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Abstract—Burst buffers (BBs) are increasingly exploited in
contemporary supercomputers to bridge the performance gap
between compute and storage systems. The design of BBs,
particularly the placement of these devices and the underlying
network topology, impacts both performance and cost. As the
cost of other components such as memory and accelerators is
increasing, it is becoming more important that HPC centers
provision BBs tailored to their workloads.
This work contributes a provisioning system to provide accurate,
multi-tenant simulations that model realistic application and
storage workloads from HPC systems. The framework aids HPC
centers in modeling their workloads against multiple network and
BB configurations rapidly. In experiments with our framework,
we provide a comparison of representative Oak Ridge Leadership
Computing Facility (OLCF) I/O workloads against multiple BB
designs. We analyze the impact of these designs on latency, I/O
phase lengths, contention for network and storage devices, and
choice of network topology.

Index Terms—HPC, burst buffers, simulation, I/O

I. INTRODUCTION

With the increasing scale of computation and data in High
Performance Computing (HPC), existing storage systems are
becoming a bottleneck for large-scale scientific and data-
intensive applications [1]. The ratio of I/O bandwidth to bytes
of memory capacity on Titan (the 27 petaflops (PF) system at
Oak Ridge Leadership Computing Facility, OLCF, currently at
No. 12 in the Top500 list with a 1 TB/s filesystem) is 0.0016
and the ratio on Summit (the 200 PF system at OLCF, currently
No. 1 in the Top500 list with a 2.5 TB/s filesystem) is 0.0001.
Data generation rates are increasing faster than traditional
parallel file system (PFS) ingestion capabilities. To alleviate
this bottleneck, the traditional PFS is being augmented with
a tier of intermediate, high-bandwidth flash-based storage
devices called burst buffers (BBs). These BBs sit between
compute nodes and the parallel file system (PFS), and are
designed to absorb the periodic I/O bursts of HPC applications.

BBs allow applications to checkpoint their state more
quickly and frequently to persistent storage and data to be
staged for input and output, enabling the application to re-
sume computation rather than wait for I/O. The functional
advantages and disadvantages of these architectures have been
studied in previous work [2]. In large-scale HPC centers, BBs
are a multi-million dollar resource that impact the center’s
productivity, the I/O performance of the application workload
and the scientific progress of the users. The efficacy of BBs

and their I/O performance depend on optimal provisioning and
architectural details.

Extant BB provisioning solutions are based on either simple
rules of thumb or simplistic scenarios (single application
I/O behavior in isolation), and are not representative of the
complexity involved in the design space. In this paper, we
argue that an optimal provisioning of BBs for a large-scale
HPC center should carefully consider and reconcile a variety
of factors. Figure 1 illustrates the dimensions system designers
and practitioners should reconcile during BB provisioning.
For example, careful consideration must be given to aspects
such as the locality of BBs, the underlying network topology,
the application workload’s I/O characteristics, and the job
scheduling mix of the respective facility. Failure to do so will
result in sub-optimal I/O solutions and slowdown of scientific
workflows.
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Fig. 1. BB Provisioning Dimensions

To understand the design space further, let us consider the
geographic locality of BBs within the HPC system. Various
hierarchies exist for the placement of BBs in HPC systems:
(a) BBs co-located with compute nodes, e.g., used in Summit,
the next-generation OLCF system [3]; (b) BB nodes located
alongside I/O nodes, e.g., used in Cori, an HPC system at
NERSC [4]; (c) global BBs. In terms of network topology,
modern HPC systems use a range of network topologies,
e.g., fat-tree [5], dragonfly [6], torus, etc. These network
topologies have different blocking characteristics, diameters,
bisection bandwidths, and costs. The performance of BBs is
most closely affected by the network topology, and then the
application workload’s I/O access patterns (N-N, N-1, etc.), the
scheduling mix of the jobs and the interplay of their traffic.
All of the above factors play a vital role in the eventual BB
experience that user applications perceive.

In this work, we present a more rigorous approach to
BB provisioning that carefully reconciles the aforementioned
vectors. We have created a provisioning framework using
Parallel Discrete Event Simulation (PDES), which provides a
tool to HPC system designers allowing them to rapidly model978-1-7281-4734-5/19/$31.00 ©2019 IEEE



their workloads against different BB architectures, placement
strategies, and network configurations. System designers can
then use the framework to make provisioning decisions. Using
our simulations and models, we can evaluate various architec-
tures to determine the ideal choices based on the application
workload, performance requirements, and cost constraints.

The primary contributions of this work are as follows:
• the development of a complete framework that system

designers and practitioners can use to input BB locality,
network topology, I/O workload patterns, job scheduling mix
and cost to study ”what-if” scenarios for BB provisioning.
• the development of a variety of network and BB models

(e.g., node-local) for a large-scale HPC system, and then
simulating them via the CODES [7] [8] suite (and extending
it) to assess their performance for varying workloads;
• the ability to replay workloads composed of multiple

applications with customizable node allocation policies to
accurately model an HPC center;
• the development of a novel capability to strongly and

weakly scale traces of the Darshan I/O logs with the simulator
to project future workloads for larger I/O sizes than any I/O
traces collected on today’s platform;
• the development of novel features within Darshan to

replay I/O traces with semantics for barrier-based blocking
I/O collectives to improve replay accuracy.

Besides assessing system configurations for procurement (as
in this paper), the framework can further facilitate the devel-
opment of parallel file systems, data staging schemes, traffic
shaping algorithms and resiliency techniques by performing
sensitivity studies to parametric variations.

II. BACKGROUND

In this section we will discuss tiering in modern HPC
storage systems and HPC network topologies. We will also
discuss the functional advantages and disadvantages that dif-
ferent burst buffer placement techniques have and how they
impact the network interconnect.

HPC Storage Tiers: Bursty I/O traffic from applications has
been reported to create a bottleneck at the level of shared disk-
based parallel file systems [1]. In order to absorb these spikes
in I/O traffic, the addition of a fast tier of SSD-based storage,
called BBs, has been both proposed and implemented [9] [10].
BBs are closer to the compute nodes than the PFS and offer the
applications significantly higher bandwidth, albeit at a much
lower capacity. Applications that read/write a large amount of
data can now keep the compute nodes busy by utilizing the
high-bandwidth SSD-based storage for checkpointing, reading
input data, writing preliminary results, and their final output
to persistent storage. BBs also allow applications to perform
significantly faster in-situ analysis and jobs in a workflow to
have a high-bandwidth, low-latency scratchpad.

Several leadership-scale computing systems have deployed
BBs. Theta at the Argonne National Laboratory, Summit at the
Oak Ridge National Laboratory, and Sierra at the Lawrence
Livermore National Laboratory have node local BBs. On the
other hand, Trinity at the Los Alamos National Laboratory,

Conrad at the Zuse Institute Berlin, and Cori at the Lawrence
Berkeley National Laboratory have distributed BBs.

Network Topologies: The performance of HPC applications
is often limited by communication rather than computation
making the network interconnect a key determinant of system
performance. A host of network topologies exist, including
tori, trees and meshes plus recent ones like dragonfly, slim-
fly [11], and HyperX [12]. Each one of these topologies offer
different characteristics such as diameter, bisection bandwidth,
direct/indirect network, and cost (see Table I).

TABLE I
NETWORK TOPOLOGIES

Network Bisection Diameter Network Type Cost
3-level Fat-Tree Full 4 Indirect High

3D Torus Low High Direct Low
Dragonfly High 3 Direct Medium

Slimfly High 2 Direct Medium

The choice of network topology and allocation of jobs
to nodes has a significant impact on system performance.
Furthermore, placement of BB nodes can impact network con-
tention in these interconnect topologies. Therefore, it becomes
important to study the impact of application communication,
BB I/O traffic and shared parallel file system traffic on them.

Application Workloads

Leadership computing facilities run a variety of application
workloads, from large jobs that occupy a significant fraction
of the system to several small to medium sized jobs each of
which occupy a smaller fraction of the system. Workloads can
also vary by their duration of execution from a few hours to a
few days. These factors have an impact on the frequency and
size of I/O traffic that these applications have.

Applications also have different checkpointing require-
ments, input/output characteristics, and I/O stages that affect
the overall performance of the application workload. The use
of traces from leadership class machines allows us to replicate
application behavior at a high resolution.

III. RELATED WORK

Prior work has focused on the exploration and implemen-
tation of BB architectures in HPC systems. Kimpe et al. [13]
describe the design of a container abstraction to manage in-
system storage devices and to transfer data in the storage
hierarchy. Herbein et al. [14] use I/O aware batch scheduling
to reduce contention with novel scheduling techniques. This
reduces contention on the parallel file system, resulting in
reduced job variability. BurstMem [15] provides storage and
communication strategies for BB systems. It shows that if
handled efficiently BBs can significantly speed up application
I/O performance. TRIO [16] is another framework that coor-
dinates flushing from BBs to the parallel file system in order
to maximize storage bandwidth by reducing the contention
between storage servers. In contrast, we focus on the impact
of BB placement on application performance.

Bhimji et al. [10] explore the use of the Cori BB system
at the National Energy Research Scientific Computing Center
(NERSC) of the Lawrence Berkeley National Laboratory. They



discuss the performance gains achieved using BBs compared
to only a shared Lustre parallel file system. Liu et al. [9]
have used parallel discrete event simulation to evaluate BBs
in leadership-class storage systems. They analyze common
burst patterns in applications and use simulation to analyze
the I/O performance of applications. While Liu et al. delve
into application performance in the presence of a BB system,
our work focuses on creating a reproducible framework for
analyzing application and BB performance for different BB
placement strategies and network configurations.

More recently, Mubarak et al. [17] have used simulations
to show the effects of interference of network and I/O traffic
in dragonfly network topologies equipped with BBs. They
use different routing strategies with realistic workload sizes
to demonstrate that balancing I/O and network traffic re-
quires a careful selection of routing policies, and job and
data placement. Harms et al. [2] describe the use cases of
BBs and how different BB architectures are more suited for
certain functionality than others. Cao et al. [18] compare the
performance of local and shared BB systems. Their results
show that shared BB organizations can result in higher I/O
throughput than local BBs. Instead of static checkpoint sizes,
we use application traces collected from real executions to
more accurately simulate application I/O behavior.

IV. OVERVIEW

As part of this work, we create a framework using CODES
to rigorously examine placement of storage resources in
modern HPC systems. The network models allow HPC cen-
ters to simulate current and proposed HPC topologies. The
burst buffer models in our framework also facilitate a what-
if comparison of various burst buffer architectures against
which HPC centers can simulate their workloads. HPC centers
can use Darshan traces collected from previous application
executions to project application I/O behavior with significant
resolution to future systems. Our framework can also be used
to augment the Darshan traces with MPI synchronization
primitives, to increase the number of I/O phases, and to
scale the traces via extrapolation, both strongly and weakly.
These capabilities allow for projections to future workload
sizes while preserving application behavior. Our framework
can aid burst buffer provisioning by allowing HPC centers to
study various network and storage architectures with multi-job
workloads and node allocation policies specific to the center.

V. CODES SIMULATION SUITE

Parallel Discrete Event Simulation: In Discrete Event Sim-
ulation (DES) [19], the system is modeled as a sequence of dis-
crete events. Each event changes the state of the system. Since
these events occur at particular instances in time and trigger
state changes, the system state is assumed to be constant
between state changes. Parallel Discrete Event Simulation
(PDES) [20] exploits the parallelism to significantly speed-up
simulation performance, while also allowing us to scale the
simulation to larger sizes. On the other hand, PDES is hard
to implement because some events might affect others, and

therefore require sequencing constraints. Without sequencing
constraints, causality errors can occur.

Two mechanisms manage sequencing constraints — conser-
vative, and optimistic. For conservative PDES, causality errors
are prevented from occurring by issuing an event only when
it is safe. Events are not processed until all events that might
affect it have completed. Alternatively, optimistic PDES allows
causality errors to occur but has mechanisms to detect such
errors and roll back to a correct state.

Rensselaer’s Optimistic Simulation System (ROSS):
ROSS [21] is a DES that uses Time Warp [22] for syn-
chronization. Each component in the system is modeled as
a logical process (LP), which communicates by exchanging
timestamped event messages. It has support for both sequential
and parallel (conservative and optimistic) simulations.

The Time Warp mechanism synchronizes computation by
detecting events that occurred out of timestamp order, rolling-
back these events, and finally re-executing them. In order to
improve performance, ROSS uses a technique called Reverse
Computation [23] [24]. In Reverse Computation, instead of
saving and recovering state in case of causality errors, roll-
back is done by reverse executing code. This allows us to scale
the simulation to highly parallel machines and saves memory
as states between events need not be preserved.

CODES: CODES builds on ROSS in order to enable highly
parallel simulations of exascale network and storage archi-
tectures in HPC environments. CODES abstracts the network
models as components to create packet-level simulations of the
most popular HPC network topologies. It supports dragonfly,
slimfly, torus and fat-tree topologies. It includes support for
packetization of messages and provides an API to simulate
both MPI and RPC style communication. It also has support
for storage models including a local storage and a CODES
store model, which can be used to simulate BBs.

Once the HPC system has been modeled using the storage
and network components, CODES can simulate a range of
I/O and network workloads. CODES has support for synthetic
workloads, checkpoint workloads as well as replaying network
traces such as SST DUMPI and I/O traces from Darshan.
For our experiments, we use Darshan traces from real- world
HPC applications to evaluate the performance of BBs. Finally
CODES allows for the collection of several metrics related to
the simulation, which we use for our evaluation.

Darshan: Darshan [25] is an I/O characterization tool
developed by researchers at Argonne National Laboratory that
allows application developers and HPC system administrators
to capture an accurate picture of the I/O behavior of an
application. It consists of two parts, a runtime, which is
a lightweight library used to instrument the application at
execution time, and the Darshan utility, which is a collection
of tools used to analyze Darshan traces.

The Darshan runtime is lightweight enough to be used on
several current generation HPC systems in order to instrument
I/O behavior and has been deployed at the Argonne Leadership
Computing Facility (ALCF), the National Energy Research
Scientific Computing Center (NERSC), and the Oak Ridge



Fig. 2. The CODES simulation suite

Leadership Computing Facility (OLCF), among others. We
use the traces collected by these systems to resemble the I/O
behavior of scientific applications in our simulation. We also
use the Darshan utility to scale the Darshan traces collected
by these HPC centers for future, larger scale HPC systems.

VI. WORKLOAD AND SIMULATION DESIGN

A. BB Placement

The placement of BBs in an HPC system has a significant
impact not only on the I/O performance of the application
but also on the performance of the interconnect. In order
to evaluate the performance of the placement models, we
simulate each model under varied configurations. Their perfor-
mance is then evaluated with different workloads and network
topologies (described later). Each model has its own functional
advantages and disadvantages, which we also discuss. Figure
3 shows the different BB architectures we are evaluating in a
fat-tree network configuration.

1) Node-Local BBs: A storage device is placed within the
compute node allowing applications to have exclusive access
to the storage resource while enabling I/O performance to scale
linearly with the number of nodes in the system. Further, I/O
operations do not result in network traffic as it goes through
the local bus. One drawback of using this model is that the
BBs are tightly coupled with the compute nodes, which creates
a single failure domain. It also makes it difficult to support
applications that utilize shared files.

To simulate the node-local BB model, we integrate the
CODES storage server into the client. Since reading/writing
from/to the local buffer does not result in network traffic,
one can model the BB in this manner. The I/O is modeled
to be synchronous, and application execution resumes after
I/O completes. Bandwidth, latency and seek times of storage
devices are configurable via the CODES configuration.

2) Grouped BBs: BB servers are placed in the group along
with the compute nodes in order to exploit local network
links, which are typically non-blocking. This model allows

applications to write to shared files and supports easy stage-in
and stage-out. It is also much more straightforward to share
data between nodes. Here, the bursty I/O traffic could nega-
tively impact the PFS as buffers share network connections.
This configuration incurs an additional server, networking,
and cabling costs. We simulate this model by placing the
CODES storage server model in each group along with the
client LPs (logical processes). The CODES storage server
is built using the local storage model that simulates a disk
along with networking and has support for threading, which
simulates multiplexed transfers. Memory size, storage size,
threads, read/write bandwidth, latency, and seek times are
configurable in the CODES configuration file. Read/writes
from compute nodes result in network traffic to I/O nodes.

3) Global BBs: BB servers are placed on nodes separate
from both the compute nodes and the I/O nodes. This allows
the compute nodes to use shared files, and the BBs might still
be usable even if the parallel file system goes down. The bursty
I/O here results in additional traffic on the global network,
which could cause degraded performance. It also increases the
cost of the system due to additional servers, network interface
cards (NICs), and network switches and cables. The simulation
of global BBs is done using the same CODES storage server
placement as in the last model, except that the BB servers are
placed in a separate group with a configurable number of burst
buffer nodes. The I/O in this model causes network traffic to
be generated from the compute nodes to the BBs. A significant
difference from the previous model is that flushing data from
the BBs to the parallel file system would result in network
traffic from the BB nodes to the I/O nodes. Parameters such
as memory, storage, bandwidth, etc. are configurable in the
CODES configuration file.

4) Locality and Striping: For the node-local model, the
MPI ranks on a node conduct I/O with their local BBs without
accessing the network. In the grouped model, ranks of the
application perform I/O with the BB device located in the same
group as well as with the BB devices in the adjacent groups
based on the striping configuration. Similarly, for the global
BB model, the application performs I/O with a respective BB
node from the set of global BBs as well as a certain number
of adjacent nodes as specified in the striping configuration.
In our experiments, the I/O in the node-local model is not
striped across multiple BB devices, i.e., the only cause of
contention is the SSD device on the BB node. For grouped and
global BB models, we stripe the I/O across 4 BB nodes with
a stripe width of 128KB. This configuration closely mirrors
that of common HPC storage hierarchies including Data Direct
Network’s (DDN) Infinite Memory Engine (IME).

B. Workloads

Gyrokinetic Toroidal Code, GTC [26], is a highly scalable
scientific application that simulates billions of plasma particles
inside a reactor. S3D [27] is a direct numerical simulation
(DNS) code used in computational fluid dynamics, which
solves the Navier-Stokes equations. LAMMPS [28] stands for
Large-scale Atomic/Molecular Massively Parallel Simulator



(a) Node-Local (BB in leaf nodes) (b) Grouped (BB in adjacent nodes) (c) Global (BB is dense node subset)
Fig. 3. BB architectures on a fat-tree network.

and is used to model particles at the mesoscale or continuum
levels. HACC or Hardware/Hybrid Accelerated Cosmology
Code [29] is used to conduct high resolution simulations of
cosmological structure for modern-day galactic surveys. IOR
is a benchmarking application developed by LLNL to test the
performance of parallel file systems. We use it to simulate
adversarial traffic in the system allowing us to study the impact
of artificially high I/O and network traffic on applications. In
order to evaluate the effects of different workloads on the I/O
performance of the system, we use HPC applications widely
used in leadership computing facilities. We use Darshan traces
collected from runs of the application to replay the expected
I/O behavior on our simulated systems. These representative
applications perform blocking I/O. We also created tools to
weakly scale the Darshan logs to occupy a specific fraction of
the system. We discuss the scaling approach in a later section.

TABLE II
APPLICATION TRACES

Application MPI Ranks Avg. I/O / Rank (MB)
GTC 7680 669.41

LAMMPS 21600 19.78
S3D 6000 154.49

HACC 8192 386.39
IOR 768 1024

Table II lists the applications used in our workloads and
their I/O properties, and Table III lists the combinations of
these applications we use as representative workloads for our
simulation experiments. Figure 4 shows the I/O patterns of
our representative applications as derived from the Darshan
traces. GTC has a single I/O phase towards the end of the
execution of the application with all ranks (except rank 0)
writing very similar amounts of data to persistent storage.
Each rank in LAMMPS opens several files for writing small
amounts of data into each file. S3D has 3 I/O phases for each
rank. Except rank 0, each of the ranks writes to an independent
file in each of the 3 I/O phases. The write operations are
also staggered with increasing rank numbers. For HACC, all
the ranks have 2 write I/O phases to the same file. While
each of the ranks open their respective files at the same
time, the operations exhibit a scattered pattern with each rank
experiencing a delay before write operations commence. This
significantly reduces the overlap between writes from different
ranks. Finally, IOR as a benchmark has a single I/O phase with
each rank writing 1 GB to independent files from the very
beginning of application execution. The nodes are modeled to
be Summit-style (200 petaflop CPU/GPU system at OLCF)
fat nodes with 6 GPUs, i.e, we allocate 6 MPI ranks to each
compute node in our simulation. Our choice for application
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Fig. 4. File write patterns for different applications from Darshan traces.

combinations were restricted by the number of nodes in the
system we are simulating and memory limitations on our
compute nodes.

TABLE III
HPC WORKLOADS

Total MPI Compute %age of
Workload Ranks Nodes Total Nodes
GTC 7680 1280 23-27
GTC, IOR 8448 1408 25-30
GTC, S3D 13680 2280 40-47
GTC, S3D, HACC 21872 3646 64-75
HACC 8192 1366 25-29
HACC, IOR 8960 1494 27-32
LAMMPS 21600 3600 63-74
LAMMPS, IOR 22368 3728 65-77
S3D 6000 1000 17-21
S3D, IOR 6768 1128 20-23
S3D, LAMMPS 27600 4600 80-95



1) Augmenting Darshan Traces: More powerful machines
allow application developers to increase the size of their
datasets, create higher fidelity simulations, and perform anal-
ysis at finer granularity. To more effectively represent appli-
cation I/O behavior in next-generation machines, we develop
tools that allow us to scale Darshan application traces and add
synchronization primitives to them. First, our tool allows us to
scale the number of ranks in an application trace. Following
the weak scaling paradigm, it uses the I/O behavior of the
other ranks to scale-up the number of ranks within a job.
Second, we can also scale the size of the I/O per rank in the
job for strong scaling. Third, we added the ability to repeat
the number of iterations that the Darshan trace is replayed
for with a certain interval. And finally, we have the ability to
collate several consecutive small writes in the trace into bigger
ones. We can, therefore, represent future application I/O sizes
while being consistent with application I/O behavior. We can
also add global and sub-communicator barriers to the traces
to more accurately represent I/O behavior of the application.

2) Job Placement: Applications in leadership-class systems
are rarely allocated to a completely contiguous set of nodes.
The HPC batch scheduling algorithm often results in fragmen-
tation with several small chunks of contiguous nodes that are
available. This exacerbates inter-job and intra-job interference
(see Yang et al. [30]) for MPI communication. This can
also have severe effects on I/O performance with interference
resulting in large performance variations for non node-local
BB configurations and the PFS. We use job allocation logs
from the Titan supercomputer at OLCF to guide the allocation
of applications to nodes in our workload. This allocation
strategy lets us evaluate the impact of application I/O patterns
not only on interference in the network but also in terms of
interference between SSD devices of BBs.

C. System Configuration

In this section, we describe the systems we simulate us-
ing the CODES simulation suite. We broadly categorize the
systems based on their network topology. For each of the
network topologies, we create configurations for the different
BB architectures subject to evaluation.

1) Fat-Tree Network: We use the fat-tree model in CODES
to configure a fully non-blocking fat-tree network resembling
Summit. Our configuration is a 3 level fat-tree with 270 edge
switches (radix of 36) and up to 4860 terminal nodes. Like
Summit, our configuration has a network bandwidth of 25
GB/s per node. For the node-local BBs, each of the terminals
has compute nodes with a local SSD. The grouped configu-
ration has one BB server per edge switch, and the global BB
configuration has 15 edge switches with only BB servers for
a total of 270 BB servers. For effective comparison we have
both the configurations, grouped and global, with the same
number of BB nodes. Furthermore, all the 3 configurations
have nearly identical aggregate bandwidth (within 1% of each
other.)

2) Dragonfly Network: We use the dragonfly model in
CODES to simulate a Cray XC30 system along the lines

of the Edison supercomputer at NERSC. It uses an Aries-
style interconnect for a total of 5,760 terminal nodes with a
bandwidth of 8 GB/s per node. The local and global channels
are configured with a bandwidth of 5.25 GB/s and 1.5 GB/s,
respectively. We use adaptive routing which has been shown
to perform better than minimal routing for adversarial traffic
patterns [6]. Here, the node-local BBs are also situated on
each compute node. The grouped configuration has a BB for
every 2 blades in the network, where each blade consists of
4 terminal nodes connected by an Aries SOC. The global BB
configuration consists of 180 blades with BB servers.

3) A 2:1 Tapered Fat-Tree Network: We also use the fat-
tree model in CODES to configure a 2:1 tapered fat-tree with
twice the number of links for terminal nodes as the links
going to the upper-level switches. This reduces the cost by
reducing the number of switches and cables required for the
same number of terminal nodes. Tapering of a fat-tree might
negatively impact performance of the network as it is no longer
non-blocking. To facilitate a comparison with a full non-
blocking fat-tree network, the 2:1 tapered fat-tree retains the
other configuration parameters from our fat-tree configuration.

4) BB Nodes: Node-local BBs are simulated as a single
SSD device per compute node with write and read bandwidths
of 1,400 MB/s and 2,300 MB/s, respectively, for both dragon-
fly and fat-tree networks. The grouped and global BB nodes
consist of 18 SSDs each for the fat-tree configuration and 6
SSDs each for the dragonfly configuration. The aggregate write
and read bandwidth of BB nodes is 25,000 MB/s and 41,000
MB/s in the fat-tree configuration and 8,400 MB/s and 13,700
MB/s in the dragonfly configuration, respectively, for both the
grouped and global BB models.

VII. EVALUATION

We evaluate the performance of different workloads subject
to a range of factors. We run 100 simulation experiments on an
HPC cluster using as input application traces collected from
runs on the Titan supercomputer at OLCF [31].

First, we look at how the performance of single job
workloads are impacted by the choice of BB architectures.
We compare the architectures across the different network
topologies based on total time spent on I/O, network hops and
BB performance. We then study the impact of adversarial jobs
on our representative workloads. This involves a workload co-
scheduled with an IOR job, which periodically writes 1 GB
files to BBs, enabling us to gauge performance in a worst-
case scenario. Finally, we study the impact of co-scheduling a
combination of representative jobs on performance parameters.

A. Validation of Node-Local BB Model

To validate our node-local BB model, we run the IOR
benchmark on Summit-style [3] nodes in a fat-tree network
with node-local BBs. We run the benchmark with 96 ranks
over 16 nodes, and compare the results with those obtained
from simulation. Each rank writes 1GB of data to independent
files on their local BBs. We also set the parameters of our
simulated BBs to match the configuration of the actual devices.



We set the read/write bandwidth to 3,200 MB/s and 2,100
MB/s respectively with negligible seek overhead.

Table IV shows the comparison between the simulated
and actual run of the IOR benchmark on 16 nodes. We can
see that the write time and bandwidth obtained from the
simulation deviates from the actual results by less than 3%.
This validates our model to simulate node-local BBs with
considerable accuracy. TABLE IV

NODE-LOCAL BB VALIDATION

Parameter Actual Simulated
Size/Rank (GB) 1 1

Aggregate Size (GB) 96 96
Write Time (s) 3.01 2.92

Aggregate Bandwidth (MB/s) 32600.56 33616.48

B. Validation of Distributed BB Models
We validate our distributed BB models (which combines

grouped and global from Fig. 3 for now) by running the
IOR benchmark on the Konrad [32] TDS (Test Development
System) for 6 - 192 ranks over 64 compute nodes. The Konrad
TDS has an Aries Dragonfly network topology and distributed
BBs. We use their BB configuration within CODES for a write
bandwidth of 1,900 MB/s and 15µs of write overhead, based
on a single node with 6 ranks writing to one SSD of the
BB, in order to validate against the performance of the actual
machine. Figure 5 shows the comparison between the actual
and simulated runs of the IOR benchmark. The results from the
simulation deviate from the actual runs by less than 11%. This
validates our CODES model to simulate global and grouped
distributed BBs accurately.

Fig. 5. Distributed BB Validation
1) Cost Modeling: In a cost-benefit analysis, we consider

DOE models of workloads for supercomputing centers. Ca-
pability computing centers cater to a workload that requires
20% or more of the resources in a supercomputer to achieve
the desired science. These centers tune scheduling to prioritize
large jobs to access the machine. These workloads often use
file-per-process outputs to mitigate performance degradation
due to parallel file system locking at scale. Capacity computing
center resources are targeted toward smaller average job sizes
dominated by single-shared-file outputs. Smaller jobs are less
impacted by file system overheads and single-shared-files do
not require post-processing like file-per-process.

We make the following assumptions for cost modeling that
are based on Summit [3]. We assume that distributed BB file-
per-process performance and single-shared file performance

are equivalent, and there is no locking overhead. We assume
that there is no opportunity to perform single-shared file
operations on node-local systems. Using Summit’s storage
performance numbers at 2.5 TB/s for PFS and 9.7 TB/s for
the node-local BB, a 35% memory checkpoint takes approxi-
mately 5 minutes to the parallel file system and 2 minutes to
the burst buffer based on related work [33]. Over the course
of a year, such workloads in a capacity center result in 100%
acceleration of the I/O portions of the workload by 2.5X. In
contrast, the capability center accelerates the I/O portions by
1.8X as only 70% of the I/O workload can be accelerated (on
the BB side).

Table V compares Capital Expenditure (CAPEX) and the
Operational Expenditure (OPEX) of the node local and dis-
tributed models using current hardware. The numbers pre-
sented are a simplification of actual OPEX values and do
not account for voltage scaling during idle phases. These
approximations also omit the OPEX maintenance costs that are
necessary for running such systems. The numbers demonstrate
that the distributed model’s CAPEX is 2.4X higher than the
node-local model. The energy-based OPEX is also higher,
consuming over double the power due to CPU, network,
and infrastructure overheads. Compared to node local BBs,
a capacity center using a distributed BB would more than
double the CAPEX and OPEX. A capability center (same
CAPEX+OPEX) would only benefit from 70% of the I/O
being accelerated, still making distributed BBs less appealing.

TABLE V
DISTRIBUTED VS. NODE-LOCAL CAPITAL AND OPERATIONAL

EXPENDITURE COMPARISON

Node Local CAPEX Total Cost $4,608,000
4608 x8 NVMe Devices $1000

Distributed CAPEX Total Cost $11,415,600
4832 x4 NVMe Devices $800
302 AMD EPYC Servers $25,000

Node Local OPEX 5 Yr Cost $1,000,000
NVMe 4608 25W

Total 115KW
Distributed OPEX 5 Yr Cost $2,600,000

NVMe 4832 25W
Server 604 300W

Total 302KW

C. Effect of BB Placement on Performance

We simulated the 4 representative jobs (GTC, HACC,
LAMMPS and S3D) running independently on the system for
each BB architecture and network topology. The node alloca-
tions are not contiguous but guided by allocation logs from
the Titan supercomputer, which are typically not contiguous
in node locations. This provides a realistic comparison when
we introduce adversarial jobs as well as co-schedule other
applications as part of the workload.

Figure 6 shows the average number of hops incurred by I/O
traffic for each of the given applications across the different
BB architectures. Since node-local traffic does not have to
traverse the network, the number of hops for node-local BB
model is 0. For the fat-tree network, all traffic to the global
BBs is routed across the entire diameter of the network. For
the grouped BBs traffic is routed to a combination of the BB



servers in the local group as well as adjacent groups because
of the striping policy.

(a) Dragonfly (b) Fat-Tree
Fig. 6. Avg. number of network hops incurred by application’s I/O traffic

Observation 1: For bursty traffic in a dragonfly network with
global BBs we observe high non-minimal routing, with I/O
traffic incurring significantly higher hops.

For the dragonfly network we see significant differences
between applications for the global BB architectures. GTC
exhibits highly bursty traffic, performing significant I/O in
a relatively short duration of time. This causes a higher
fraction of the packets to be routed non-minimally compared
to HACC, which exhibits staggered rather than bursty be-
havior. The grouped architecture, on the other hand, does
not concentrate traffic in any one part of the network and,
therefore, does not suffer from excessive non-minimal routing.
Dragonfly networks attempt minimal routing first, followed
by non-minimal routing. Therefore, high non-minimal routing
indicates congestion in the network.
Observation 2: Grouped BB in a dragonfly topology perform
their I/O phases significantly faster than the global configu-
rations for bursty applications.

Figure 7 shows the I/O phase of each rank of the application
on the y-axis (from highest rank on the top to lowest rank
on the bottom) over time (x-axis) for a single I/O phase. As
expected, the performance of the node-local BBs is indepen-
dent of the choice of network topology across all applications.
Ranks in the grouped architecture spend consistently less time
in their I/O phase than with the global BB architecture for the
three network topologies. The difference is most pronounced
for the dragonfly topology with bursty applications. This is
due to the lower global bandwidth on the dragonfly topology
compared to the fat-tree with full bisection bandwidth. In case
of HACC, not all of the ranks attempt write operations at the
same time. This limits the network contention in the part of
the network where the storage resources are concentrated.
Observation 3: Global, grouped and node-local BB config-
urations have comparable performance for fat-tree networks
except for applications with staggered I/O like S3D.

In the case of fat-tree topology, all applications except S3D
spend comparable amounts of time in their I/O phases for
the three BB architectures. For S3D, the grouped and global
configurations outperform the node-local BB configuration for
both the full fat-tree and the 2:1 tapered fat-tree networks.
Since only a fixed number of ranks in S3D (400 in this case)
perform I/O at any given time, there is more available band-
width in the case of global and grouped BB configurations,

while the application is bottle-necked by the single SSD in the
node-local BBs. The tapering imposes a performance penalty
on both grouped and global BB configurations, but the network
contention between the edge and aggregation layers results in
the global configuration paying a significantly higher penalty
compared to the grouped BB configuration.
Observation 4: Node-local BBs outperform the other configu-
rations for bursty applications. In case of applications with a
scattered I/O phase like HACC, the node-local configuration
results in each rank spending more time on I/O.

We can also see from Figure 7 that node-local outperforms
grouped and global BB architectures for bursty applications
like GTC and LAMMPS. This is because (a) the SSD is local
to the compute node and I/O does not incur slowdown due
to network congestion, and (b) there is much less contention
for the SSD device compared to grouped and global BBs.
For HACC, results show that each rank in the node-local
configuration spends significantly more time on I/O operations
compared to grouped or global BBs but the resulting I/O phase
lengths are almost identical irrespective of BB placement.
This is because while all ranks in the application open their
respective output files at the same time, they commence write
operations only after a delay of anywhere between 1 to 40
seconds. Due to this scattering of write operations by ranks,
network and storage contention is reduced drastically. Since
the node-local BBs have lower bandwidth compared to BB
servers in the grouped or global architectures, each rank spends
more time on I/O. In this case, HACC has a schedule that
perfectly matches bandwidth restrictions of the grouped and
global models, as a mismatch would have caused performance
to be adversely affected, which is not the case. We conjecture
that an I/O runtime that manages scheduling of I/O operations
can potentially benefit grouped and global BB architectures.

Our framework can also model different storage devices
like Phase Change Memory (PCM) and 3D XPoint. To assess
diverse BB devices, we experimented with a cost (overhead)
of 45µs per operation for BBs (graphs omitted due to space).
In this case, node-local BBs significantly outperform the other
configurations for bursty applications and staggered applica-
tions like S3D. Furthermore, global and grouped BBs in a fat-
tree configuration had similar performance across applications
for storage devices with seek and operational overhead.

D. Effect of Co-Scheduled Jobs on Performance

We also simulate the performance of the representative
applications when scheduled alongside other applications plus
an adversarial one. Here, the simulated storage device has
additional read and write overheads of 45µs per operation.
This allows us to experiment with emerging storage technolo-
gies that have different characteristics than current generation
SSDs (without measurable write overheads). We use traces of
IOR, an I/O benchmark generating large volumes of data at
specified intervals to simulate the adversarial traffic. The node
allocation strategy causes co-scheduled jobs to be assigned to
certain nodes adjacent to the nodes of the application we are
studying. Since the co-scheduled jobs have no effect on the



Global BB
D

ra
go

nf
ly

Grouped BB

       

Node-Local BB

F
at

-T
re

e

       

T
ap

er
ed

 F
at

-T
re

e

01:40 01:50 02:00 02:10 02:20 02:30 02:40

(a) GTC, x-axis from 1min40sec to 2min40sec

Global BB

D
ra

go
nf

ly

Grouped BB

          

Node-Local BB

F
at

-T
re

e

          

T
ap

er
ed

 F
at

-T
re

e

00:00 00:05 00:10 00:15 00:20 00:25 00:30 00:35 00:40 00:45

(b) HACC, x-axis from 0 to 45 seconds
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(c) LAMMPS, x-axis from 0 to 3 seconds
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(d) S3D, x-axis from 11 to 26 seconds

Fig. 7. I/O phases of each application across network topologies and BB architectures, y-axis from highest (top) to lowest (bottom) rank

performance of the node-local BBs, we show results only for
global and group-local BBs.

Figure 8 shows the effect of scheduling multiple jobs on
application workloads. The different configurations are spec-
ified by network type and BB architecture. DF, FT, and TFT
refer to the dragonfly, fat-tree, and tapered fat-tree networks,
respectively. The figures show the total duration of the I/O
phase (in seconds) on the y axis for each application, rather
than on a per-rank basis.
Observation 5: Applications with I/O phases that do not
overlap significantly have little to no effect on the application’s
I/O phase length even for bursty applications.

For GTC, the I/O phase of the application has little overlap
with the traffic from co-scheduled jobs. This minimizes inter-
ference between jobs. Even though some ranks complete their
I/O phases sooner and others later, the average time spent by
each rank is not significantly affected. Even though individual
ranks spend more time in I/O for certain ranks of the GTC
application, the overall I/O phase remains similar.
Observation 6: The I/O phase lengths of non-bursty/scattered
applications are not significantly affected by co-scheduled
jobs, though there is an increase in the average time spent
in I/O by each rank.

For HACC, the scattered I/O pattern results in ranks ad-
jacent to the nodes running other jobs spending more time
on their respective I/O phases, especially for fat-tree and

tapered fat-tree topologies, which is not visible from the
aggregate plots. The overall I/O phase of the application
remains unaffected due to the highly scattered nature of I/O
operations even as the average time spent in the I/O phase
increases. Since the I/O behavior of HACC is not bursty, it
is almost unaffected by the I/O behavior of other applications
running on the system.

Observation 7: Bursty applications in fat-tree and tapered
fat-tree networks are significantly affected by co-scheduled
adversarial jobs due to contention for both storage and
network resources.

LAMMPS, on the other hand, experiences significant in-
terference from the adversarial job. The I/O phase of ranks
adjacent to nodes allocated to the adversarial job increases
significantly, causing the application to experience slowdown.
While the interference is experienced across BB architectures
and network topologies, the effect is most pronounced for the
fat-tree networks. In case of the tapered fat-tree network, the
limited network bandwidth from the edge to the aggregate
layers results in similarly degraded performance for both the
global and the grouped BB configurations. The bursty nature
of LAMMPS coupled with its I/O phase coinciding with that of
the IOR job results in contention for both storage and network
resources. Although experiencing significant slowdown due to
IOR, LAMMPS is not at all affected by the a co-scheduled
S3D job as their I/O phases do not coincide.
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Fig. 8. I/O phases of each application with adversarial background workload across network topologies and BB architectures.

Observation 8: The I/O performance of applications with
custom patterns, like S3D, is dependent on the node allocation
policy employed by HPC centers.

S3D experiences significantly degraded performance due
to an IOR job being scheduled along side S3D, especially
for the fat-tree networks. Just as for LAMMPS, network
contention in the tapered fat-tree network causes similarly
degraded performance for both the global and grouped BB
configurations. We can also see from the figure that the
tapered fat tree configuration imposes the highest penalty
compared to the dragonfly network, where the performance
degradation is the least. This indicates high network contention
rather than contention at the storage resources. Furthermore,
a co-scheduled GTC job has little to no effect on the I/O
performance of S3D in dragonfly and fat-tree networks, but
significantly affects performance for both global and grouped
BB configurations in the tapered fat-tree network. Due to the
nature of I/O in S3D, if the co-scheduled job is allocated nodes
adjacent to the higher S3D ranks, the long tails of those ranks
would result in increased I/O phases of the entire application.

Finally, we also perform experiments with SSD devices
with 0 seek and operational overhead. Our preliminary results
show that HACC is not significantly affected by the storage

device model because of the scattered I/O pattern. Similarly,
LAMMPS’s I/O phase length decreases, reducing the overlap
with the adversarial jobs, and is therefore not less affected by
the adversarial job as in Fig. 8, which includes 25µs and 20µs
seek and operational overheads.

VIII. CONCLUSION
We have developed a simulation framework for the provi-

sioning of burst buffers in supercomputers to provide accurate,
multi-tenant evaluations of realistic application and storage
workloads. This allows us to compare multiple network and
BB configurations as a means to select a best configuration
for procurement of an HPC system based on the target work-
loads to run. Our experiments indicate difference depending
on application characteristics, such as I/O burstiness, BB
placement, overlap of I/O phases, background workloads, and
network topology with an intricate interplay, all of which aid in
ultimately deciding on a network topology and BB placement.
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