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Abstract—Cutting edge classical computing today relies on a
combination of CPU-based computing with a strong reliance
on accelerators. In particular, high-performance computing
(HPC) and machine learning (ML) rely heavily on acceleration
via GPUs for numerical kernels. In the future, acceleration
via quantum devices may complement GPUs for kernels
where algorithms provide quantum advantage, i.e., significant
speedups over classical algorithms. Computing with quan-
tum kernels mapped onto quantum processing units (QPUs)
requires seamless integration into HPC and ML. However,
quantum offloading onto HPC/cloud lacks open-source soft-
ware infrastructure. For classical algorithms, parallelization
standards, such as OpenMP, MPI, or CUDA exist. In contrast,
a lack of quantum abstractions currently limits the adoption of
quantum acceleration in practical applications creating a gap
between quantum algorithm development and practical HPC
integration. Such integration needs to extend to efficient quan-
tum offloading of kernels, which further requires scheduling of
quantum resources, control of QPU kernel execution, tracking
of QPU results, providing results to classical calling contexts
and coordination with HPC scheduling.

This work proposes CONQURE, a co-execution environment
for quantum and classical resources. CONQURE is a fully
open-source cloud queue framework that presents a novel mod-
ular scheduling framework allowing users to offload OpenMP
quantum kernels to QPUs as quantum circuits, to relay results
back to calling contexts in classical computing, and to schedule
quantum resources via our CONQURE API.

We show our API has a low overhead averaging 12.7ms in our
tests, and we demonstrate functionality on an ion-trap device.
Our OpenMP extension enables the parallelization of VQE
runs with a 3.1× reduction in runtime.

Index Terms—Quantum Computing, Quantum Cloud Portal,
Job Management, Domain-Specific Languages

I. INTRODUCTION

Quantum computing has the potential to disrupt classical
computing for a number of fields. These fields include clin-
ical research [1], optimization [2], high-energy physics [3],
finance [4] and logistics [5]. The catalog of problems
where quantum computing promises potential for significant
speedup over its classical counterparts is only increasing.
As such, quantum computing has reached an early (yet
still experimental) state of maturity. A number of device
technologies ranging from superconducting devices (e.g.,
IBM Q, Rigetti, QCI, OQC, Google, Amazon) to ion traps
(IonQ, Quantinuum) to neutral atoms (QuEra, Pasqal) have
become available through cloud access, e.g., via Amazon

Braket [6], Azure Quantum [7], qBraid [8] or directly from
the vendors. Existing commercial solutions feature quantum
computing ecosystems on the basis of python packages
to facilitate software development over a number of hard-
ware devices. Today’s leading quantum computing hardware
technologies include Superconducting qubits (IBM, Google,
Amazon, Alice & Bob), Ion-Traps (IONQ, Quantinuum) and
Neutral Atoms (QuEra Computing Inc.). Software libraries
like Qiskit [9], Cirq [10], Tket [11] and Pennylane [12]
enable users to design quantum workloads while lower-level
control of the hardware is enabled by interfacing through
proprietary software layers, or research infrastructure such
as DAX [13], ARTIQ [14], Qubic [15], [16], and QICK [17].
This ecosystem of hardware and software technologies
supports a growing interest in quantum computing and is
evolving rapidly.

Despite its potential, integrating quantum computing tasks
in practical systems is not without significant hurdles. Near-
term practicality is held back by the variability in hard-
ware resources and their supported software packages, lack
of open-source frameworks that integrate classical and
quantum workloads beyond python, latency between classi-
cal and quantum systems and sub-optimal job scheduling
in shared-resource environments. Furthermore, automating
workload execution on smaller-scale devices is challenging
due to their experimental setting with specialized equipment
and transient usage patterns. Unlike commercial platforms,
such systems lack frameworks for abstractions, e.g.,
scheduling and execution of workloads while integrating
with the hardware and software tools, particularly in HPC.
Addressing these hardware and scheduling challenges is only
part of the equation — an equally critical barrier lies in
software tool integration. HPC benefits from optimization
and parallelism provided by applications/frameworks, usu-
ally written in C/C++ (e.g. OpenMP [18] [19]).

To address the two critical issues of efficient scheduling
and limited software tool integration, we introduce CON-
QURE, a novel fully featured modular quantum stack with
HPC/Cloud integration. The contributions of this paper are
as follows:

• We create an open-source software framework for the
management of quantum resources and workloads.

• We evaluate our integrated software stack on simulated
workloads.



• We demonstrate functionality of CONQURE on an
experimental ion-trap device.

• We extend OpenMP to support quantum offloading
(OpenMP-Q) and propose a design for reverse offload-
ing within this framework.

• We demonstrate 3.1× speedup in convergence time for
a VQE based workload through CONQURE OpenMP-
Q.

II. BACKGROUND

The integration of quantum computing workloads into HPC
requires interoperability between various resources, both
classical and quantum, across the hardware and software
stack. The fragmented landscape of frameworks supporting
quantum resources, in particular, necessitates a middleware
solution that can seamlessly integrate frameworks at different
layers in the software stack, and specifically HPC software
stacks while still providing Python compatibility. CON-
QURE’s architecture is designed to facilitate the automation
of workloads on quantum devices today, eliminating con-
cerns of software interoperability, development of supported
QIR and hardware-specific toolchains.

1) Lack of Interoperability: Proprietary systems mandate
the use of certain software libraries, which support specific
hardware resources. While open-source solutions exist, they
too come with assumptions about the hardware they are
meant to be run on. While a number of well established
frameworks exist and pipelines optimized for different kinds
of devices have been developed, the average user is forced
to make a decision which specific software library to use,
based on the hardware they want to execute on. In contrast,
our design allows the use of different hardware and software
libraries via our custom translation layer.

2) Sequential Execution: Other middleware architectures,
such as UQP [20], only support sequential operations as
defined by their QIR. This limits their usability on near-
term devices, which benefit from parallelization as a vital
mechanism to mitigate the effect of qubit decoherence on
overall noise. Also, the use of parallel gates is essential to
get the most out of certain device architectures like neutral
atom-based systems, which benefit greatly from the use of
parallel operations on a large subset of qubits.

3) Lack of Software Tool Integration and Extension via
Offloading Support with OpenMP: Quantum-assisted HPC
provides novel opportunities to lower computational over-
head for select algorithms. As such, traditional HPC can be
complemented by quantum kernel to more efficiently solve
highly complex real-world problems [21]. This introduces
a middleware problem as software will be needed at the
interface between classical HPC and low-level controlled
quantum execution on QPU devices, i.e., connectivity and
communication between classical and quantum devices is re-

quired. Past work introduced techniques like the distribution-
aware Quantum-Classical-Quantum (QCQ) architecture that
combines advanced quantum software frameworks with
high-performance classical computing to improve quantum
simulations [22] or Quantum-HPC Middleware [23]. How-
ever, most of the quantum programming languages and
libraries are in Python (e.g., Qiskit).

CONQURE utilizes OpenMP, a powerful and widely-used
framework for parallel programming, integral to general-
purpose applications, ML, and HPC [24] with a high abstrac-
tion level to facilitate integration into classical computing.
CONQURE provides novel support for quantum offloading
via an OpenMP quantum extension, OpenMP-Q. OpenMP-Q
provides target offloading to enable quantum computing as
a QPU device option, similar to [25]. However, OpenMP-
Q implements a pipe-based interaction between C++ and
Python quantum libraries using LLVM-Clang [26] while
also leveraging OpenMP’s multi-threaded model to execute
multiple concurrent quantum tasks.

III. DESIGN

CONQURE is designed to provide an easy-to-deploy sys-
tem that enables users to efficiently schedule workloads
destined for quantum devices. This is done while also
providing abstractions that simplify the submission of jobs
and subsequent retrieval of results. While QisDAX [27]
established a translation from Qiskit to DAX, CONQURE
extends this by integrating a cloud-queuing mechanism and
job persistence via an integrated database. CONQURE
focuses on providing a robust infrastructure for handling job
submissions, improving resource utilization, and ensuring
scalability.

A. CONQURE Stack

Fig. 1: CONQURE Hardware-Software Stack

CONQURE employs a layered architecture designed for
maximum flexibility across quantum hardware and software
platforms. As shown in Fig 1, the system is designed
with five modular layers that can be adapted for various
architectures:
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• User Interface Layer: Provides programming fron-
tends (Qiskit, Circ, Tket, etc.) for quantum kernel spec-
ification and classical-quantum workflow orchestration.

• Translation Layer: Converts platform-agnostic quan-
tum operations into hardware-specific instructions
through interchangeable adapters. This layer abstracts
vendor-specific compilation and optimization routines.
This layer can be bypassed for use cases where the user
has already created a workload with hardware specific
routines.

• Workload Manager: Combines cloud queuing, job
scheduling, and resource management subsystems. Im-
plements priority-based execution policies and hybrid
workflow coordination between classical and quantum
resources.

• DB: Maintains job metadata, quantum circuit defini-
tions, and execution results.

• Quantum Control Layer: Device-agnostic interface
for pulse-level control systems, designed to support
diverse qubit technologies through pluggable drivers.

The architecture enables the replacement of components at
any layer, i.e., users can substitute the quantum control layer
to one designed for ion traps while designing circuits in
Qiskit, or they can replace the scheduling subsystem without
affecting higher-level APIs. This modularity ensures compat-
ibility with emerging hardware technologies and evolving
HPC software ecosystems.

B. CONQURE Cloud Queue API

1) Compatibility with AWS Cloud Queue for Quantum De-
vices: CONQURE is designed as an interoperable alter-
native for AWS’ cloud queue for quantum devices [28],
ensuring that researchers using AWS do not need to change
their existing applications, but also providing missing com-
ponents for an independent open-source stack for quan-
tum researchers as opposed to commercial quantum ser-
vice providers. The API calls for get_results() and
create_work(), depicted in Listing 1, are compliant with
AWS’ Cloud Queue specification. Our API serves as a bridge
to connect the translated user written code with the private
cloud where the workload is run on either integrated QPUs
or simulators. The red dashed box in Fig 2 signifies where
the AWS-compliant interface CONQURE is situated.

However, in contrast to AWS, CONQURE is designed to
provide services in a private cloud, i.e., an environment with
authentication requirements that enables remote quantum
kernel execution across research labs. Here, authentication
needs to be maintained a priori to spawn CONQURE
services.

2) Scalability and Performance: Given that CONQURE
is intended for use by researchers across labs, scalability
was a key consideration in the API design. The system

must be able to handle high volumes of requests without
compromising performance. Fig 2 outlines the flow of data
across different parts of the architecture. Our API supports
asynchronous job submissions, allowing users to submit
multiple jobs without needing to wait for their completion.
This is particularly important here because job execution
times are expected to vary significantly. SLURM ensures
efficient resource utilization with job queuing that can be
tailored for each hardware device.

3) Job Persistency and Tracking: It is important that the
end-users are able to manage and track their workloads after
submission. Persistent job storage allows users to retrieve
information about submitted jobs, including workload infor-
mation and target devices. Users can also query the status
of jobs at any time to track their completion, or to retrieve
historical results from prior executions.

4) Modularity and Adaptability: CONQURE is designed as
an intermediate layer between the software translation layers
and the hardware control layer. It is crucial that it is able to
integrate with different implementations of said software and
hardware layers. Our API abstracts out this information and
allows the user to send as a workload only those data items
that are required by their downstream hardware control layer
of choice.

Listing 1: CONQURE User Code example

from qiskit import QuantumCircuit, execute
from qiskit.providers.dax import DAX
import conqure

# GHZ Circuit definition in Qiskit
num_qubits = 4
ghz_circuit = QuantumCircuit(num_qubits)
ghz_circuit.h(0)

for i in range(num_qubits - 1):
ghz_circuit.cx(i, i + 1)

ghz_circuit.measure_all()

# QisDAX Translation Layer
dax = DAX.get_provider()
backend_name = 'dax_artiq_device'
backend = dax.get_backend(backend_name)
backend.load_config("resources.toml")
dax_job = execute(ghz_circuit, backend,

shots=30)
workload = dax_job.get_dax()

# CONQURE UserClient
client = conqure.UserClient()
work_id = client.create_work(

workload=workload,
device_id=backend_name,
priority="LOW"

)
client.wait_until_done(work_id)
results = client.get_results(work_id)

# QisDAX Translation Layer
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Fig. 2: CONQURE Cloud Queue Architecture depicting API calls (red dashed box) and interactions between modules

qiskit_result =
dax_job.get_result_obj(results)↪→

C. CONQURE Software Tool Integration: Quantum Of-
floading Support via OpenMP-Q

Quantum programs consist of a sequence of gates, which
are individual operations on one or multiple qubits [25]. The
execution of a quantum program typically involves repeated
execution of these sequences. When multiple quantum of-
fload devices are available, these gate sequences can be
distributed across devices based on partitioned data.

Listing 2 demonstrates repeated execution using our pro-
posed quantum offloading strategy. The OpenMP-Q frame-
work enables reverse offloading, where the quantum ker-
nel remains active while classical computation runs asyn-
chronously on the host. This reduces task creation overhead
and allows classical computations (e.g., parameter updates)
to directly influence subsequent quantum gate operations.

More specifically, results from one iteration of the quantum
kernel may trigger classical code execution (e.g., a solver),
whose output is relayed back to the quantum processor.
These values are then incorporated into the subsequent
quantum gate executions, such as phase-angle adjustments.
This approach can be realized through on-the-fly parametric
pulse shaping within the FPGA that controls the quantum
device.

To facilitate quantum-host communication, we utilize a
quantum class object (see Sec. IV) to copy qubits into clas-
sical space, enabling their communication with other MPI
nodes during parallel execution. This ensures that classical
solving itself becomes parallelized, while the quantum kernel
continues execution with updated angle values.

Furthermore, the classical solver could be implemented as a
GPU kernel or distributed across CPU cores on each node.
The computed results are aggregated to determine the best

angle parameters before the next quantum kernel iteration.
MPI parallelization is optional; if MPI calls are omitted,
execution remains limited to a single node. However, with
MPI support, our model extends to multi-QPU execution
enabling result consolidation across quantum processors.

Listing 2: OpenMP-Q Single Quantum Offload

#pragma omp requires reverse-offload

void VQE(QuantumWrapper *c, int num_qubits,
double angles[]) {
//add series of quantum gates, here: VQE
c->h(0); // Hadamard gate
for (int i = 0 ; i < num_qubits; i++)

c->ry(angles[i], i); // Y Rotation
for (int i = 0 ; i < num_qubits-1; i++)

c->cx(i, i+1); // CNOT gate
for (int i = 0 ; i < num_qubits; i++)

c->ry(angles[num_qubits+i], i); // Y
Rotation

c->measure();
}

main(){
double angles[num_qubits] = init_angles();

// angles per VQE qubit
QuantumWrapper *c = new QuantumWrapper; //

QuantumWrapper Class Object
for (i = 0; i < iterations ; i++) {

# pragma omp target device(Quantum)
firstprivate(c) map(to: angles,
qubits)

{
VQE(c, num_qubits, angles); //

Quantum Gate Sequence
frequencies = c->execute();
# pragma omp target device (ancestor

: 1) map (from: frequencies)
{

MPI_Broadcast(... frequencies
...); // distribute over
nodes

angles = solve(frequencies); //
classical

MPI_Allreduce(0 , ... angles
...);

pick_best_angles(angles);
}

}
}

}
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Listing 3 demonstrates the execution of multiple parallel
quantum tasks. By leveraging OpenMP directives, we sched-
ule multiple quantum tasks according to the number of avail-
able OpenMP threads. The #pragma omp parallel di-
rective enables multiple threads to execute distinct quantum
circuits on separate QPUs or within quantum simulators.
To ensure compatibility with OpenMP offloading seman-
tics, each thread extracts its row from the global angles
array into a temporary per-thread qpu angles array, enabling
thread-specific parameterization within the target region. Our
language support generalizes to scenarios where multiple
QPUs are available. For example, in parallelizing variational
quantum algorithms with different Ansatzes [29], each node
could be assigned a dedicated QPU with distinct initial
angles supplied to evaluate multiple parametrized Ansatz
strategies concurrently.

Listing 3: OpenMP-Q Multi Quantum Offload

double angles[num_qpus][num_qubits]= init_angles
(); // angles per QPU and qubit: 2-D array

# pragma omp parallel
{

for(int i = 0 ; i < n_iterations ; i++) {
int qdev = omp_get_thread_num(); // one

QPU per thread
double qpu_angles[num_qubits] = angles[

qdev]; // angles per QPU
QuantumWrapper *c = new QuantumWrapper;
#pragma omp target device(Quantum)

device_num(qdev) firstprivate(c) map
(to: qpu_angles)
VQE(c, num_qubits, qpu_angles);
c->execute();

}
}

}

D. Potential to Improve Iterative Classical-Quantum Algo-
rithms

CONQURE’s modular, full custom architecture opens up
opportunities to better optimize the pipeline for hybrid
quantum-classical workloads, such as VQE and QAOA.
While this paper focuses on the modularity, cloud integration
and scheduling of CONQURE’s implementation, the design
supports interactions between quantum and classical exe-
cution within the same job, which mitigates bottlenecks in
hybrid workflows. (The implementation details are omitted
due to space.)

1) Challenges in Hybrid Iterative Workflows: Iterative al-
gorithms such as VQE require several runs on a QPU with
circuit parameters calculated using classical solvers. This can
create substantial delays between the execution of quantum
circuits. These idle periods significantly reduce hardware
utilization efficiency. Data from Moses et. al [30] reveal that
only a third of total operation time is used to run circuits on
their Trapped-Ion System. The remaining overhead accounts
for compiling circuits, retrapping of lost ions, etc.

CONQURE can prioritize those runs nearing convergence
as these are highly sensitive to noise deviations in the device.
Other optimizations specific to the hardware can also be
exploited. For example, in ion-trap systems, those jobs with
identical number of qubits can be prioritized to avoid the
retrapping of ions between runs.

IV. IMPLEMENTATION

A. CONQURE Cloud Queue

CONQURE integrates components from several existing
frameworks:

• User Code: Qiskit provides high-level abstractions for
building quantum circuits.

• Translation Layer: QisDAX bridges Qiskit with DAX,
allowing execution on ion-trap devices.

• Quantum Control Interface: ARTIQ facilitates low-
level control of FPGAs for ion-trap hardware.

• SLURM: Enables job scheduling and queuing.
• Flask: Manages the REST API for communication

between clients and servers.
• MariaDB: Stores workload related information like job

status, results, etc.

It should be stressed again that CONQURE is built in a
modular fashion such that its components can easily be re-
placed for different hardware or software environments. Our
current implementation uses the above mentioned frame-
works. The typical workflow is as follows:

• The user must first generate a workload and specify the
target device. In Listing 1, this workload is generated
by QisDAX through its get_dax() method.

• The user invokes the CONQURE UserClient class’
create_work to create a job on the server by sending
this workload as well as information about the target
device as well as a job priority.

• On the master server, this workload is pushed into a
new entry in the database and a unique job_id is
returned to the user. This ID they can then be used to
track the job status and retrieve results once the job has
executed.

• Once the job has completed, the results are pushed into
the central DB, and the completion status of the job is
logged in the entry.

• The user invokes the CONQURE UserClient class’
get_results to retrieve the raw data from the
DB. This is the data given by the quantum control
layer and may need to be parsed to be usable. In
the implementation shown in Listing 1, the data re-
trieved matches ARTIQ’s output requirements. It is
subsequently transformed into a Qiskit result object to
ensure compatibility with any downstream Qiskit code.
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Fig. 3: CONQURE: OpenMP Quantum Offloading Pipeline
(OpenMP-Q)

Listing 4: OpenMP-Q Quantum Offload Example
std::vector<std::vector<double>> angles = std::

vector<std::vector<double>> (N, init_angles
());

#pragma omp parallel
{

qdev = omp_get_thread_num();
for(int i = 0 ; i < K ; i++) {

device_angles = angles[qdev];
QuantumCircuitWrapper *c = new

QuantumCWrapper(qubits);
# pragma omp target device(Quantum)

firstprivate(c) map(tofrom :
device_angles [0:num_qubits])

{
VQE(c, num_qubits, device_angles);
frequencies = c->execute();

}
angles[qdev] = solver(frequencies);

}
}

Listing 5: OpenMP-Q, LLVM OpenMP Offload Updates

targetKernel(Int64_t DeviceId, KernelArgsTy *
KernelArgs) {
if(DeviceId == Quantum) {

// (1) Retrieve quantum circuit
object pointer

c = (QuantumCircuitWrapper*)
KernelArgs->ArgBasePtrs[n]; //
n = 0 (serial) or 1 (parallel)

for (int32_t I = 0; I < KernelArgs->
NumArgs; ++I){

if (KernelArgs->ArgTypes[I] &
OMP_TGT_MAPTYPE_TO) {
// (2) Parse mapped device

angles from `map(to:
device_angles)` and
serialize

processDataMapTo(KernelArgs->
ArgBasePtrs[I])

}
}

}
// (3) Execute user-defined offload

region -- populate quantum gate
sequence

target(...)
if (DeviceId == Quantum) {

// (4) Generate and execute Python
script

c->execute_python();
// (5) Write back result from python

to device_angles via `map(from:
device_angles)`

processDataMapFrom(KernelArgs->
ArgBasePtrs[I]))

}
}

B. OpenMP-Q

CONQURE contributes a common embedding library with
an integration into LLVM frontends [26], which connects
to quantum intermediate representations (QIR) for quantum
gates via our OpenMP-Q extension. Figure 3 shows the
complete pipeline of the C++/python bindings with OpenMP
in CONQURE as follows.

• Consider Listing 4. The user writes a simple OpenMP
program to execute quantum tasks on multiple QPUs
using the parallel directive. The target directive is used
to specify the sequence of quantum gates to execute.
The QuantumWrapper class is added to the OpenMP
shared library allowing users to create a pointer to the
quantum object and pass it to the OpenMP runtime
using the firstprivate clause (Fig 3-1).

• At runtime, the device clause is extended in OpenMP-
Q to include a quantum device ID identifying the
offloaded target as a quantum device. Listing 5 demon-
strates the required updates within OpenMP runtime
offload interface to integrate OpenMP-Q. #pragma

omp target makes a targetKernel function call with
kernel argument parameters. From the numbered points
marked as comments in the listing 5 we further elabo-
rate the updates within the targetKernel function:

(1) The pointer to the user initialized quantum ob-
ject inside the firstprivate clause is extracted
using the kernel arguments.

(2) The mapped data to the quantum device is
parsed, serialized and stored within the object
(to be passed as system arguments to the
Python script if needed).

(3) The user-provided offload code is executed
(see Fig. 3-2). This offloading code defines the
sequencing of quantum operations within the
quantum object, enabling the generation of a
Python script that specifies a quantum task.
Thread IDs at OpenMP runtime are used to
map different tasks to individual QPUs and
mapping relevant data.

(4) The OpenMP offload interface immediately
generates and executes this script. The imple-
mentation uses a Operating System (OS) pipe
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between processes to run the CONQURE task
alongside the quantum object data (Fig 3-2 &
Fig 3-3).

(5) Results from the executed Python script are de-
serialized, parsed and updated into the values
mapped back to host.

• Nested target regions, in case of reverse offload (see
Sect. 2), would utilize the bidirectional communication
functionality of Unix pipes (Fig 3-4). (Notice: Due
to incompatibility of reverse offload functionality with
the current LLVM OpenMP versions, this feature is a
design for future implementation subject to OpenMP
extensions within LLVM in the first place. We include
it here to discuss the benefits of such reverse offloads
for quantum.)

• The OpenMP-Q clause can also be extended to add a
Python script instead of a gate sequence on a quantum
circuit. In this case, OpenMP-Q executes the script
directly, passing the mapped data in the same way, i.e.,
as a serialized string, to the Python executable.

Listing 6 presents a summary of the Python script generated
by OpenMP-Q for the code in Listing 4. OpenMP-Q offers
users a flexible interface to insert quantum gate sequences
in any desired form.

Listing 7 illustrates a standard Python-to-C++ message that
conveys the frequencies of observed classical qubit states.
This message is parsed at runtime by OpenMP, storing the
evaluated frequencies in an array. These values are then
used to compute updated angles via the angle solver (see
Listing 4). Unobserved states are assigned a frequency of 0.

Listing 6: Generated Python Script: Circuit Execution
if __name__ == "__main__":

circuit = QuantumCircuit(4)
circuit.ry(2.858849, 0)
circuit.ry(1.445133, 1)
circuit.ry(2.136283, 2)
circuit.ry(2.293363, 3)
circuit.cx(0, 1)
circuit.cx(1, 2)
circuit.cx(2, 3)
circuit.ry(1.445133, 1)
circuit.ry(2.136283, 2)
circuit.ry(2.293363, 3)
circuit.ry(1.043242, 3)
circuit.measure_all()
backend = Aer.get_backend('

statevector_simulator')
counts = execute(circuit, backend, shots

=100).result().get_counts()
counts = json.dumps(counts)
print(counts)

Listing 7: Frequency of different qubit states (4 qubits)
{"1011": 8, "0011": 7, "0111": 14, "1001":

7, "0101": 3, "1110": 1, "1111": 60}

V. RESULTS

The CONQURE Framework was deployed and tested using
simulators and an ion-trap quantum device at the Duke
Quantum Center [31], which we have access to. The fol-
lowing sections detail the experiments performed and results
obtained.

A. CONQURE Cloud Queue

We evaluate the two key methods within the UserClient
class that manage the creation of jobs at the backend by
sending a workload and subsequent retrieval of results from
the database. We experimented with different sized GHZ
state preparation circuits [32] to estimate the overhead. GHZ
State preparation circuits were used here as their circuit size
increases linearly with qubit count. All experiments were
repeated 1,000 times. These tests reflect the data collected
on a local instance of CONQURE with a simulator, i.e. the
user’s code is run on the same machine that the CONQURE
server is hosted on. Latency was measured on a system
with a configuration as indicated in Listing 8 with Python
version 3.9.18 and LLVM version 20.0.0 enhanced by and
recompiled for our OpenMP-Q extension.

Listing 8: System Specifications

OS : Ubuntu 22.04.5 LTS
CPU : Intel(R) Core(TM) i9-9900 CPU @

3.10GHz (8 cores)↪→

GPU : NVIDIA GeForce RTX 2080 Ti
RAM : 16GB
Swap: 4GB
Disk: 1TB

1) create_work Latency: The latency of the
create_work API call was measured with results
depicted in Figure 4 across varying workload sizes (x-axis)
and backend configurations (legend) indicating latency in ms
(y-axis). We observe an average response time of 12.69ms
and 12.82ms when targeting a real device and a simulator,
respectively. There are small deviations given by box
plots indicating median, quartiles and minimum/maximum
measurements obtained. Notice that this API call triggers
the execution, i.e., it mainly registers the activity in the
database and spawns a corresponding asynchronous job.

2) get_results Latency: The latency of the
get_results API call are depicted in Figure 5 by
varying the number of data points (x-axis). This metric
is the product of number of shots and number of qubits
measured as both factors affect latency. Our results show
a smaller overhead when compared to the create_work
call. This is to be expected as the sheer amount of data
being transferred is lower given that results are simply read
out from the database after job completion.
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Fig. 4: Latency of CONQURE’s create_work API call

Fig. 5: Latency of CONQURE’s get_results API call

The CONQURE Cloud Queue framework was also tested
by running circuits from the Supermarq suite of bench-
marks [32] on an experimental ion-trap device at Duke
Quantum Center with 6 qubits. At the time of testing, this
system only supports single qubit operations. To simulate the
execution of these circuits to gauge overhead and latencies,
we replace any two qubit operations by a sequence of single
qubit operations, on both qubits, equal in time to the the
two qubit operation. More specifically, CNOT gates were
replaced by an RY and an RX gate on the target qubit,
followed by two Hadamard and two NOT gates on both
qubits, followed by another RY and RX on the target. This
changes the unitary of the circuit and, hence, its results.
However, we verify the CONQURE against results expected
from this modified unitary.

B. OpenMP-Q Offload

Next, we assess the efficacy of our OpenMP-Q extension
through a VQE experiment. VQE involves estimating the
minimum eigenvalue of a Hamiltonian by optimizing the

parameters of an ansatz circuit. The expectation value of
the Hamiltonian is calculated by measuring the circuit and
evaluating over a set of simpler terms, such as Pauli strings,
as a first approximation. The parameters of the ansatz circuit
is then optimized using a classical solver for the next
iteration, and this process is repeated until convergence.
However, this approach faces two problems, that of getting
trapped into local minima and slow convergence due to
barren plateaus. To mitigate these, multiple initial states
are chosen, and the lowest measured expectation value is
returned. This process is typically done sequentially.

Fig. 6: Convergence of 6 different VQE runs for a Max-Cut
Problem on a graph with 7 vertices

We test our system with a parallel VQE implementation,
similar to the one described in [33]. We design the ex-
periment around a max-cut problem on a graph with 7
vertices. Fig 6 shows the convergence of various QPU runs
with randomized initial parameters, i.e., each colored curve
corresponds to a different set of ansatz parameters resulting
in decreasing cost (y-axis). We schedule these VQE runs
(a) serially and (b) in parallel on simulators, in the latter
case to show the potential of parallelization over QPUs as
a concept to optimize convergence time, i.e., the different
runs themselves are parallelized.

We analyze the runtimes across different number of runs for
the same VQE problem, both with and without our Multi-
Q Offloading extension. Fig 7 depicts runtime (y-axis) over
up to 6 VQE runs (x-axis) serially (red) and OpenMP-Q
parallelized (blue). Experimenters were repeated 200 times
and showed minimal variations (indicated by barely visible
whiskers for 1st and 3rd quartiles). We observe significant
speedups as the number of threads is increased. Given that
the number of available QPUs is equal to the number of
threads, a single VQE run using our OpenMP-Q Offload
standard takes 38sec. But serially executing 6 VQE kernels
takes 228sec, whereas running 6 runs in parallel requires
only 71sec. This is a 3.1× reduction in total runtime.
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Fig. 7: Comparison of Runtimes when running VQE runs
with and without Multi-QPU Offloading

VI. RELATED WORK

Research into the integration of quantum computing into
HPC environments is a critical endeavor, driven by the
objective to realize quantum advantage on computationally
complex kernels in classical terms, which can be solved
more efficiently on quantum devices.

Saurabh et al. proposed a conceptual middleware solu-
tion [23] to build a foundation for the future of HPC
middleware systems. Mantha et al. built upon this foundation
with a middleware solution designed to manage classi-
cal and quantum resources at the application level [34].
CONQURE’s modularity and private cloud complement
this design while focusing on providing a comprehensive
framework for managing quantum and hybrid classical-
quantum workloads across hardware platforms.

UQP [20] introduced a platform designed for the integration
of HPC environments with quantum accelerators. It con-
tributed a novel ISA understood by UQP, which is trans-
lated from a Quantum Intermediate Representation (QIR).
CONQURE also aims to integrate quantum computers into
HPC environments but focuses on a practical near-term
implementation that integrates frameworks used in HPC
(OpenMP) with a private cloud.

The scheduling and management of resources and work-
loads is critical in the practical deployment of these tools.
Qoncord [35] tackled the problem of workload scheduling
in cloud environments and proposed a novel scheduling
framework that capitalizes on the differences in approxima-
tion errors over in different phases of VQA. It splits VQA
runs into distinct exploratory and fine-tuning phases, and
identified that higher noise was acceptable in the exploratory
phase and exploited this to schedule it with lower priority.
Unlike Qoncord’s focus on noise resilience, CONQURE
focuses on scalability, job persistence and tracking with an
emphasis on hybrid classical-quantum workloads.

CONQURE also extends quantum task execution to HPC by
implementing OpenMP-Q, a quantum extension to OpenMP.
Historically, HPC has continually evolved by embracing
new processing paradigms and by successfully integrating
special-purpose accelerators to enhance performance. In a
similar vein, incorporating quantum accelerators into HPC
workflows presents a promising path forward for tackling
problems beyond the reach of classical systems. [36] dis-
cusses quantum integration strategies to build a simplified
CPU-QPU (Quantum Processing Units) execution model to
integrate into current and future HPC system architectures.

Among the many parallel programming models used in HPC,
MPI and OpenMP stand out as the most widely adopted
frameworks for distributed and shared-memory parallelism,
respectively. By building on OpenMP with its existing
support for accelerators such as GPUs for computational
kernels, CONQURE provides a natural and portable path
for extending existing HPC applications to leverage quantum
acceleration with minimal disruption to existing codebases.
[25] presents the closest related effort in terms of the
OpenMP-Q contribution in CONQURE, to the best of our
knowledge. Their work extends OpenMP to support quantum
offloading through function calls that create and measure
quantum registers and apply a fixed set of single- and two-
qubit gates. These circuits are then transpiled into QASM
or QIR for execution. While their approach addresses a
similar problem domain, not results are reported for this
poster. Their work also lacks the generality and scalability
required for broader quantum-classical integration into the
software stack that CONQURE provides with its full LLVM
implementation.

Furthermore, CONQURE introduces OpenMP-Q, which
dynamically generates Python scripts at runtime, enabling in-
teroperability with a wide range of external quantum frame-
works, not just fixed simulators. Additionally, OpenMP-Q
supports bidirectional data exchange between the host and
quantum code through a shared quantum object, enabling
runtime feedback and classical reuse of quantum results.
This design is especially valuable for hybrid quantum-
classical workflows such as VQE and QAOA, where iterative
refinement based on quantum output is essential.

VII. CONCLUSION

The integration of quantum hardware and software ecosys-
tem presents significant challenges due to its fragmented
nature and lack of interoperability. Similar challenges are
faced when trying to integrate QPUs into HPC workflows,
coupled with the lack of standardized interfaces. In this
work, we introduced CONQURE, a novel, open-source co-
execution framework that fill these gaps.

CONQURE is designed as a modular, five-layer framework
that includes user interfaces, a translation layer, workload
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management, job scheduling, database persistence and a
quantum control layer, enabling compatibility across di-
verse software and hardware platforms, which was tested in
simulation and on an ion trap device. We also introduced
OpenMP-Q, an addition to the OpenMP standard, which
enables seamless offloading of quantum kernels onto QPUs
with minimal integration effort for the user.

Our results show minimal overhead introduced by CON-
QURE’s API calls. We successfully demonstrate the func-
tionality of this framework using an experimental ion-trap
device. We were able to leverage the advantages of HPC
by integrating parallel VQE runs into a HPC workload, il-
lustrating the potential of quantum offloading and extending
the functionality of HPC systems. This resulted in linear
speedup when parallelized, for a 3× speedup for 6 parallel
(threaded) simulations.
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