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Abstract—Fused CPU-GPU architectures integrate a
CPU and general-purpose GPU on a single die. Recent
fused architectures even share the last level cache
(LLC) between CPU and GPU. This enables hardware-
supported byte-level coherency. Thus, CPU and GPU can
execute computational kernels collaboratively, but novel methods
to co-schedule work are required. This paper contributes three
dynamic co-scheduling methods. Two of our methods implement
workers that autonomously acquire work from a common set
of independent work items (similar to bag-of-tasks scheduling).
The third method, host-side profiling, uses a fraction of the total
work of a kernel to determine a ratio of how to distribute work
to CPU and GPU based on profiling. The resulting ratio is used
for following executions of the same kernel.

Our methods are realized using OpenCL 2.0, which introduces
fine-grained Shared Virtual Memory (SVM) to allocate coherent
memory between CPU and GPU. We port the Rodinia Bench-
mark Suite, a standard suite for heterogeneous computing, to
fine-grained SVM and fused CPU-GPU architectures (Rodinia-
SVM). We evaluate the overhead of fine-grained SVM and
analyze the suitability of OpenCL 2.0’s new features for co-
scheduling. Our host-side profiling method performs competi-
tively to the optimal choice of executing kernels either on CPU
or GPU (hypothetical xor-Oracle). On average, it achieves 97%
of xor-Oracle’s performance and a 1.43× speedup over using
the GPU alone (standard in Rodinia). We show, however, that in
most cases it is not beneficial to split the work of a kernel between
CPU and GPU compared to exclusively running it on the most
suitable single compute device. For a fixed amount of work per
device, cache-related stalls can increase by up to 1.75× when
both devices are used in parallel instead of exclusively while cache
misses remain the same. Thus, not the cost of cache conflicts, but
inefficient cache coherence is a major performance bottleneck for
current fused CPU-GPU Intel architectures with shared LLC.

Index Terms—Heterogeneous computing, integrated architec-
ture, scheduling, performance tuning

I. INTRODUCTION

With the release of AMD’s Fusion and Intel’s Ivy Bridge
architecture in 2011, the trend of processor integration resulted
in fused CPU-GPU architectures that integrate a CPU and
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Fig. 1: High-level overview of a fused CPU-GPU architecture
with shared last level cache

general-purpose GPU on a single die. The main benefit of
such an integration is that time-consuming memory transfers
between main memory and dedicated GPU memory become
unnecessary. Instead, CPU and GPU access the same physical
memory such that zero-copy transfers can be employed. Zero-
copy transfers ensure coherency and translate pointers to
memory buffers for the common CPU and GPU address
space, but do not actually transfer data. However, such an
integration introduces a memory bottleneck, because CPU and
GPU compete for memory bandwidth of the shared physical
memory.

In more recent architectures, e.g., Intel Broadwell and
beyond, CPU and GPU were further integrated so that they
access the shared last level cache (LLC) as shown in Fig. 1.
This enables hardware-supported byte-level cache coherency
between CPU and GPU. Effectively, CPU and GPU can
execute computational kernels on the same data in parallel and
solve problems collaboratively. In this case, the shared LLC
has the potential to alleviate the memory bottleneck present in
earlier fused CPU-GPU architectures (without a shared LLC),
because it can serve accesses to a common working set instead
of requiring frequent main memory accesses [1].

The idea of heterogeneous compute devices performing
computations on a common memory is also captured in the
Open Compute Language (OpenCL) standard 2.0. Most promi-
nently, OpenCL introduces Shared Virtual Memory (SVM),
i.e., a shared virtual address space between heterogeneous
compute devices in an OpenCL program. SVM is also sup-
ported by fused CPU-GPU architectures without a shared LLC,
e.g., AMD’s Accelerated Processing Units or System on Chips
that feature ARM’s Mali Bifrost GPU. However, because
excessive coherency traffic is required across heterogeneous
devices [2], SVM was proven inefficient on such architectures.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

In contrast, on fused CPU-GPU architectures with a shared
LLC, OpenCL 2.0 promises efficient support for byte-level
coherent (so-called fine-grained) SVM as well as cross-device
atomics [3].

This work presents the first investigation of collaborative
execution of computational kernels on a fused CPU-GPU
architecture with a shared LLC using fine-grained SVM, i.e.,
CPU and GPU share cache-coherent memory so that the work
of a computational kernel can be processed in parallel by both
compute devices. We detail how OpenCL programs are ported
to OpenCL 2.0’s fine-grained SVM. This process is applied
to the entire Rodinia Benchmark Suite [4] and overheads of
fine-grained SVM are evaluated. Collaborative execution of
computational kernels on fine-grained SVM requires novel co-
scheduling approaches that determine how much work should
be performed on CPU and GPU, respectively, for maximum
performance. In previous studies on collaborative execution
that used zero-copy transfers on fused CPU-GPU architectures
with a shared LLC and OpenCL 1.2, a single static data-
centric distribution of work was established for all kernels
per program [5, 6]. Fine-grained SVM enables to decide the
distribution of work dynamically, based on observed progress
made by CPU and GPU while executing a kernel. Thus, a
decision should be made per kernel instead of per program.

This work contributes three dynamic co-scheduling ap-
proaches that utilize different capabilities of OpenCL 2.0:
one kernel-external method based on online profiling and two
kernel-internal methods that utilize cross-device atomics (vari-
ables that can be modified atomically across multiple compute
devices). Cross-device atomics are currently supported by
OpenCL 2.0 only, apart from that our approaches could also be
realized, e.g., in NVIDIA CUDA. One of the kernel-internal
methods utilizes device-side enqueuing, another feature intro-
duced with OpenCL 2.0 that enables enqueuing kernels to
an OpenCL device from within an executing kernel. Device-
side enqueuing is a similar technique to dynamic parallelism
in NVIDIA CUDA. However, it is shown that device-side
enqueuing introduces too much overhead to be suitable for
implementing co-scheduling approaches. The other two co-
scheduling approaches (one kernel-external and one kernel-
internal) are further evaluated using the Rodinia Benchmark
Suite, which we ported to OpenCL 2.0. Our kernel-external
method performs competitively to the optimal choice of ex-
ecuting kernels within a program either on CPU or GPU
(clairvoyant xor-Oracle, some kernels on CPU others on GPU
within the same program). The method achieves 97% of the
xor-Oracle’s performance on average. We show, however, that
for most benchmarks of the Rodinia Benchmark Suite it is
not beneficial to split the work of a kernel between CPU
and GPU compared to running a kernel either on CPU or
GPU when fine-grained SVM is used. This observation is
further analyzed and it is shown that it cannot be explained
by cache conflicts, i.e., false or true sharing, but is the result
of inefficient cache coherence. As of today, Intel platforms
are the only architectures that support OpenCL 2.0’s fine-
grained SVM using a shared LLC. Therefore, we focus on
this architecture in the remainder of the paper.

Our novel contributions are as follows:

• We evaluate the overhead of OpenCL 2.0’s fine-grained
Shared Virtual Memory, and analyze the suitability of
cross-device atomics as well as device-side enqueuing
for co-scheduling kernels on fused CPU-GPU architec-
tures with a shared LLC in three different co-scheduling
approaches.

• We develop a co-scheduling approach that is competitive
to the optimal choice of executing kernels within a
program either on CPU or GPU (on average 97% of the
clairvoyant xor-Oracle’s performance and 1.43× speedup
over only using the GPU), and via analysis show that
inefficient cache coherence is the major performance
bottleneck for collaborative execution of the same kernel
on current fused CPU-GPU architectures with shared
LLC.

• We port the Rodinia Benchmark Suite to OpenCL 2.0
with fine-grained SVM and make Rodinia-SVM as well
as a variety of co-scheduling approaches available as open
source1.

II. RELATED WORK

A. Co-Scheduling on Fused Architectures

In state-of-the-art related work on co-scheduling for fused
CPU-GPU architectures, CPU and GPU do not share the last
level cache [5, 6, 7, 8, 9, 10]. Thus, techniques like fine-
grained SVM are not supported and communication between
CPU and GPU has to rely on explicit data transfers. [7]
presents an online profiling-based approach that is similar
to our host-side profiling approach, but only treats the GPU
as an OpenCL 1.2 device while CPU computations are per-
formed in the host code. Therefore, barriers are required
after every kernel run, whereas our approach treats CPU and
GPU as OpenCL 2.0 devices and utilizes OpenCL events for
lightweight synchronization (see Section V-B). Data transfer
overheads between different devices are mentioned as a key
issue, but not further analyzed. [9] uses the online profiling
method of [7] and presents a power-aware co-scheduling
method that aims to minimize the energy-delay product of
heterogeneous applications running on a fused CPU-GPU
architecture. The authors report an average of 12.3% percent
improvement over the best performance-oriented schedules.
[5] presents an offline, machine learning-based approach to
co-scheduling that determines a single ratio that partitions
the input data into separate parts processed by CPU and
GPU, respectively. This saves additional transfers to maintain
coherency between kernel executions, but does not allow
for per-kernel decisions. [8] presents an OpenCL runtime
system that automatically schedules kernels to multiple devices
that were originally written for a single device. The runtime
system takes care of buffer allocation and transfers to maintain
coherency between all devices without programmer effort. [10]
and [6] specifically target irregular workloads, in which some
work items take considerably longer than others such that
profiling information from a subset of work items is often not
representative for the performance of the whole kernel. Both

1Source code available at: https://git.scc.kit.edu/CES/Rodinia-SVM

https://git.scc.kit.edu/CES/Rodinia-SVM
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Fig. 2: Particle Filter benefits from a per-kernel scheduling
decision compared to a fixed ratio for the whole benchmark
when executed on OpenCL 2.0’s fine-grained SVM

approaches identify application-specific features to model the
computational kernels’ performance for scheduling decisions.

Compared to our work, state-of-the-art co-scheduling ap-
proaches did not share cache-coherent memory between CPU
and GPU, but were instead limited by explicit data transfers
that were required to establish consistency.

B. Exploiting Shared Virtual Memory

In [1] the potential of fused CPU-GPU architectures with
a shared LLC is explored simulatively. The authors present
an approach where compiler-generated “pre-execution code”
is run on the CPU, before executing a computational kernel
on the GPU. The aim of this approach is to fill the shared
LLC such that the amount of main memory accesses that
need to be performed by the GPU is minimized. Using this
approach, the authors report a performance improvement of up
to 113%, and 21.4% on average. [11] presents an extension
of the gem5-gpu simulator for fused CPU-GPU architectures
[12] that supports the features of OpenCL 2.0. Compared to
these works, our approach utilizes a commercial off-the-shelf
architecture (Intel) instead of simulation.

In [2] a comprehensive performance evaluation of
OpenCL 1.2, OpenCL 2.0 and Heterogeneous System Archi-
tecture (HSA) 1.0 is presented. In contrast to our work, the
evaluated AMD Kaveri architecture does not feature a shared
LLC between CPU and GPU. As a result, the authors observe
that excessive coherency traffic is generated across devices that
can affect performance significantly.

In summary, state-of-the-art related work on co-scheduling
on fused CPU-GPU architectures either failed to leverage
cache-coherent memory between CPU and GPU or only ex-
plored cache coherency between CPU and GPU in simulation.

III. MOTIVATIONAL EXAMPLE

Before the introduction of OpenCL 2.0’s fine-grained SVM,
data needed to be explicitly transferred to compute devices.
Furthermore, consistency guarantees for memory buffers that
were accessed in parallel by different compute devices did not
exist. Therefore, state-of-the-art co-scheduling approaches di-
vided the input data into two separate parts that were processed
by CPU and GPU, respectively [5, 6]. Effectively, a single

0 1 …

0 1 …

Fig. 3: Hierarchy of Work Items in an OpenCL Kernel

ratio that determines the share of work to be performed on
each compute device was applied to all kernels of an OpenCL
program. With fine-grained SVM pointers can be shared and
accessed consistently by multiple devices in parallel.

Fig. 2 shows execution time results for the Particle Filter
benchmark from the Rodinia Benchmark Suite (version 3.1
ported to fine-grained SVM) on an Intel Core i7-6700T
(Skylake) fused CPU-GPU architecture with a shared LLC.
The blue bars show the execution time for statically-fixed
ratios of work performed on CPU and GPU, respectively, that
are applied to all four kernels of the benchmark. The red line
shows the execution time for deciding per-kernel whether to
execute it either on CPU or on GPU. Only the single best
overall decision (first two kernels on GPU, remaining two
on CPU) is shown. In any case, the four kernels need to
be executed in sequence. Two of four kernels contain loops
that result in extremely poor performance when executed on
the GPU only (thus, the execution time drops from x = 0%
to x = 10%), while the other two kernels benefit strongly
from execution on the GPU compared to the CPU (thus, the
execution time increases from x = 10% to x = 100%).
Therefore, deciding a single ratio of how to distribute work for
all kernels results in a compromise that performs worse than
executing each kernel exclusively on the most suitable device.
Due to the fact that fine-grained SVM is shared consistently
among different compute devices without any explicit data
transfers in between kernel executions.

This example shows that per-kernel decisions of how to
distribute work have a performance benefit over a single data-
centric ratio that is applied to all kernels of a program. In
this work, we explore co-scheduling methods that leverage
OpenCL 2.0 features to perform per-kernel decisions at run-
time beyond the binary decision of either using the CPU or
GPU but by utilizing both compute devices in parallel.

IV. BACKGROUND ON HETEROGENEOUS EXECUTION

In this section we provide an overview of OpenCL in
general and discuss features introduced in OpenCL 2.0 that
we utilize for co-scheduling.

A. OpenCL

The Open Compute Language (OpenCL) is an open stan-
dard for parallel programming of heterogeneous systems [13].
It consists of a host-side API and a C-like programming
language for writing computational kernels. The host-side API
provides access to the platform, i.e., a view of the system that
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1 int* ptr = (int*)malloc(...);
2 for (int i=0; i<n; i++)
3 ptr[i] = i;
4 ptr_device = clCreateBuffer(...);
5 clEnqueueWriteBuffer(ptr_device, ptr,...);
6 clSetKernelArg(...,ptr_device);
7 clEnqueueNDRange(...);
8 clEnqueueReadBuffer(ptr_device, ptr,...);
9 clFinish(...);

10 printf("Result: %d\n", ptr[0]);

1 int* ptr = (int*)clSVMAlloc(...);
2 for (int i=0; i<n; i++)
3 ptr[i] = i;
4
5
6 clSetKernelArgSVMPointer(...,ptr);
7 clEnqueueNDRange(...);
8
9 clFinish(...);

10 printf("Result: %d\n", ptr[0]);

Fig. 4: Simplified example of memory allocation in OpenCL 1.2 (left) and OpenCL 2.0 with fine-grained SVM (right)

the OpenCL program is executed on. The platform comprises
one or more devices that are capable of executing OpenCL
kernels. Within fused CPU-GPU architectures, CPU (including
all cores) and GPU are separate devices2 belonging to the
same platform. For communication between host and devices,
the host-side API provides functions to submit commands to
command queues. Commands specify tasks that should be
performed by a device, e.g., memory operations, synchroniza-
tion or kernel execution. Each command queue is associated
with exactly one device. Events can be used to formulate
dependencies between commands (from the same or different
command queues) as directed acyclic graphs. A command can
emit an event upon successful execution. When submitting
a command to a command queue, it can be specified that
the command should only be executed after one or more
events were emitted by finishing the execution of respective
commands.

Generally, when implementing an OpenCL kernel, the goal
is to represent parallelism at the finest possible granularity.
Figure 3 shows how OpenCL divides work hierarchically as
well as OpenCL keywords used by the host-side API3. The
smallest unit of execution is a work item. Each work item
executes an instance of the kernel body, e.g., for a kernel
that implements vector addition a work item would compute
a single element. When submitting a kernel to a command
queue, usually thousands of work items are instantiated and
execute concurrently (as many as given by global_size).
Work items are divided into work groups. Work groups
are equally-sized (by local_size) and each group has
a unique group_id. Work items have a local_id (0,
. . . , local_size − 1) that is unique within a work group
only, as well as a globally unique global_id (0, . . . ,
global_size − 1) that is used for address calculations.
The global_id specifies on which part of the input data
a specific work item executes the kernel body on. Only within
a work group can work items perform barrier operations and
share local memory. This way, the OpenCL compiler can
perform device-specific optimizations, e.g., on CPUs a work
group is serialized to a single thread.

2Note that commonly used terms like ‘compute unit’ or ‘processing
element’ are defined as specific parts of a device in OpenCL

3OpenCL supports up to three-dimensional index spaces. At this point, we
explain the one-dimensional case for brevity

B. OpenCL 2.0

The OpenCL specification 2.0 introduced several features
that provide opportunities for improved collaboration between
different devices as well as the host [13, 14]. The most promi-
nent feature is Shared Virtual Memory (SVM) that introduces
a shared virtual address space between host and devices in
an OpenCL program. SVM eliminates explicit data transfers
between host and device memory, and enables direct sharing of
pointer-based data structures. OpenCL 2.0 introduces coarse-
grained and fine-grained SVM. Coarse-grained SVM allows
host and devices to share virtual memory pointers, but still
requires buffers that are explicitly mapped and unmapped
from host and devices. A coarse-grained SVM buffer can
only be mapped to a single device or the host at a time,
concurrent accesses by multiple devices are not supported.
Fine-grained SVM is an optional feature of OpenCL 2.0 that
defines memory consistency guarantees for SVM allocations
that are concurrently accessed by the host and one or more
devices. With fine-grained SVM, host and devices can share
memory at byte-level granularity and read from it concurrently.
Concurrent writes are supported to non-overlapping bytes.
Consistency is guaranteed before and after each command
execution. When more fine-grained consistency is required,
atomics can be used.

Atomics are another optional feature introduced by
OpenCL 2.0. In combination with fine-grained SVM, atomics
can be shared between different devices. This enables cross-
device atomic operations and additionally provides a means
of synchronization. This way, byte-level consistency can be
guaranteed within a kernel.

Before OpenCL 2.0, the only way to execute commands
on a device was to submit commands to a command queue
using the host-side API. This means that the number of work
items that should be executed when launching a kernel needed
to be known before the kernel was executed. OpenCL 2.0
introduces device-side enqueuing, i.e., kernels get the ability
to enqueue child kernels in a device-side command queue.
Similarly to dynamic parallelism in NVIDIA CUDA, this
enables implementation of kernels that perform calculations
iteratively or use recursion. Like in host-side enqueuing,
dependencies between child kernels can be specified using
events, but generated events are only visible to the parent
kernel. Child kernels run asynchronously to the parent kernel.
However, the parent kernel is only registered as successfully
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1 clEnqueueNDRangeKernelFused(commandsCPU,
commandsGPU, kernel,...) {

2 // ... (calculate work item shares and IDs)
3 if(workItemsCPU>0) // work assigned to CPU?
4 clEnqueueNDRangeKernel(commandsCPU,

kernel, ..., &eventGPUDone[curr-1],
&eventCPUDone[curr]);

5 else
6 clSetUserEventStatus(eventCPUdone[curr],

CL_COMPLETE);
7 if(workItemsGPU>0) // work assigned to GPU?
8 clEnqueueNDRangeKernel(commandsGPU,

kernel, ..., &eventCPUDone[curr-1],
&eventGPUDone[curr]);

9 else
10 clSetUserEventStatus(eventGPUdone[curr],

CL_COMPLETE);}

Fig. 5: Launching a kernel on a fused CPU-GPU architecture
without host-side synchronization

executed (and may emit an event), when all its child kernels
finished execution.

V. UTILIZING FINE-GRAINED SVM ON FUSED CPU-GPU
ARCHITECTURES

A. Memory Allocation

Until OpenCL 2.0, communication between the host pro-
gram and compute devices required explicit allocation of
device-side buffers. As shown in the simplified example in
Fig. 4 (l.4, left), memory that is allocated and initialized
by the host program needs to be transferred to the device-
side buffer first (l.5), before a kernel can be launched using
clEnqueueNDRange(. . .). After kernel execution finishes,
the results are transferred back (l.8).

In Rodinia-SVM, we removed all device-side buffer alloca-
tions from the original Rodinia Benchmark Suite and utilize
fine-grained SVM instead, as shown in Fig. 4 (right). This
allows all devices and the host to access memory using shared
pointers. As a result, all explicit transfers between host and
devices are eliminated. Furthermore, while device-side buffers
are owned by a single device at a time, fine-grained SVM can
be accessed consistently by multiple devices and the host.

B. Kernel Launch and Synchronization

For launching kernels on a fused CPU-GPU architecture,
one command queue is instantiated for each device (CPU and
GPU). Then, the same kernel is enqueued with only a share
of the total work items (global_size, see Fig. 3) plus
offsets that are used for calculating global work item IDs.
ID calculation depends on the specific co-scheduling method,
and is therefore detailed in Section VI.

Earlier versions of OpenCL required ex-
plicit synchronization at the host-side, e.g.,
using clFinish(. . .) (see Fig. 4) or
clWaitForEvents(. . .), to achieve consistency [5].
Synchronization with the host induces a significant overhead,
however, because the devices’ command queues can no

TABLE I: Rodinia Benchmark Suite – OpenCL Benchmarks

Name Abbreviation #Kernels

Back Propagation bp 2
Breadth-First Search bfs 2
B+Tree b+ 2
CFD Solver cfd 4
GPUDWT dwt 3
Gaussian Elimination ge 2
Heart Wall hw 1
HotSpot3D hs3D 1
HotSpot hs 1
Hybrid Sort hys 7
K-Means km 2
LavaMD md 1
Leukocyte Tracking lc 3
LU Decomposition lud 4
Myocyte mc 1
Nearest Neighbor nn 1
Needleman-Wunsch nw 2
Particle Filter prtf 4
Path Finder pthf 1
Streamcluster sc 1

longer be processed in parallel. Because fine-grained SVM
maintains consistency, host-side synchronization is not
required anymore. However, we still need to ensure that CPU
and GPU execute kernels in lock step, i.e., when launching a
sequence of kernels like clEnqueueNDRange(kernelA,
. . .); clEnqueueNDRange(kernelB,. . .);, the CPU
should not begin executing kernelB before the GPU finished
executing kernelA and vice versa. Otherwise, results from
kernelA that kernelB depends on might not be ready
when one device races ahead. This can lead to erroneous
results. As shown in Fig. 5, we utilize events to express these
dependencies. For each device a ring buffer is allocated that
stores one event for each enqueued kernel (eventCPUDone
and eventGPUDone, respectively). If work items are
assigned to the CPU, the kernel is enqueued on the CPU
(l.4). The execution of the kernel depends on an event that is
emitted when the previous kernel that was enqueued to the
GPU completes execution (eventGPUDone[curr-1]). In
case no work items were assigned to the CPU, the event that
indicates completed execution of the current kernel launch
on the CPU is emitted immediately so that no deadlocks
occur (eventCPUDone[curr], l.6). Kernel launches
on the GPU are performed analogously. In Rodinia-SVM,
we replaced all calls to clEnqueueNDRange(. . .)
with our clEnqueueNDRangeFused(. . .)
implementation. Furthermore, the co-scheduling methods
that we detail in Section VI are also applied by
clEnqueueNDRangeFused(. . .).

C. Overheads of Fine-Grained SVM

Figure 6 shows execution time results for all benchmarks of
the Rodinia Benchmark Suite (version 3.1, listed in Table I)
in two variants: the original OpenCL 1.2 version as well
as our OpenCL 2.0 port where all device-side buffers were
replaced by fine-grained SVM allocations as explained in
Section V-A. In both variants, kernels are executed on the
GPU only (the fused kernel launch of Section V-B is not used)
on a Intel Core i7-6700T (Skylake). Kernel compilation times
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Fig. 6: Compared to the original OpenCL 1.2 implementation of the Rodinia Benchmarks Suite that executes on the GPU only
and uses device-side buffers, the use of OpenCL 2.0 incl. fine-grained SVM introduces overheads but maintains consistency

are omitted4. The results show that the convenience of being
able to pass host-side pointers directly into kernels comes at
a cost. In particular, short-running benchmarks (100ms and
less) are significantly slowed down, e.g., ge takes almost
3.5× longer (112ms instead of 32ms) when executed on fine-
grained SVM instead of device-side buffers. Benchmarks that
run 100ms or more in the OpenCL 1.2 version only take
1.14× longer on average (geometric mean). Longer-running
benchmarks that alternate between kernel execution and host-
side computations like hw and sc even benefit from fine-
grained SVM (1.9× and 1.48× speedup, respectively), because
with OpenCL 1.2 they explicitly need to synchronize with
the host and invoke transfers after every kernel execution.
However, the geometric mean execution time increase over
all benchmarks for the OpenCL 2.0 versions compared to
the OpenCL 1.2 version is 1.51×. The overheads stem from
the fact that the OpenCL 1.2 device-side buffers used in the
Rodinia benchmarks are already allocated as zero copy buffers
on fused CPU-GPU architectures5, i.e., instead of allocating
separate host-side and device-side memory, both buffers are
mapped to the same shared physical memory. Consequently,
data transfers between host-side and device-side buffers do not
actually transfer data, but only translate pointers and initiate
the OpenCL 1.2 runtime system to establish consistency
between CPU and GPU. OpenCL 2.0’s fine-grained SVM adds
overhead compared to zero copy buffers, because consistency
is not only established explicitly using transfers (e.g., at
the beginning and end of a computation often consisting of
multiple enqueued kernels), but continuously when kernels are
executed.

Ultimately, these overheads have to be considered when
implementing OpenCL 2.0 programs to decide whether to
use fine-grained SVM or not. However, fine-grained SVM
does not only provide the convenience of shared pointers, but
also enables new features like cross-device atomics. In the
following we will present co-scheduling methods that exploit

4Kernel compilation can be avoided using
clCreateProgramWithBinary(. . .)

5using CL_MEM_USE_HOST_PTR or CL_MEM_ALLOC_HOST_PTR flags

(0,0) ↦ 0 (1,0) ↦ 1 (2,0) ↦ 2 (3,0) ↦ 3 

(0,1) ↦ 4 (1,1) ↦ 5 (2,1) ↦ 6 (3,1) ↦ 7 

(0,2) ↦ 8 (1,2) ↦ 9 (2,2) ↦ 10 (3,2) ↦ 11 

(0,3) ↦ 12 (1,3) ↦ 13 (2,3) ↦ 14 (3,3) ↦ 15 

Fig. 7: For co-scheduling, multi-dimensional IDs are mapped
to one-dimensional IDs

1 typedef struct global_work_state_struct {
2 atomic_uint workDone;
3 size_t globalWork;
4 } global_work_state;

Fig. 8: A global_work_state is shared between work
items using fine-grained SVM to realize device-side schedul-
ing

these new features and evaluate them using Rodinia-SVM.

VI. OUR CO-SCHEDULING METHODS

Let us define two types of co-scheduling methods, namely
(1) device-side co-scheduling, where work group scheduling
is performed during execution of the respective kernel by the
executing devices themselves, and (2) host-side co-scheduling,
where work groups are assigned to CPU and GPU using the
host-side OpenCL API only (outside of the kernels). In the

1 __kernel void kernel(...) {
2 PREAMBLE
3 ... // --- original kernel code ---
4 POSTAMBLE }

Fig. 9: The device-side methods add a preamble and postamble
to each kernel that implement the co-scheduling methods
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0 2 1 … 

Fig. 10: A single work group executes in lock step (atomic
counting). Multiple work groups execute in parallel

following we will present two device-side and one host-side
co-scheduling methods. All methods leverage OpenCL 2.0’s
fine-grained SVM to achieve consistency while executing
kernels on CPU and GPU in parallel.

When enqueuing an OpenCL kernel using the OpenCL
host API function clEnqueueNDRangeKernel(. . .), the
global_size parameter specifies how many work items
should be launched by the OpenCL runtime system on a
specific device (see Fig. 3). global_size can be given as
an up to three-dimensional array. In this case, work items are
assigned a global ID for each dimension by the OpenCL run-
time system. For co-scheduling, we project multi-dimensional
kernel IDs onto one-dimensional IDs. An example for the two-
dimensional case is given in Fig. 7.

In our co-scheduling methods, we launch a subset of the
total work items on CPU and GPU and then proceed to
schedule the remaining work items based on the observed
performance. The main idea behind the device-side methods
is to treat the work of a kernel as a bag-of-tasks that contains
independent work groups. Initially, only a few work groups
are launched (enough to fully utilize CPU and GPU). The
work items of these work groups act as workers that au-
tonomously acquire and process work from the bag-of-tasks.
To implement this scheme, the device-side methods utilize
a global_work_state struct that is stored in SVM and
shared between CPU and GPU (see Fig. 8). globalWork
is the total amount of times the body of an enqueued kernel
needs to be executed (equal to the global_size parameter
passed to clEnqueueNDRangeKernelFused(. . .)). In
all methods, the kernel is executed globalWork times in
total. workDone is an atomic counter that keeps track of how
many work items were executed. It is used to calculate work
item IDs and to decide whether another work group needs to
be scheduled, i.e., while workDone < globalWork. Fur-
thermore, all device-side methods add a preamble or postamble
macro to each kernel as shown in Fig. 9. The specific preamble
and postamble implementations are presented below. Please
note that, e.g., modifying atomic variables, calculating work
item IDs or handling corner cases, results in lengthy code that
we simplified in our presentation below for comprehensibil-
ity6.

A. Atomic Counting

In the atomic counting method, each work item acts
as a worker that loops over the original kernel code.
Initially, multiple same-sized work groups are launched
(clEnqueueNDRangeKernelFused(. . .)) and execute
in parallel (e.g., one work group per CPU core and multiple
ones on GPU). No further work groups are launched during
kernel execution. Each work item sequentially executes the
kernel body repeatedly for different global IDs. Work items
that belong to the same work group execute the kernel body
in lock step as shown in Fig. 10. This way, they can share an
atomic counter to derive their global IDs and iterate through
all IDs that constitute the global work at local_size gran-
ularity. As detailed in Fig. 11, the atomic counter workDone
(initially zero) is used to assign group IDs to work items of
the same group:

Before each execution of the original kernel code (l.7),
each work group (the last work item of a work group)
fetches the value of workDone and increments the counter
by the work group size (l.4 and l.9). The while loop be-
ginning in line 6 is executed until the total amount of
work required by the respective kernel launch is done.
workDoneCpy (defined in l.2) is a variable that stores
the fetched value of workDone and is allocated once for
all work items that belong to the same work group (once
for each work group). Independent of how many work
groups execute in parallel, workDoneCpy will take the val-
ues of 0, get_local_size(), 2·get_local_size(),
. . . , globalWork−get_local_size(), each exactly
once for a single work group that enters the while loop
(globalWork is an integer multiple of local_size, see
Fig. 3). Accessing the atomic counter only once per iteration
of a work group (instead of, e.g., once per work item) reduces
contention during the atomic operations, but work items of
the same work group need to synchronize after each iteration
(thus, execute in lock step). Synchronization is achieved using
a barrier. It ensures that every work item of the same work
group sees the same value of workDoneCpy at all times. This
way workDoneCpy can be used to derive work item IDs,
i.e., get_global_id() is redefined as workDoneCpy +
get_local_id(). Ultimately, the original kernel body is
executed exactly once for each work item ID 0, 1, 2, . . . ,
globalWork−1.

B. Device-Side Enqueuing

The device-side enqueuing method does not define a pream-
ble, but only a postamble as detailed in Fig. 12. Similarly
to the atomic counting method, it uses the atomic counter
workDone to keep track globally of how many times the ker-
nel body was executed. Again, only as many work groups are
launched initially as needed to fully utilize CPU and GPU (us-
ing clEnqueueNDRangeKernelFused(. . .)). The main
difference to the atomic counting method is how work is
processed by the work items. Instead of looping, a single work
item executes the kernel body only once. After executing the

6The full implementation of all approaches is available at:
https://git.scc.kit.edu/CES/Rodinia-SVM

https://git.scc.kit.edu/CES/Rodinia-SVM
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1 __kernel void kernel(...) {
2 local unsigned int workDoneCpy;
3 if (get_local_id() == get_local_size()-1)
4 workDoneCpy = atomic_fetch_add(workDone,

get_local_size());
5 barrier(CLK_LOCAL_MEM_FENCE);
6 while (workDoneCpy < globalWork) {
7 ... // --- original kernel code ---
8 if (get_local_id() == get_local_size()-1)
9 workDoneCpy = atomic_fetch_add(workDone,

get_local_size());
10 barrier(CLK_LOCAL_MEM_FENCE); }}

Fig. 11: In atomic counting, work groups loop over the
original kernel code until the total amount of work is done

1 __kernel void kernel(...) {
2 ... // --- original kernel code ---
3 if (get_local_id() == get_local_size()-1) {
4 int workDoneCpy = atomic_fetch_add(

workDone, get_local_size());
5 if (workDoneCpy < globalWork) {
6 ndrange_t child_ndrange =

ndrange_1D(workDoneCpy,
get_local_size(), get_local_size());

7 enqueue_kernel(get_default_queue(),
CLK_ENQUEUE_FLAGS_NO_WAIT,
child_ndrange, ^{kernel(...);}); }}}

Fig. 12: The device-side enqueuing method enqueues additional
work groups using device-side queues

kernel body, additional work groups may be launched by the
work items itself using OpenCL 2.0’s device-side enqueuing.
As shown in Fig. 12, the work item with the highest ID inside
a work group (l.3) launches another work group by enqueuing
the current kernel into the device-side queue (l.7).

In OpenCL 2.0, Kernels are enqueued to the device-side
command queue using the Clang [15] block syntax, a non-
standard C extension by Apple Inc. (also known as closure
in other programming languages) that allows to define func-
tions that can access variables outside their scope (belong-
ing to a captured environment). In our case (l.7) the block
ˆ{kernel(...);} defines a function that only calls the
current kernel with the (captured) arguments that were passed
to the initial kernel call from the host-side API. This may seem
overly complex for our use case, however, potential alterna-
tives like function pointers are not supported in OpenCL 2.0
and function calls are always inlined [14].

Line 6 defines the parameters of the enqueued
kernel, i.e., the global ID offset (workDone),
the total amount of work items to be launched
(get_local_size()) and the work group size
(get_local_size()), respectively. Effectively, work
item ID calculation does not have to be redefined
as in atomic counting, but get_global_id()
will return the correct IDs 0, 1, 2, . . . ,
globalWork−1 for exactly one work item each. We
also evaluated variants of this method, e.g., enqueuing
larger amounts of work items than single work groups per
enqueue_kernel(. . .) call. However, OpenCL 2.0’s
device-side enqueuing in general introduces too much
overhead (caused by runtime evaluation of the block syntax)
to be suitable for co-scheduling as we show in Section VII-A.

C. Host-Side Profiling
In contrast to the device-side co-scheduling methods, the

host-side profiling method does not apply any modifications
to the executed kernels and work items behave exactly the
same as in standard OpenCL. Host-side profiling utilizes the
OpenCL host-side API, only. Similar to the Inspector-Executor
paradigm, the performance behavior of a specific kernel is
characterized in an initial phase. Afterwards, this characteri-
zation is used to schedule all following executions of the same

Fig. 13: At the first execution of a kernel k, host-side profiling
determines a ratio rk to distribute work items

kernel. Upon the first execution of a kernel k, only a fraction
of the total work items (profiling_size) is executed for
profiling as shown in Fig. 13. The profiling_size is split
with half of it executing on the CPU and the other half on
the GPU. The execution time of the profiling depends on the
specific kernel. OpenCL events are used (1) to synchronize
both devices with the host program once profiling finishes and
(2) to obtain the execution times of the work items executed on
CPU (timeCPU) and GPU (timeGPU), respectively (using the
OpenCL API call clGetEventProfilingInfo(. . .)). A
ratio r′k ∈ [0, 1] of work items to distribute to the CPU is then
determined using these measured execution times as follows:

r′k = 1− (timeCPU/(timeCPU + timeGPU))

This ratio is slightly adjusted to obtain the final ratio rk. Low
percentages of work items on GPU showed to be detrimental to
the performance compared not using it at all, while following
executions on the GPU performed slightly better than the
initial profiling in our experiments:

rk =

{
1, r′k > 0.8 (all CPU)
min(0, r′k − 0.05), else (mixed CPU/GPU)

Finally, rk · global_size and (1 − rk) · global_size
determine the amount of work items executed on CPU and
GPU, respectively, for following executions of k (see Fig. 13,
the values are rounded to multiples of the work group size).
rk is also used to distribute the remaining work items after
profiling. The amount of work items to use for profiling
is parameterized. In our experiments we achieved the best
compromise between accuracy of the determined ratio and
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Fig. 14: Device-side enqueuing adds significant overhead, even
when no kernel is enqueued. The overheads stem from the
kernel call in the block syntax

overhead of the profiling run when 50% of global_size
was used for profiling when a kernel k was executed for the
first time.

VII. EXPERIMENTAL EVALUATION

The following results were obtained using a Intel Core i7-
6700T (Skylake) fused CPU-GPU architecture with 32 GB
of main memory. The Intel Core i7-6700T features a quad-
core CPU and the HD Graphics 530 GPU. CPU and GPU
share 8 MiB of last level cache (maximum for Skylake). All
benchmarks were compiled using GCC version 7.2.1 and the
Intel SDK for OpenCL Applications version 2017 R1. They
were executed on CentOS Linux release 7.4.1708 with the
Intel OpenCL 2.0 CPU/GPU driver package SRB5.0 (Linux
kernel 4.7.0.intel.r5.0). To minimize execution time variance,
hyper-threading was disabled and CPU frequency scaling set
to ‘performance’ (which sets the highest frequency to all
cores and effectively disables turbo boost). The Rodinia-SVM
benchmarks were executed using the default inputs from the
Rodinia Benchmark Suite for reproducible and comparable
results. Results report the average of 10 executions of the
respective benchmark with a standard deviation < 2% of the
average, and do not include kernel compilation times7.

In the following, we first show that device-side enqueuing
causes too much overhead to be suitable for co-scheduling.
Then, we evaluate our co-scheduling approaches, and finally
show that cache coherency is a major performance bottleneck.

A. Device-Side Enqueuing

In this section we evaluate device-side enqueuing on a
subset of the Rodinia-SVM benchmarks that result in the
highest overheads when device-side enqueuing was applied.
We execute the benchmarks in two versions: First we exe-
cute the kernels on the CPU only without applying any co-
scheduling method. Then, we execute the benchmarks again
with the device-side co-scheduling method of Section VI-B
applied (still CPU only). However, we immediately launch all
work items (the total global_size) when the kernels are
launched from the host-side API. Effectively, co-scheduling
is never actually performed, i.e., the if statement in line 5 of

7Kernel compilation can be avoided using
clCreateProgramWithBinary(. . .)

Fig. 12 always evaluates to ‘false’, i.e., the postamble of the
device-side enqueuing method is never executed.

Figure 14 shows the execution time increase of the device-
side enqueuing method relative to execution without any co-
scheduling method applied. Note that even though the co-
scheduling code is not executed, the execution times increase
significantly, up to almost 6× for sc. The overheads disappear,
as soon as we remove the kernel call from the block syntax
in line 7 of Fig. 12 (e.g., by replacing kernel(. . .) with
a printf). This means that runtime processing of the block
syntax (capturing the environment) is performed even when
that part of the code is not executed, and that it introduces high
overheads, which render device-side enqueuing unsuitable
for implementing co-scheduling methods. These results may
surprise, but are in line with results published by Intel, where a
naive port of an iterative implementation of Sierpiński Carpet
to a recursive implementation using device-side enqueuing
resulted in a 186× execution time increase (2050ms instead
of 11ms) [16]. Due to this cost, we exclude device-side
enqueueing from further experiments.

B. Co-Scheduling Results of Rodinia-SVM
Figure 15 shows evaluation results for the co-scheduling

approaches atomic counting and host-side profiling, and execu-
tion on CPU-only as well as GPU-only. The results are shown
as speedups over the optimal per-kernel choice of whether
to execute the kernel either on CPU or GPU (clairvoyant xor-
Oracle, see Section III for a discussion compared to a program-
fixed ratio as determined by state-of-the-art approaches de-
signed for fused CPU-GPU architectures without shared LLC).
All speedups are relative to xor-Oracle (100%) and given in
percent (of the relative performance achieved). The geometric
mean (gmean) shows that on average execution on GPU-
only performs worst (67.5%), mainly because two of the
benchmarks (mc and prtf) perform very badly when their
kernels are executed only on the GPU (they contain long-
running loops). With 77.6% performance of xor-Oracle on
average, execution on CPU-only performs better than GPU-
only or with atomic counting. In other words, however, xor-
Oracle on average achieves a 1.48× and 1.29× speedup over
CPU-only and GPU-only, respectively, by using the most
suitable compute device for each kernel.

When using both compute devices in parallel using the co-
scheduling methods, one would expect to achieve a consider-
able speedup over the xor-Oracle that only uses one compute
device at a time. As our results show, however, this is rarely the
case (which we will analyze further in the following section).
At best, atomic counting achieves 110.4% of xor-Oracle’s
performance (hw). On average it achieves 74.8% and thus
performs better than GPU-only, but worse than CPU-only. One
problem of atomic counting is that some kernels perform very
badly on a particular device. Even when only a few work
groups are launched initially, their execution times dominate
the kernel’s overall execution time (e.g., in mc and prtf).
Additionally, atomic counting adds logic, and thus overhead,
to the kernels itself.

Host-side profiling, on average, achieves 96.8% of xor-
Oracle’s performance and a speedup of 1.43× and 1.25×
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on CPU) when executing kernels in parallel on CPU and
GPU relative to executing the same work item distribution
sequentially (first on CPU, then on GPU; = 1 on y-axis)

over GPU-only and CPU-only, respectively. It also performs
considerably better on average than atomic counting (1.29×
speedup), mainly because it only adds overheads to the very
first kernel execution (when profiling) and does not add any
code to the kernels. The overhead of profiling is especially
evident in md that only executes a single kernel once, where
host-side profiling performs worst over all benchmarks (64.9%
of xor-Oracle). At maximum, host-side profiling achieves a
122.5% of xor-Oracle’s performance in hw, but only in one
other benchmark (lc) is another considerable performance
benefit over xor-Oracle achieved (116.4%). Note that a host-
side profiling implementation that tries to select the best device
instead of distributing the work would incur similar overheads
without any resulting speedups over xor-Oracle.

In summary, host-side profiling performs best over all
methods and is on average competitive to the clairvoyant and
thus hypothetical xor-Oracle. However, in most benchmarks
it does not benefit from executing kernels on CPU and GPU
in parallel compared to executing on the most-suitable single
compute device, only.

C. Cache Performance Bottleneck

To analyze why executing kernels on both compute devices
in parallel on fine-grained SVM does on average not provide

a considerable performance benefit over executing the kernels
on the most-suitable device only, we measured cache metrics
using CPU-internal hardware performance counters. A subset
of the Rodinia-SVM benchmarks was selected, for which host-
side profiling was utilized to distribute work items to CPU and
GPU for all kernels (∀k : 0 > rk < 1). These benchmarks
potentially benefit most from utilizing both devices in parallel.
Furthermore, the selected benchmarks synchronize with the
host after each kernel execution (the same as in their original
versions) which allows us to measure the performance counters
for the kernel executions, only. We use the ratios rk from
the previous section for all kernels k, without performing the
profiling step of the host-side profiling method.

First, all benchmarks are executed while using the devices
sequentially, i.e., for each kernel we execute the work items
assigned to the CPU first, synchronize with the host, and then
execute the work items assigned to the GPU. For this device-
sequential execution, the total cache misses and cache stalls
(all levels) that are encountered by the CPU are measured8.
Then, all benchmarks are executed while using both devices
in parallel (as in the previous section) and the same measure-
ments are performed. In both measurements the CPU (and
GPU) performs the same amount of work, but in the device-
sequential case the CPU has more idle time.

Fig. 16 shows the measured cache metrics from the device-
parallel execution relative to the device-sequential execution
(= 1 on y-axis). For hys, km and sc, the cache misses do not
increase (hys even benefits from device-parallel execution).
This means that there are no cache conflicts like false or
true sharing that impair the performance. However, the cache-
related stalls increase considerably by up to 1.75× and 1.64×
on average. A similar effect has previously been observed
under simulation for cache-coherent fused architectures with-
out a shared LLC [17]. The authors demonstrated that the
amount of data probes sent by the highly-parallel GPU to
the shared cache directory occupied the directory bandwidth
which considerably slowed down the memory bandwidth that

8There are no publicly documented interfaces to access Intel GPU perfor-
mance counters when not using OpenGL
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can be sustained by the cache hierarchy. Our results demon-
strate the existence of a similar cache coherency bottleneck
when fine-grained SVM is used on the Intel fused CPU-GPU
architecture, even when CPU and GPU share an inclusive
LLC. Further research is required to analyze and resolve this
bottleneck (in software or hardware) to fully benefit from co-
processing on fused CPU-GPU architectures.

For hw and lc, a similar increase in cache-related stalls
cannot be observed. These results are in line with the speedup
results shown in Fig. 15: hw and lc (group 1) benefit consid-
erably from co-scheduling over the xor-Oracle, while hys, km
and sc (group 2) do not. The main difference between these
two groups of benchmarks is that the kernels of group 1 are
considerably longer (> 100 lines of code on average) than the
kernels of group 2 (< 30 lines of code on average). Therefore,
the kernels of group 1 perform considerably more operations
per work item than the kernels of group 2.

VIII. CONCLUSION AND FUTURE WORK

This work presented the first investigation of collaborative
execution of computational kernels on a fused CPU-GPU
architecture with a shared LLC using fine-grained SVM. We
contributed two novel device-side co-scheduling methods that
perform scheduling within the kernel code. It was shown
that device-side enqueuing introduces considerable overhead
stemming from the evaluation of the block syntax that is
used in device-side enqueuing of kernels (up to 6× execution
time increase), too much to be suitable for implementing co-
scheduling methods.

Our host-side co-scheduling method achieved 96.8% of the
clairvoyant and thus hypothetical xor-Oracle’s performance on
average (optimal per-kernel choice of exclusive CPU or GPU
usage) and a speedup of 1.43× and 1.25× over execution
on GPU only and CPU only, respectively. It also provided
a 1.29× speedup over ‘atomic counting’, the best device-
side co-scheduling method, because it does not add overhead
to kernel execution once profiling is done. This makes our
host-side co-scheduling method the most competitive practical
scheme to date. We further showed that cache coherency is
the major performance bottleneck in current fused CPU-GPU
architectures with a shared LLC. It was shown that when CPU
and GPU execute kernels in parallel on an Intel architecture,
cache-related stalls observed on the CPU can increase by up
to 1.75× while cache misses remain the same compared to
executing the same work on the CPU and only then on the
GPU (while the CPU is idle).

However, some benchmarks benefited considerably from
collaborative execution on CPU and GPU (up to 1.23×
speedup) compared to using the most suitable device. It
depends on the memory access patterns of the kernels whether
cache coherency becomes a performance bottleneck or not. In
future work, we will categorize memory access patterns and
design optimizations to alleviate this performance bottleneck
for even more effective co-scheduling of kernels on fused
CPU-GPU architectures.
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