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Abstract—More flexible fault tolerance approaches with ~ some time, data corruption, memory leakage or fragmenta-
lower overhead are a must for the next generation of supercom  tion of storage cause a transition to an unstable state. This

puters that rely on massive numbers of computational elemes. situation may lead to node failure. Recent work [3] gives an
This work proposes a reactive method for fault resilience in . L .

high-performance computing (HPC) systems based on forward analy5|§ of software aglng n _the Linux kernel, .

execution instead of rollback to checkpoints. We study the In this context, an increasing number of techniques for

feasibility of combining redundancy with live process cloing  predicting, isolating and managing faults are being prefos

to create highly reliable HPC systems. The main motivation  This is of particular interest to future exascale systenestdu

is to avoid costly checkpoint restart approaches. We presén  thejr complexity with millions of cores. Failure managernen
live process cloning as a mechanism to create a copy of a for such complex systems is a must

running process on-the-fly. We show that the reliability of a . . o
dual redundant system with live process cloning is as good as ~ ©One method to tolerate faults in HPC is the traditional

a triple redundant system even for very large systems. We ais  Checkpoint/Restart (C/R) approach. Applications arequkri
investigate the effect of node failure and the changes in M&a ically checkpointed, and their state is written to a patiile
time to Interrupt (MTTI) of the application. This provides a  gystem (PFS). Upon failure, the HPC application is rolled
bgtter understandlng of the ava_llable time to recover from a back to the last checkpoint, retrieved from the PFS by all
failure by cloning a healthy replica. . . .

tasks, and execution resumes from this point. However, the

Keywords-Fault Resilience; HPC; Process Cloning; cost of checkpointing and especially writing checkpoilts t
the PFS is high. Furthermore, checkpoint intervals become
. INTRODUCTION shorter due to system scale since the system mean-time-to-

failure (MTTF) decreases as the number of nodes increases.

With the ever growing size of computing systems, relia-This potentially causes C/R overheads to dominate wakcloc
bility problems and their effects on the system performanceime instead of useful application execution for future ex-
and correctness are becoming a widespread concern. Rgscgle systems [4], [5], [6]. In long-running applications
silience describes the ability of a system consisting ofynan goftware aging may also pose a problem as the state of the
components to provide sustained reliability, i.e., to lev  goftware system may degrade over time.
its functionality even when a subset of its components fail Another resilience method is redundancy, which aims
over a period of time. at improving reliability and availability of systems by al-

This work targets tightly-coupled parallel applica- |ocating two or more components to perform the same
tions/jobs executing on HPC platforms ovéf compute  work. Although redundancy adds to the cost and complexity
nodes using MPI-style message passing [1]. Should a singlgf systems, it scales with system size. Resilience actually
node fail, the entire job is affected and typically needseo b increases with redundancy with increasing number of nodes,
started from beginning. much in contrast to C/R [5].

Node failures could happen due to hardware or software This work is based on a fail-stop failure model, i.e., a
faults. Hardware faults could be due to aging, power loss, opcomputing node will stop functioning after the occurrence
eration beyond certain temperature thresholds or bit flijgs d of a failure. Thus, fault propagation, Byzantine faults, [7]
to radiation from space or small fabrication sizes. Sofevar and silent data corruption (SDC) are out of scope. (It shall
faults can be due to bugs that seldom materialize, complelse noted that detection of bit flips under dual redundancy
software component interactions and race conditions thg8] is orthogonal and meshes well with our cloning work.)
require unlikely but possible parallel execution orders of Contributions: The objective of our work is to study the
tasks. For example, a recent study [2] has tracked 736 faultgasibility of a system based on a combination of redundant
in Linux 2.6.33 over time. execution and live process cloning. We will show that such

Software aging is another phenomenon that affects tha system not only eliminates the need (and overheads) for
system reliability. Software starts from a stable statdeAf using C/R schemes, but that a given resilience level can be



retained throughout job execution even as nodes fail. [l. BACKGROUND AND RELATED WORK

The core idea is to handle node failures utilizing live This section investigates different approaches that have
process cloning to duplicate a healthy replica onto a sparpeen pursued to achieve higher degree of reliability in HPC.
node in order to retain a given redundancy level. As a _
process is cloned onto a spare node with a clean operatirfy Checkpoint-based Methods
system state, it also implicitly becomes rejuvenated imger ~ These methods consider the system as a collection of
of the execution environment for the process. processes that are communicating over a network. C/R

Let us assume a system with levels of redundancy. methods periodically take snapshots of the processegdelat

Our system then consists ofx N active computing nodes t(_) a job, create a consistent global stgte and save it to a per-
whereN logical processing nodes are seen by the user whil§iStent storage system. In case of a failure, rollback regov
redundant shadow nodes remain transparent. We also assuf§éoads the last checkpoint, and the job is restarted. Cammo
the availability of a small pool of spare nodes. Spares ar@PProaches mainly use a single process C/R system as the
in a powered state but initially do not run any jobs. We core mechanism and then extend that to a system-wide C/R
further assume absence of a single common-mode fault inPlementation inside or on the top of an MPI library.

the system. Common-mode faults (e.g., power failure of CoCheck [12] is one of the earliest systems that im-
an entire HPC system) cause all operational nodes to faffléments C/R on top of Condor [13] for Parallel Virtual
simultaneously. We do allow multiple nodes to fail at a Machine (PVM) and MPI. Starfish [14] provides automatic
time so long as they are within different redundspiteres ~ reécovery in MPI-2 programs running on a network of
(A complete sphere failure with the primary node and itsWorkstations. It uses strict atomic group communication

corresponding shadow nodes no longer allows one to enga@gotocols to handle statt_a changes. LAM/MPI [15] and subse-
in cloning, i.e., the entire system has failed.) quently Open MPI provide C/R on the top of Berkeley Lab

. Checkpoint/Restart (BLCR) [16], which is a system-level
1) We further show that a dual redundant system with
) . W ’ N y W and transparent C/R implementation. BLCR can be used as

R standalone system for a single node or as a part of a larger
system that runs parallel jobs.

live cloning will provide the equivalent resilience of apie
redundant system, yet at lower cost in terms of resourc

required nodes) and communication overhead. .
(req ) One of the challenges related to C/R is to choose the

(2) We analyze the effect of node failure on a dual reOIun1ength of a checkpoint interval. A method to calculate the

daT‘t systgm and -the c;hanges in MTTI of the applica.tion'optimal checkpoint interval has been presented in [17],
This provides insight into the length of a required time

. . o which minimizes the application runtime considering over-
window to clone_a healthy replica before resuming in thehead spent writing the checkpoint files, time required to
regular, more reliable dual-redundant state. _ restart the application in case of failure and the time lost
~ (3) We also show that the number of spare nodes requiregs 5 result of failure. Unfortunately, C/R based approaches
is quite small under cloning. do not scale well in terms of performance with increasing
The approach has the follows benefits: job size due to 1/0O contention. The work in [18] tries to

« It eliminates the overhead related to traditional C/RiMProve the performance of checkpointing by aggregating

schemes. There is also no need for PFS storage to ke&l;leckpoint writes into a buffer pool and interleaves the

large checkpoint files, i.e., the PFS acquisition cost€PPlication progress with file writes. _
would be much lower. There are two fundamental types of checkpoint protocols:

« It provides high reliability for long-running jobs even coordinated and uncoordinated. While coordinated check-
on very large systems. pointing involves collaboration between processes toterea

« It represents a reactive method that provides high reliad SyStém-wide consistent state, uncoordinated checkpgint

bility and eliminates the need for potentially inaccurated0€S not impose any restriction on the checkpoint time.
failure prediction, e.g., due to live migration [9], [10], Uncoordinated checkpointing allows better 1/0 scheduling

[11]. but tis subject to thelomino effect property [19] discussed
next.

Section Il summarizes past work on attaining fault tol- |n case of failure recovery, the inter-process dependen-
eran-Ce |n- HPC. An overview of live process CIO-nln.g- IS cies imposed by message passing may force some of the
provided in lll. Section IV develops a model for reliability processes that did not fail to roll back. Such dependencies
analysis under cloning based on Stochastic Activity Net-can create a chain going all the way back to job start time
works (SANs), which are concisely introduced, as well as arsince causal dependencies are transitive. This phenomenon
analysis of node failure. Section V summarizes our findingsis called domino effect. Methods based on coordinated

checkpointing are not affected by the domino effect since a
1A sphere encompasses all shadow nodes of a cloned nodeades ~ 9lobally consistent state is established at the cost ofétigh
executing the same code with the same input. overhead [20]. Log-based methods combine checkpointing



‘ Native Rank: 0 Replica Rank: 0
Native Rank: 4 Replica Rank: 1

with logging of all non-deterministic events, which mealis a Virtual Rank 0
the messages in the worst case. This requires large amounts
of overhead and storage to maintain these logs. Considering {

the size and the induced overhead of these methods, exascale  Virtual Rank 1

systems [21] may require uncoordinated checkpointing.
Communication Induced Checkpointing [22] provides un-

coordinated checkpointing without the domino effect. How-

ever, their work shows that the approach provides good

performance only under a low communication load and it Virtual Rank 3 {

does not scale well with the larger number of processes.

Recent_ \{vo_rk [23] addres_ses the same probler_n fc_)r s_end Figure 1: Dual Redundancy for a job with 4 tasks

deterministic MPI applications. A given MPI application is

said to be send deterministic, if, for a set of input paransete

Fhe sequence of sent. messages, fOT any process, 1 the Sall§ik. The authors show that replication outperforms tradi-
in any correct execution [24]. Focusing on applicationdwit

this property, they provide a protocol that needs to Iogg,)gtilmcézs?gpnprsop?chees over a wide range of the exascale

a subset of the application messages. They also provide RedMPI [33] allows the execution of MPI applications

an |mplementat|on in MPICH2 with experimental resultsin a redundant fashion. Each process is replicatdiines
showing low overhead.

Recent work [25] uses a combination of non-blocking andfor a redundancy degree of Point-to-point messages and

multi-level checkpointing. The main idea involves running collective operations are performed within each replida se

(original nodes and shadow nodes for= 2, or a second
agents on extra nodes to asynchronously transfer chedkpoi . .
. ; ; . shadow node set for = 3). Figure 1 depicts a dual
files to the PFS. Using dedicated nodes to create checkpoinis . S i )
redundant job and indicates the corresponding terminology

gll}/t(iaosncompute nodes the opportunity to continue their exef_or virtual, native and replica ranks, where a virtual rank

Generally, the inherent problem with any C/R schemesW'.th. Its two boxes represents a sphere. An application with
riginally N processes now creates twice the number of

is the downtime to take the checkpoints and the restar . . )
overhead at high failure rates. What makes it worse is th Pl p_rocesse_s2(_N). The native rank is the rank assigned
: y npi r un within the rangef0...2N — 1]. The rank API

very short MTTF in next-generation supercomputers. As a

result, checkpoint intervals become shorter and the syster%a"' MPI_Comm Rank, retums the virtual rank. The MPI

may even spend more time on checkpointing than on actudrocesses of each replica sphere, so-called replica rarks,
application execution humberedp...r — 1],

There are also log-based methods with different policiesC oiei’\r/'lrfl ;:Igv;s Cigr? ed detrencet;osr; "g;d |(t:0(:;?th[|3%n C'I;I:I?Ug?e q
including optimistic logging [26], casual logging (Maneth paring X g ges. 'gu

N i _ to utilize one of the following protocolsBasic, Message-
57[]2)9’)];1”(1 pessimistic logging (MPI/FT [28] and MPICH plus-hash and All-to-all. In the Basic protocol, no SDC

detection/correction is provided; iMessage-plus-hash, a
B. Redundancy message and a hash is sent; and\linto-all, all communi-

rMPI [30] is a library that provides transparent redundantc@tion doubles up for = 2, i.e., a send becomes two sends

computing. rMPI is implemented using the profiling layer and arecewe becomes wo recaMMgeplushash has
of MPI. It does not support certain complex MPI com- superior performance oveXll-to-all since the overhead of

munications and relies on the MPI library to implementCommunlcatlon is significantly reduced.
collective operations. MR-MPI [31] supports partial and
full replication and uses PMPI, the MPI performance tool
interface, to intercept MPI calls. A process-level proactive live migration approach is pre-

Work in [6] determines the best configuration of a com-sented in [34]. It includes live migration support real-
bined approach including redundancy and C/R. They proized within BLCR, combined with an integration within
pose a cost model to capture the effect of redundancy on theAM/MPI. Their experimental results show low overhead.
execution time and checkpoint interval. Their result showsThey also compare process-level live migration against
the superiority of full redundancy over partial redundancyoperating system migration running on the top of Xen
in terms of execution time and specifically dual redundancyvirtualization.

Work in [32] investigates the feasibility of process repli- [35] proposes a framework and architecture for proac-
cation for exascale computing. A combination of modeling,tive fault tolerance in HPC, including health monitoring
empirical and simulation experiments are presented in thiand feedback control-based preventive actuation. Thidk wor

Native Rank: 5 Replica Rank: 1

‘ Native Rank: 2 Replica Rank: 0
Native Rank: 6 Replica Rank: 1

Virtual Rank 2

‘ Native Rank: 3 Replica Rank: 0
‘ Native Rank: 7 Replica Rank: 1

‘ Native Rank: 1 Replica Rank: 0 H

C. Migration



investigates the challenges in monitoring, aggregatirtg da have made SANs a powerful tool for modeling complex

and analysis. systems specially for reliability and availability anakys
_ _ SAN models consist ofplaces, activities, input gates,
D. Reuvenation output gates, arcs and tokens. Each place may have a number

Three rejuvenation techniques for HPC have been introof tokens initially, which is shown inside the place as a
duced in [36]. They also provide an overhead estimationumber. The activities may have different distributionst o
of using rejuvenation right after taking checkpoints. Bhse Of which exponential is of interest, here. There are also
on their simulation results, they conclude that rejuvermati input and output gates, which may be attached to an activity
does not increase the reliability of HPC systems at all timesand one or more places. Input gates have a predicate that,
Another intuitive result is that the computing time lost in when evaluating to true, trigger activities and a rule fatest
case of C/R with rejuvenation is larger than that when onlytransitioning when the related activity completes. Output
C/R is used. Their work did not allow for redundancy andgates define the marking changes that occur when an activity
process cloning at all. In contrast, we propose to use liv€ompletes and attach to the places that changes in markings.

process cloning to eliminate the overhead of C/R schemes. Input arcs connect places to activities while output arcs
connect activities to places. Assume an activity with amtnp

I1l. LivE PROCESSCLONING arc from P; and an output arc t@. This activity is enabled

if the number of tokens in each input place is at least equal
to the aggregate of the input arcs and the predicate of all
fRput gates are true. When this activity completes, it reesov
and deposits one token 16,.

Live cloning creates a copy of a running MPI process
(a source node) on adestination node on-the-fly, i.e., while
the source continues to run. Figure 2 shows how the syste
retains dual redundancy in case of a failure. There are "€ token fromP;
least three nodes directly involved in I|v§ process cloning B. Redundancy Modeling
Suppose two processeB, and P, are logically equivalent
(both perform the same computation) and rumgnandNs, Let us assume that a system consistsNofcomputing
respectively. If nodeV, fails after some time, its shadow, nodes with redundancy degregi.e., there areV x r total
located onNs (source), is cloned ontaV, (destination) on- nodes in the system. Individual nodes could fail with an
the-fly. exponential failure rate. The system is said to have failed

A process is created oV, with the same number of when there is at least one sphere in which all theodes
threads. WhileP, is performing its normal execution, the have failed. So to model this behavior, we need to keep track
memory pages are sent over to the newly created procesgf the number of spheres with failed nodes, where: €
This happens in an iterative manner. When we reach a stafé, 7.
where few changes in dirty pages remain to be sent, the Figure 3 shows the SAN model for a redundancy degree
communication channels are drained. This is necessary ©f . In the beginning, there ar&’ x r tokens in Py,.
keep the system in a consistent state. After this,is  The figure shows the working state of all computing nodes.
paused for a very short time and the last dirty pages, linkagéhere is an activityl'r,; that models the failure of nodes
information, credentials, etc. are sent over. This waypael With an exponential rate. As time passes, nodes start to fail
process is created oN,. Then, the channels are resumedWhen the activity7',;; completes, a token will be removed
and execution continues normally. Between channel drgininfrom P, and, with probabilityc;, will be deposited to the
and channel resumption, no communication may proceed.
This is also necessary for system consistency with respect
to messaging.

Sphere 1 Sphere 2

IV. SYSTEM MODEL
A. Sochastic Activity Networks

A Petri net is a directed bipartite graph consisting of ...
two sets of nodes, namelplaces and transitions. The
need for associating exponentially distributed firing time  Chameldraining ___ | |
to transitions led to the introduction of stochastic Peé&rfsn Channel Resums
(SPN). A generalized form of SPNs called GSPN divides the
transitions into timed (exponentially distributed firinges)
and immediate transitions (zero firing times). Stochastic Normal Operation
Activity Networks (SANs) are an extension of stochastic Sphere 2
Petri nets with instantaneous and timed activities, reward
variables and supporting composed models. These propertie

Normal Operation

Figure 2: Dual Redundancy and Live Cloning



Pisi— fqir, With probabilityco, it will be put in Psecona-— fait, Table I: Gate Functions for Redundancy Model
etc. C; is the probability of a node failure in a sphere with Gate name ||

already: — 1 failed nodes. In our model, we need to keep
track of number of spheres with failed nodes where: € OG; i€ [l,r—2]
[0,7]. Py rqu represents the number of spheres wittailed

nodes. As soon as a sphere witailed nodes exists, the

Function

Pi_tait = Pi_fait — 1;
Plat—fait = Putn—fau + 1
Pi_jait =0; i€ [1,7—1]

whole system has failed. We know from probability theory Ot PPW ,_:0’1_
that37_, ¢; = 1. Computinge; directly is difficult, but its Pfff;“l_l _
complement is easy to express. The probabilitythat the E— ’
failed node belongs to a specific category fa [2, 7] is:
oy = (r—1)x Ma?‘k(P1—fail)_ This state indicates that we have one sphere with one
Mark(Pyp) failed node (one token itP; —4;;). A failed node could be
(r—2) x Mark(Pa_fqi1) recovered by cloning processes from its healthy replica to
€3 = Mark(P,,) : Q @ backup node{(.;,.). Let us suppose another node fails.
c1 andc, are recalculated based on the current marking of
the model. Using formula 1, we get = ﬁ and
o — (1) x Mark(P(;—1)_tait) ¢1 =1 — 5= This second failed node beloné;s to the

Mark(Pup) sphere with the first failed node with probability, and

We use the notation/ark(P) to denote the number of it Pelongs to the other spheres with probabilify In the
tokens in placeP. Now, we can determine, asc; = 1 —  lirst case, a token is transferred o and Poys—rai
ST, . A function is associated with each output gate.V12 gate functionOG; and re_sults in a system failure. In
This function is executed after the activity completes and€ second case, a token is transferredHa ., (now
the related case is selected. ot [1,7 — 1], the function ~PECOMINg Mark(P1—sair) = 2). This means that there
for OG, is shown in Table 1. For the last case, we have?'® 2 _spheres, each wnh one falle_d node. Mode!s for dual
a sphere with- failed nodes, so we generate one token inand triple redundancy without cloning can be derived from

Pr_ja. As a result, the whole system has failed, so weF'gure 3.
remove the tokens from all the states and generate one tokenFigure 5 shows the results for reliability modeling of a
iN Paysfai- system with N = 200K nodes, each with a/TTF of
Figure 4 depicts the model for dual redundancy withd years. The time to clone all processes on one node is
cloning. In the case of live process cloning, a new activityassumed to be two minutes. Reliability of dual redundancy
is added to perform the clone functionality when a nodeWwithout cloning decreases to 75% after 400 hours for a
fails. The system starts with all noded (x 2) in working ~ long running job. The two curves, dual redundancy with
state ¢,,) and 0 tokens in other place®y( sait, Pa_ fail, cloning qnd tr_|ple re_dup_dancy without redundancy, .overlap
Pays_ fair). After the first node failure®,,; is enabled), a and provide high reliability (very close to 100%) during the
token is removed from#&,,). Where this token is transferred €ntire period. This figure shows that= 2 with cloning has
to depends on the current values@fandcs (i.e., co = 0 a reliability as good ag = 3 without cloning. This is an

and¢; = 1). In this case, it will be transferred tB; _ f 4. interesting result showing that live process cloning caresa
system cost while providing the same reliability level of a

system with larger redundaney

Psvs-fail
Psys-falil

Figure 3: SAN Model for a Redundancy Degree of r Figure 4: Redundancy Models for r=2 with Clone
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C. Node Failure Analysis = 5 (N B 1) (—1)° (é)

: Y - | 2\ A2i+ 1)

Assume that every node has an identical exponential
failure rate ) and that the reliability of the node B(t) =
e~*. Consider all nodesX x r) in N spheres, where each Thus:
sphere contains nodes of the same replica, reliability and
MTTI of a sphere is: N1 }

N -1 (—1)*
. MTTI = _ — (4)
Rophere(t) =1 — (1 — R(t)) ~ i A(2i 4+ 1)
MTTsphere = (/o Riphere(t) dt) Let us assume that the system has an exponential failure
distribution. We can then approximate the system failure ra

_ (/0001_ (1= R(t))" db) by

System reliability and MTTI [37] can be calculated as:

Reys(t) = (Repn (t))N Rgys(t) = (e—/\sphmt)zv—1 % (e"\t)

MTTI = XN: Z CV) CT) o 2)

i=1 j=1 Aj Asys = (N = 1) Asphere + A (5)

We want to investigate the time interval to a system failure ) ]
for dual redundancy. We also want to determine the effect of Comparing 5 to the old system failure rafé Xsyner. ), we
multiple concurrent node failure and maximum simultaneou$€€ that the system failure rate is increased\By Aspnere-
failures tolerable by our system. Please note that our policConsidering the very short time to clone(a few minutes) the
is to clone from a replica to a spare node as soon as a nod&ange in the failure rate is still negligible.

failure is detected. Thus, as long as there are one or more 2) Multiple Concurrent Node Failures: Suppose at time

failed nodes in the system, cloning is in progress. From now, ;. simultaneous yet independent node failures happen (

on we focus on the case of dual redundaney 2. x < N). Assume the system is still functional. Thus, failures
1) First Node Failure: Suppose at time the first node happened in different spheres. Then thereldre z spheres

failure occurs. Thus, there at¥ — 1 spheres withr = 2 with » = 2 nodes and: spheres withr = 1. Thus the system

nodes and 1 sphere with = 1. Following shows the reliability:

corresponding system reliability:

Rays(t) = (Rsphere ()"~ x (R(t)) 3) Rays(t) = (Rsphere ()™ 7 x (R(1))”

_ (1 _ (1 _ e—)\t)Q)N—l % (G_At). _ (1 _ (1 _ e—kt)Q)N—m % (e—)\t)z



The MTTI of the whole application could be calculated as: e AV ime between allcs ——
~ - S
:/ (Rsys(t)dt) 50 TTCW) —*—
Ooo g 40
= [ a- e e may R
0 =
oo N=z /nr _ _ 2 -
_ / ( Z ' (_1)1(1 _ e*)\t)Q’L (eszt)dt) " T ——
o = N ! 3
N—zx 2 200K 300K 400K 500K 600K 700K 800K 900K 1M 1.1M 12M 13M 14M 15M
o0 N — . 2 . . System size(N)
_ / < , x) (~1)’ < .Z> (~1Y et | ey y
0 o ¢ =0 \J Figure 6: Average Time between Failures ¥&'C/(z)
N—x 21 o)
P v = \J 0 Figure 6 shows the average number of required spare
9 nodes with non-repairable nodes. As long as the time to
Nex 2 ( ?)(_1)3’ clone forz concurrent failuresTT'C(z)) is less than the
- (N B x) (-1)! 37 average time between failures, we can guarantee that gonin
=0 ¢ e AJj + =) completes and we can recover from failures. Thus, we are
interested in the area wheTf&'C'(z) is less than the average
N —z\ (2 (—1)i+i time between failures. Let us consideZ'C(2). The graph
- & i j indicates that one can recover from failures for a system
- _ A + ) exceeding 1.5M nodes. Ten concurrent failurég'C'(10))
=0 j=0 can be tolerated for systems up 3 = 600k nodes, four
concurrent failures are tolerated up A= 1M nodes, and
(N _ x> <2Z> o four concurrent files up tav = 1.5M nodes.
N—z 2i . . (_1)“” .
MTTI — L J ©6) D. Average Number of Required Spare Nodes

i=0 j=0 A+ ) This section analyzes the effect of cloning on the average
number of required spare nodes to still complete a job when

Again, let us assume an exponential failure distributionusing live process cloning. Let be the communication-to-
for the system. We can then approximate the failure rate bgomputation ratio of an application. Equation 8 shows the
execution time with redundancy [6]:

Rays(t) = (e epheret )N =z o (o=Atyz
(1) = ( N ) Thea = (1— )T + ol ©

Suppose there is a job that requirEshours to run on
N machines to complete without any failures. This is called
In this situation, the system failure rate is increased to: plain execution time. Assume each node has/&@'7TF of
50 years. On average, evelyTTF/(r x N) a node fails in
Asys = Motd + (X — Asphere) the system. Further, assume= 2, T' = 200 hours, and live
cloning is used in case of a failure. The time to complete
. We can recover fromx: simultaneous failure via cloning the job with o = 0.2, 0.4 and 0.6 using Equation 8 is
if 240, 280 and 320 hours, respectively. Figure 7 shows the
MTTF number of spare nodes needed for successful job completion
—_ (7)  for different values ofN ranging from 110 V = 100k ,
2xN)-z a = 0.2) to 1462 (VN = 1M , o = 0.6). In this case, the
whereT, is the time to clone and the right-hand side is theMTTR of a node is not taken into account.
average time between two consecutive node failures. Gonin  If the mean time to repair of a computing node is assumed
to recreate the processes that are co-located on a singée now be 20 hours, the average number of spare nodes for an
could be carried out in parallel. We assume that x nodeapplication with any « is shown in Figure 8. As we can
failures overlap by just one cycle. Thus,x T, is a good see, the average number of spare nodes is ranging from 10
approximation of the time to clone nodes. Lets assume to 92, which is only 0.01% of total number of node¥)(
TTC(x) = x x T. as the time to clone for: concurrent Assuming that nodes are repairable, the average number of
failures. required spare nodes turns out to be independent ofdhe

Asys = (N — ) Asphere + T

zXx T, <
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