given α, β, and T1.
We next evaluate this upper bound experimentally.

F. Discussion

We first discuss under what conditions a high priority flow
is guaranteed to derive a new path if sufficient resources exist
for this flow but other lower priority flows are simultaneously
trying to find new paths. Let us assume that all flows have
disjoint priority levels. We can then distinguish two cases:

(1) If a resource conflict beyond network capacity exists at
a node during path recovery for two or more flows, then the
high priority flow is guaranteed to recover while the lower
priority one(s) beyond capacity will not find an alternate path.
This is implied by the upper bound for recovery delay of a
flow established in Sec. II-E. As stated, if the buffer reserved
for routing packets on every node is greater or equal to the
aggregate size of all routing packets for f(i) and all other
flows with higher priorities, then Eq. 3 can be used to check
if the upper bound of Eq. 1 can be satisfied for the selected
(T1, alpha, beta) values. Within this upper bound, a new path
will be found by the high priority flow if one exists.

(2) If no resource conflict exists for some (low priority)
flow, then this flow may recover a path before any other (high
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priority) flow. This situation can only happen if the low priority
flow finds a path p′ and reserves it prior to the path discovery
for the high priority flow reaching any nodes of p′. To prevent
such recovery races, T1, the delay on the source node, can be
set to exceed the propagation delay of reserve requests along
any possible recovery path for higher priority flows, e.g., 50ms
for a 5ms propagation delay per hop and a maximum of 10
hops.

(3) We next argue that the state diagram in Fig. 5 pre-
vents deadlock. If a node fails, any node along this path
in reserved state will eventually give up its resources and
become available, namely when timer T3 expires (since the
node could not establish a route to transmit a given message
associated with this path and timer). Also, any nodes along
such a path in exclusive or requested state will eventually
give up its resources and become available when T2 expires.
Furthermore, any node in requested state will give up resources
if its flow does not use it within a delay of T1 from entering
this state. Hence, any inactivity due to failures results in the
release of resources. We further argue that a livelock cannot
occur under the conditions described in (1) and (2).

III. EVALUATION

A. Evaluation Platform

We have implemented a virtual switch based on the structure
of commercial physical switches [1]. This virtual switch
implements a store-and-forward model with packet queues at
output ports. A packet arriving at any input port is first put
into shared memory on the switch. Then, the routing processor
processes the packet to determine the forwarding rule and
forwards the packet to the output queue of the corresponding
output port. Fig. 6 depicts the structure of such a virtual switch.
The input queue (marked gray) serves as a means to simulate
propagation delays on network links. A packet is moved from
the input queue to shared memory only after the simulated
delay of that packet has passed.
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Fig. 6: Virtual Switch Structure

Each virtual switch is executed in a user-level process on
Linux and utilizes two Posix threads to simulate the behavior
of input/output ports and the routing processor, respectively.
Virtual switches use UDP transmissions to simulate network
links. The first thread, the so-called “port thread”, is responsi-
ble for message transmissions. It uses the recvfrom system
call to receive messages and puts them into the input queue. It
then moves packets into shared memory after their simulated
delay has passed. The port thread also uses the sendto system

call to forward messages in the output queues to the next
hop. The second thread, the “routing thread”, is responsible
for message processing. It determines the routing policy via
the local routing table and moves real-time and background
messages into the corresponding output queues. In addition,
the routing thread responds to routing packets according to
the failure recovery policy presented in Section II-D. As a
result, the routing thread modifies the local routing table to
support dynamic failure recovery.

We evaluate our protocol on this virtual platform on a
cluster, where each node features 2 AMD Opteron 6128
(Magny Core) processors and 8 cores per socket (16 cores
per node) with 32GB DRAM and Gigabit Ethernet. Reported
results are the average over 10 runs with a negligible standard
deviation in our virtual switch environment.

B. Setup-1

Configuration: We isolate one switch node to simulate a
network failure and measure the end-to-end response time of
real-time flows before and during this failure. In addition,
we measure the recovery time for flows whose forwarding
paths are disrupted by the failure. Since our approach is
agnostic of the cause of conflicts, failures of flows crossing a
common failed node are handled the same as failures of two
different nodes, each affecting disjoint flows, i.e., the following
scenarios cover multiple simultaneous failures.

A

B

D

C
Task Server

E

Task Server

Task Server

Fig. 7: Failure Recovery Setup (1)

In this experiment, switches A - E are interconnected as
shown in Fig. 7. One task server is attached to each of the
switches A, D, and E to generate transmission workloads.
Table I presents the temporal properties and forwarding paths
of these transmissions before the network failure occurs. All
flows are Class-B real-time flows and have the same phase.
Switch B fails 10s after the system starts. Then, the failure
recovery procedure for flows 1 - 3 is triggered at the task
server on their destinations. We add a 5ms delay on the UDP
transmissions to simulate the propagation delays on physical
links in wide-area networks. We provide a sufficient buffer
size for routing packets (i.e., α is sufficient) in this experiment.
Then, the value of β is changed and we measure its impact
on the transmission times of packets for real-time flows 4 - 8
and the recovery time for flows 1 - 3.

Results: The experimental results show that the end-to-end
response time for real-time flows before network failures are in
the range [10.1ms, 10.6ms]. During failure recovery for flows
1 - 3, the worst case end-to-end response time for other flows
increases to 10.9ms. The non-preemptive procedure in lines 26
- 30 in Algorithm 1 (i.e., Trps), which processes one routing
packet at a time, contributes to the increase of the response
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TABLE I: Workload (1)

Flow Period Relative Deadline Forwarding Path
(ms) (ms)

1 55 80 A→B→D
2 55 90 A→B→D
3 55 100 A→B→E
4 40 100 D→C→A
5 50 100 D→C→A
6 40 100 A→C→D
7 50 100 A→C→D
8 60 100 A→C→E

time for real-time packets. The measured Trps is 0.4ms in
our system. This overhead is constant, i.e., it is unaffected by
changes in β.

Observation 1: Our failure recovery protocol can delay the
transmission of a real-time packet by up to time Trps on each
switch on the forwarding path, where Trps is the worst-case
processing time for one routing packet.

Fig. 8 depicts the worst-case failure recovery time for flow
1 - 3 when β is changed. For example, when β is 0.10 (i.e.,
up to 10% CPU time can be used to process routing packets
on each switch), the worst-case recovery time is 10.2ms for
flow 1, 27.9ms for flow 2, and 28.6ms for flow 3. Since the
accumulated quota rpq at the time of a failure is sufficient to
process one routing packet, the request packet for flow 1 can
be processed immediately when it arrives at switches D, C,
and A, respectively. Thus, the recovery time for flow 1 is just
the one-way transmission time equivalent to a regular real-time
packet. This recovery time remains constant even when β is
changed (depicted by the green line in Fig. 8). However, the
routing packets for the highest priority flow could experience a
delay of up to Trps

β on each switch on the path if the processor
is executing the non-preemptive procedure (lines 26 - 30 of
Algorithm 1) for another flow with lower priority.
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Fig. 8: Failure Recovery Time Results

The request packets of flow 2 share the same forwarding
path with the request packets of flow 1. Thus, the processing
quota rpq has to be replenished before any request packet
for flow 2 can be processed. This contributes a delay of up to
4ms (i.e., Trps

β ) on each switch when β is 0.10. The measured
value for e in Eq. 1 is 2.0ms in our system. In addition, no
cancel packets are generated due to resource conflicts in this
setup. x(i, j) can be upper bounded by 1 +

∑
0≤k<i p(j, k) in

Eq. 2, which is 2 for flow 2 on each switch. Thus, TDB(i)

in Eq. 1 derives a safe upper bound for the recovery time for
flow 2. This even holds when β is changed (see Fig. 8).

Flow 3 has a similar (even shorter) recovery time compared
to flow 2, even though its routing packets have a lower priority.
This is due to flow 3 using a different forwarding path for
its request packet, which is E→C→A. When its request
packet arrives at switch A, the quota rpq has been partially
replenished on A. Thus, the quota does not have to wait for an
entire Trps

β round to become sufficient to process the request
packet for flow 3. However, the recovery time for flow 3 shows
the same decreasing trend when β is increased.

Observation 2: The recovery time for any flow decreases
when β increases, since this increases the replenishment rate
for the processing quota of routing packets.

However, 1− β is the maximal system utilization for real-
time packet transmissions. Thus, given a specific task set, one
can determine the system utilization when the static routing
algorithm is performed and determine the maximal value
for β, which provides the largest replenishment rate for the
processing quota of routing packets.

C. Setup-2
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Fig. 9: Failure Recovery Setup (2)

Configuration: We create a complex network topology and
analyze the routing process for failure recovery. Switches A
- F are connected as shown in Fig. 9. Table II presents
the temporal properties and forwarding paths of these trans-
missions before and after the network failure occurs at time
t=0, which disconnects switch F . Numbers on the edges in
Fig. 9 indicate the propagation delays of the corresponding
links (in ms). We limit the buffer size on switch E so that
only one flow can utilize it to forward its packets. This
subsequently demonstrates the functionality of cancel packets.
Here, β = 100% so that the routing packets can be processed
once they arrive at a switch in this experiment.

TABLE II: Workload (2)

Flow Period Relative Deadline Forwarding Path Alternate Path
1 50 100 A→F→D A→B→D
2 50 80 A→F→C A→B→E→C

Analysis: The task servers start the failure recovery pro-
cedure for both flows at the destination node (i.e., node D
for flow 1, node C for flow 2) since we set the delay to
trigger failure recovery to T2 = 200ms in this experiment.
Fig. 10 depicts the routing process. Blue, red, or yellow circles
indicate that the resources on the corresponding node are
requested for flows 1, 2, or both flows, respectively. Solid
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blue and red edges indicates a routing packet transmission for
flows 1 and 2, respectively. For example, the edges labeled 1
and 2 represent the events that node D transmits one request
packet to each of the nodes E and B at time 200. A dotted
edge denotes a change of resource request state on a node.
For example, edge 3 indicates that the resources requested by
flow 1 on node E at time 205 are seized by flow 2 at time
210 due to the resource conflicts on E and since flow 2 has
a shorter relative deadline (i.e., higher priority). As a result,
cancel packets are sent to cancel the requests for flow 1 on
nodes B and A (edges 4 and 5). However, the resources on
nodes B and A are requested for flow 1 again at time 230 and
235 due to the processing of the routing packet on an alternate
path D→B→A (edges 2 and 6).

In addition, Fig. 10 demonstrates the cases when a routing
packet is not forwarded as follows. (1) White circles: the
corresponding nodes have no outgoing ports for the arriving
routing packets. (2) Pink circles: the corresponding nodes are
the destinations of the flows. (3) Grey circles: the flows have
multiple incoming ports at the corresponding nodes.

The task server on A ultimately sends reserve packets
to reserve the forwarding path A→B→D for flow 1 and
A→B→E→C for flow 2.

Notice that scenarios with Class-A flows can be reduced to
two cases depending on how many alternative paths p remain.
If sufficient paths k ≤ p remain, Class-B recovery is only
impacted minimally by Trps per switch (see Observation 1).
If p < k paths remain, Class-A recovery requests impose a
blocking term on Class-B recovery. In general, this blocking
term b is bounded by

b =
∑
i∈hp

RTB(i) + TDB(i), (4)

where hp denotes the set of higher priority flows, each of
which requires a recovery cost of the end-to-end transmission
delay RTB for requests, issuing the initial reserve packet delay
T1 (included in RTB), and TDB for its propagation back, see
Equation (1). If a priority matrix is used, the upper bound is
conservatively given for k = 0 (first column), or bounds can
be computed separately for each k-level in analogy to mixed-
criticality systems.

Observation 3: Recovery overhead can be upper bounded
analytically by the aggregate of a round-trip end-to-end trans-

mission delay over all higher priority flows.
In the example of Setup-2, flow 1 issues a request at

time 200 simultaneous to flow 2. By considering only the
propagation delay L(i) in Equation (1) and assuming sufficient
server capacity, the longest request for recovery path of flow-2
is C −E −D−B −A with length 10 + 5 + 30 + 5 = 50, or
a round-trip total of 50 + 50 = 100. This is an upper bound
for the actual delay of C−E−B−A and back for a total of
25 + 25 = 50. Notice that the longer request via D is silently
absorbed at node B by our protocol.

In Fig. 10, only request but not reserve packets are depicted.
Flow 2 discovers its alternate path at time 225 (and reserves
it at 250, now shown). Flow 1 receives cancellations until 225
on its attempt to reserve a path via E, but the simultaneous
request to B is granted at time 230 and makes it to the source
node A at 235. Hence, the actual blocking term for flow 1
is zero in this case. Hence, our bound holds, even though it
appear conservative in this case. Optimizations are possible by
considering overlapping paths (see silent absorption above) but
would be hard to handle for pairwise path dependencies in the
general case.

IV. RELATED WORK

Our failure recovery mechanism establishes new real-time
forwarding paths dynamically when network failures have
disrupted the old paths. Past work has proposed different
mechanisms to establish communication channels to support
the real-time requirements of data transmissions. Our work
differs as follows. First, our mechanism considers potential
resource conflicts when multiple tasks intend to recover their
paths at the same time. Past work does not consider the
impact of these conflicts [3], [5], [2], [6] or only provides
network resources to the requests on a first-come-first-served
basis [14]. Instead, our mechanism allocates resources to the
transmission with highest priority first, which resolves the
problem discussed in Section I. Our work is more suitable
when failures disrupt multiple real-time channels.

Second, past work utilizes centralized or hierarchical sched-
ulers to govern the admission of real-time flows that need to
reserve resources for their transmissions [11], [7]. Our mecha-
nism is more robust as it is fully distributed. While the failure
recovery procedures are triggered by the destination nodes of
the corresponding real-time transmissions, the network devices
progress autonomously to establish new paths. To achieve this,
we store resource states in a local table on each network
device, which is similar to D2TCP [5].

Third, our mechanism provides deadline guarantees to real-
time transmissions at the same time when the failure recovery
is in progress. This differs from past work that utilizes
either rate-controlled service disciplines [4], [16] or EDF
scheduling [5], [17] without dynamic rerouting reservations.
We combine the benefits of an EDF-based scheduler for real-
time packet transmissions [9] with a routing packet server on
the basis of the Total Bandwidth Server [12] to process routing
requests. The goal is to prevent deadline misses for real-time
transmissions caused by the interference of failure recovery.

Our work derives disjoint forwarding paths for real-
time flows with short relative deadlines (i.e., in Class-A).
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We believe that disjoint path algorithms based on network
graphs [13], [15] can be extended to establish new paths
required for real-time constraints.

V. CONCLUSION

We have presented a failure recovery mechanism to dynam-
ically establish new forwarding paths for real-time transmis-
sions in a distributed computing environment. Our mechanism
considers the priorities of the corresponding real-time tasks
when resource conflicts occur during the failure recovery
process, which allocates resources to the transmission with
higher priority first. In addition, we bound the computation
capability and size of the device buffer of the server dedicated
to processing dynamic routing requests to prevent interference
of real-time transmissions. Thus, deadlines can be guaranteed
to real-time transmissions when failure recovery is in progress.
We have implemented a virtual platform and the failure recov-
ery mechanism to evaluate our approach. The virtual platform
utilizes Linux user-level processes and threads to simulate
the behavior of network devices. It utilizes UDP to simulate
data transmissions over network links. We have evaluated this
system on a local cluster to assess the effectiveness of our
mechanism.
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