
Sustained Resilience via Live Process Cloning

Arash Rezaei
Department of Computer Science
North Carolina State University

Raleigh, NC, USA
Email: arezaei2@ncsu.edu

Frank Mueller
Department of Computer Science
North Carolina State University

Raleigh, NC, USA
Email: mueller@cs.ncsu.edu

Abstract—More flexible fault tolerance approaches with
lower overhead are a must for the next generation of supercom-
puters that rely on massive numbers of computational elements.

This work proposes a reactive method for fault resilience in
high-performance computing (HPC) systems based on forward
execution instead of rollback to checkpoints. We study the
feasibility of combining redundancy with live process cloning
to create highly reliable HPC systems. The main motivation
is to avoid costly checkpoint restart approaches. We present
live process cloning as a mechanism to create a copy of a
running process on-the-fly. We show that the reliability of a
dual redundant system with live process cloning is as good as
a triple redundant system even for very large systems. We also
investigate the effect of node failure and the changes in Mean
time to Interrupt (MTTI) of the application. This provides a
better understanding of the available time to recover from a
failure by cloning a healthy replica.

Keywords-Fault Resilience; HPC; Process Cloning;

I. I NTRODUCTION

With the ever growing size of computing systems, relia-
bility problems and their effects on the system performance
and correctness are becoming a widespread concern. Re-
silience describes the ability of a system consisting of many
components to provide sustained reliability, i.e., to provide
its functionality even when a subset of its components fail
over a period of time.

This work targets tightly-coupled parallel applica-
tions/jobs executing on HPC platforms overN compute
nodes using MPI-style message passing [1]. Should a single
node fail, the entire job is affected and typically needs to be
started from beginning.

Node failures could happen due to hardware or software
faults. Hardware faults could be due to aging, power loss, op-
eration beyond certain temperature thresholds or bit flips due
to radiation from space or small fabrication sizes. Software
faults can be due to bugs that seldom materialize, complex
software component interactions and race conditions that
require unlikely but possible parallel execution orders of
tasks. For example, a recent study [2] has tracked 736 faults
in Linux 2.6.33 over time.

Software aging is another phenomenon that affects the
system reliability. Software starts from a stable state. After

some time, data corruption, memory leakage or fragmenta-
tion of storage cause a transition to an unstable state. This
situation may lead to node failure. Recent work [3] gives an
analysis of software aging in the Linux kernel.

In this context, an increasing number of techniques for
predicting, isolating and managing faults are being proposed.
This is of particular interest to future exascale systems due to
their complexity with millions of cores. Failure management
for such complex systems is a must.

One method to tolerate faults in HPC is the traditional
Checkpoint/Restart (C/R) approach. Applications are period-
ically checkpointed, and their state is written to a parallel file
system (PFS). Upon failure, the HPC application is rolled
back to the last checkpoint, retrieved from the PFS by all
tasks, and execution resumes from this point. However, the
cost of checkpointing and especially writing checkpoints to
the PFS is high. Furthermore, checkpoint intervals become
shorter due to system scale since the system mean-time-to-
failure (MTTF) decreases as the number of nodes increases.
This potentially causes C/R overheads to dominate wallclock
time instead of useful application execution for future ex-
ascale systems [4], [5], [6]. In long-running applications,
software aging may also pose a problem as the state of the
software system may degrade over time.

Another resilience method is redundancy, which aims
at improving reliability and availability of systems by al-
locating two or more components to perform the same
work. Although redundancy adds to the cost and complexity
of systems, it scales with system size. Resilience actually
increases with redundancy with increasing number of nodes,
much in contrast to C/R [5].

This work is based on a fail-stop failure model, i.e., a
computing node will stop functioning after the occurrence
of a failure. Thus, fault propagation, Byzantine faults [7],
and silent data corruption (SDC) are out of scope. (It shall
be noted that detection of bit flips under dual redundancy
[8] is orthogonal and meshes well with our cloning work.)

Contributions: The objective of our work is to study the
feasibility of a system based on a combination of redundant
execution and live process cloning. We will show that such
a system not only eliminates the need (and overheads) for
using C/R schemes, but that a given resilience level can be

retained throughout job execution even as nodes fail.
The core idea is to handle node failures utilizing live

process cloning to duplicate a healthy replica onto a spare
node in order to retain a given redundancy level. As a
process is cloned onto a spare node with a clean operating
system state, it also implicitly becomes rejuvenated in terms
of the execution environment for the process.

Let us assume a system withr levels of redundancy.
Our system then consists ofr × N active computing nodes
whereN logical processing nodes are seen by the user while
redundant shadow nodes remain transparent. We also assume
the availability of a small pool of spare nodes. Spares are
in a powered state but initially do not run any jobs. We
further assume absence of a single common-mode fault in
the system. Common-mode faults (e.g., power failure of
an entire HPC system) cause all operational nodes to fail
simultaneously. We do allow multiple nodes to fail at a
time so long as they are within different redundantspheres.1

(A complete sphere failure with the primary node and its
corresponding shadow nodes no longer allows one to engage
in cloning, i.e., the entire system has failed.)

(1) We further show that a dual redundant system with
live cloning will provide the equivalent resilience of a triple
redundant system, yet at lower cost in terms of resources
(required nodes) and communication overhead.

(2) We analyze the effect of node failure on a dual redun-
dant system and the changes in MTTI of the application.
This provides insight into the length of a required time
window to clone a healthy replica before resuming in the
regular, more reliable dual-redundant state.

(3) We also show that the number of spare nodes required
is quite small under cloning.

The approach has the follows benefits:

• It eliminates the overhead related to traditional C/R
schemes. There is also no need for PFS storage to keep
large checkpoint files, i.e., the PFS acquisition costs
would be much lower.

• It provides high reliability for long-running jobs even
on very large systems.

• It represents a reactive method that provides high relia-
bility and eliminates the need for potentially inaccurate
failure prediction, e.g., due to live migration [9], [10],
[11].

Section II summarizes past work on attaining fault tol-
erance in HPC. An overview of live process cloning is
provided in III. Section IV develops a model for reliability
analysis under cloning based on Stochastic Activity Net-
works (SANs), which are concisely introduced, as well as an
analysis of node failure. Section V summarizes our findings.

1A sphere encompasses all shadow nodes of a cloned node, i.e.,nodes
executing the same code with the same input.

II. BACKGROUND AND RELATED WORK

This section investigates different approaches that have
been pursued to achieve higher degree of reliability in HPC.

A. Checkpoint-based Methods

These methods consider the system as a collection of
processes that are communicating over a network. C/R
methods periodically take snapshots of the processes related
to a job, create a consistent global state and save it to a per-
sistent storage system. In case of a failure, rollback recovery
reloads the last checkpoint, and the job is restarted. Common
approaches mainly use a single process C/R system as the
core mechanism and then extend that to a system-wide C/R
implementation inside or on the top of an MPI library.

CoCheck [12] is one of the earliest systems that im-
plements C/R on top of Condor [13] for Parallel Virtual
Machine (PVM) and MPI. Starfish [14] provides automatic
recovery in MPI-2 programs running on a network of
workstations. It uses strict atomic group communication
protocols to handle state changes. LAM/MPI [15] and subse-
quently Open MPI provide C/R on the top of Berkeley Lab
Checkpoint/Restart (BLCR) [16], which is a system-level
and transparent C/R implementation. BLCR can be used as
a standalone system for a single node or as a part of a larger
system that runs parallel jobs.

One of the challenges related to C/R is to choose the
length of a checkpoint interval. A method to calculate the
optimal checkpoint interval has been presented in [17],
which minimizes the application runtime considering over-
head spent writing the checkpoint files, time required to
restart the application in case of failure and the time lost
as a result of failure. Unfortunately, C/R based approaches
do not scale well in terms of performance with increasing
job size due to I/O contention. The work in [18] tries to
improve the performance of checkpointing by aggregating
checkpoint writes into a buffer pool and interleaves the
application progress with file writes.

There are two fundamental types of checkpoint protocols:
coordinated and uncoordinated. While coordinated check-
pointing involves collaboration between processes to create
a system-wide consistent state, uncoordinated checkpointing
does not impose any restriction on the checkpoint time.
Uncoordinated checkpointing allows better I/O scheduling
but is subject to thedomino effect property [19] discussed
next.

In case of failure recovery, the inter-process dependen-
cies imposed by message passing may force some of the
processes that did not fail to roll back. Such dependencies
can create a chain going all the way back to job start time
since causal dependencies are transitive. This phenomenon
is called domino effect. Methods based on coordinated
checkpointing are not affected by the domino effect since a
globally consistent state is established at the cost of higher
overhead [20]. Log-based methods combine checkpointing

with logging of all non-deterministic events, which means all
the messages in the worst case. This requires large amounts
of overhead and storage to maintain these logs. Considering
the size and the induced overhead of these methods, exascale
systems [21] may require uncoordinated checkpointing.

Communication Induced Checkpointing [22] provides un-
coordinated checkpointing without the domino effect. How-
ever, their work shows that the approach provides good
performance only under a low communication load and it
does not scale well with the larger number of processes.
Recent work [23] addresses the same problem for send
deterministic MPI applications. A given MPI application is
said to be send deterministic, if, for a set of input parameters,
the sequence of sent messages, for any process, is the same
in any correct execution [24]. Focusing on applications with
this property, they provide a protocol that needs to log
a subset of the application messages. They also provided
an implementation in MPICH2 with experimental results
showing low overhead.

Recent work [25] uses a combination of non-blocking and
multi-level checkpointing. The main idea involves running
agents on extra nodes to asynchronously transfer checkpoint
files to the PFS. Using dedicated nodes to create checkpoints
gives compute nodes the opportunity to continue their exe-
cution.

Generally, the inherent problem with any C/R schemes
is the downtime to take the checkpoints and the restart
overhead at high failure rates. What makes it worse is the
very short MTTF in next-generation supercomputers. As a
result, checkpoint intervals become shorter and the system
may even spend more time on checkpointing than on actual
application execution.

There are also log-based methods with different policies
including optimistic logging [26], casual logging (Manetho
[27]), and pessimistic logging (MPI/FT [28] and MPICH-
V [29]).

B. Redundancy

rMPI [30] is a library that provides transparent redundant
computing. rMPI is implemented using the profiling layer
of MPI. It does not support certain complex MPI com-
munications and relies on the MPI library to implement
collective operations. MR-MPI [31] supports partial and
full replication and uses PMPI, the MPI performance tool
interface, to intercept MPI calls.

Work in [6] determines the best configuration of a com-
bined approach including redundancy and C/R. They pro-
pose a cost model to capture the effect of redundancy on the
execution time and checkpoint interval. Their result shows
the superiority of full redundancy over partial redundancy
in terms of execution time and specifically dual redundancy.

Work in [32] investigates the feasibility of process repli-
cation for exascale computing. A combination of modeling,
empirical and simulation experiments are presented in this

Native Rank: 0 Replica Rank: 0

Native Rank: 4 Replica Rank: 1

Native Rank: 1 Replica Rank: 0

Native Rank: 5 Replica Rank: 1

Native Rank: 2 Replica Rank: 0

Native Rank: 6 Replica Rank: 1

Native Rank: 3 Replica Rank: 0

Native Rank: 7 Replica Rank: 1

Virtual Rank 0

Virtual Rank 1

Virtual Rank 2

Virtual Rank 3

Figure 1: Dual Redundancy for a job with 4 tasks

work. The authors show that replication outperforms tradi-
tional C/R approaches over a wide range of the exascale
system design space.

RedMPI [33] allows the execution of MPI applications
in a redundant fashion. Each process is replicatedr times
for a redundancy degree ofr. Point-to-point messages and
collective operations are performed within each replica set
(original nodes and shadow nodes forr = 2, or a second
shadow node set forr = 3). Figure 1 depicts a dual
redundant job and indicates the corresponding terminology
for virtual, native and replica ranks, where a virtual rank
with its two boxes represents a sphere. An application with
originally N processes now creates twice the number of
MPI processes (2N). The native rank is the rank assigned
by mpirun within the range[0...2N − 1]. The rank API
call, MPI_Comm_Rank, returns the virtual rank. The MPI
processes of each replica sphere, so-called replica ranks,are
numbered[0...r − 1].

RedMPI allows SDC detection and correction through
comparing the exchanged messages. It can be configured
to utilize one of the following protocols:Basic, Message-
plus-hash and All-to-all. In the Basic protocol, no SDC
detection/correction is provided; inMessage-plus-hash, a
message and a hash is sent; and inAll-to-all, all communi-
cation doubles up forr = 2, i.e., a send becomes two sends
and a receive becomes two receives.Message-plus-hash has
superior performance overAll-to-all since the overhead of
communication is significantly reduced.

C. Migration

A process-level proactive live migration approach is pre-
sented in [34]. It includes live migration support real-
ized within BLCR, combined with an integration within
LAM/MPI. Their experimental results show low overhead.
They also compare process-level live migration against
operating system migration running on the top of Xen
virtualization.

[35] proposes a framework and architecture for proac-
tive fault tolerance in HPC, including health monitoring
and feedback control-based preventive actuation. This work

investigates the challenges in monitoring, aggregating data
and analysis.

D. Rejuvenation

Three rejuvenation techniques for HPC have been intro-
duced in [36]. They also provide an overhead estimation
of using rejuvenation right after taking checkpoints. Based
on their simulation results, they conclude that rejuvenation
does not increase the reliability of HPC systems at all times.
Another intuitive result is that the computing time lost in
case of C/R with rejuvenation is larger than that when only
C/R is used. Their work did not allow for redundancy and
process cloning at all. In contrast, we propose to use live
process cloning to eliminate the overhead of C/R schemes.

III. L IVE PROCESSCLONING

Live cloning creates a copy of a running MPI process
(a source node) on adestination node on-the-fly, i.e., while
the source continues to run. Figure 2 shows how the system
retains dual redundancy in case of a failure. There are at
least three nodes directly involved in live process cloning.
Suppose two processes,P1 andP2, are logically equivalent
(both perform the same computation) and run onN2 andN3,
respectively. If nodeN2 fails after some time, its shadow,
located onN3 (source), is cloned ontoN4 (destination) on-
the-fly.

A process is created onN4 with the same number of
threads. WhileP2 is performing its normal execution, the
memory pages are sent over to the newly created process.
This happens in an iterative manner. When we reach a state
where few changes in dirty pages remain to be sent, the
communication channels are drained. This is necessary to
keep the system in a consistent state. After this,P2 is
paused for a very short time and the last dirty pages, linkage
information, credentials, etc. are sent over. This way, a clone
process is created onN4. Then, the channels are resumed
and execution continues normally. Between channel draining
and channel resumption, no communication may proceed.
This is also necessary for system consistency with respect
to messaging.

IV. SYSTEM MODEL

A. Stochastic Activity Networks

A Petri net is a directed bipartite graph consisting of
two sets of nodes, namelyplaces and transitions. The
need for associating exponentially distributed firing times
to transitions led to the introduction of stochastic Petri nets
(SPN). A generalized form of SPNs called GSPN divides the
transitions into timed (exponentially distributed firing times)
and immediate transitions (zero firing times). Stochastic
Activity Networks (SANs) are an extension of stochastic
Petri nets with instantaneous and timed activities, reward
variables and supporting composed models. These properties

have made SANs a powerful tool for modeling complex
systems specially for reliability and availability analysis.

SAN models consist ofplaces, activities, input gates,
output gates, arcs and tokens. Each place may have a number
of tokens initially, which is shown inside the place as a
number. The activities may have different distributions, out
of which exponential is of interest, here. There are also
input and output gates, which may be attached to an activity
and one or more places. Input gates have a predicate that,
when evaluating to true, trigger activities and a rule for state
transitioning when the related activity completes. Output
gates define the marking changes that occur when an activity
completes and attach to the places that changes in markings.

Input arcs connect places to activities while output arcs
connect activities to places. Assume an activity with an input
arc fromP1 and an output arc toP2. This activity is enabled
if the number of tokens in each input place is at least equal
to the aggregate of the input arcs and the predicate of all
input gates are true. When this activity completes, it removes
one token fromP1 and deposits one token toP2.

B. Redundancy Modeling

Let us assume that a system consists ofN computing
nodes with redundancy degreer, i.e., there areN × r total
nodes in the system. Individual nodes could fail with an
exponential failure rate. The system is said to have failed
when there is at least one sphere in which all ther nodes
have failed. So to model this behavior, we need to keep track
of the number of spheres withx failed nodes, wherex ∈

[1, r].
Figure 3 shows the SAN model for a redundancy degree

of r. In the beginning, there areN × r tokens inPup.
The figure shows the working state of all computing nodes.
There is an activityTfail that models the failure of nodes
with an exponential rate. As time passes, nodes start to fail.
When the activityTfail completes, a token will be removed
from Pup and, with probabilityc1, will be deposited to the

Normal Operation

Failure

Channel draining

Channel Resume
Stop©

N0 N1 N2 N3

N4

MPI App.

MPI App.

MPI App. MPI App.

MPI App. MPI App. MPI App. MPI App.

Copy

Pages

P2

P1

P1

P2

Sphere 1 Sphere 2

Sphere 2

Normal Operation

Figure 2: Dual Redundancy and Live Cloning

P1st−fail, with probabilityc2, it will be put in Psecond−fail,
etc. Ci is the probability of a node failure in a sphere with
alreadyi − 1 failed nodes. In our model, we need to keep
track of number of spheres withx failed nodes wherex ∈

[0, r]. Px−fail represents the number of spheres withx failed
nodes. As soon as a sphere withr failed nodes exists, the
whole system has failed. We know from probability theory
that

∑r

i=1 ci = 1. Computingc1 directly is difficult, but its
complement is easy to express. The probability,ci, that the
failed node belongs to a specific category fori ∈ [2, r] is:

c2 =
(r − 1) × Mark(P1−fail)

Mark(Pup)
.

c3 =
(r − 2) × Mark(P2−fail)

Mark(Pup)
.

...

cr =
(1) × Mark(P(r−1) fail)

Mark(Pup)
.

(1)

We use the notationMark(P) to denote the number of
tokens in placeP . Now, we can determinec1 as c1 = 1 −
∑r

i=2 ci. A function is associated with each output gate.
This function is executed after the activity completes and
the related case is selected. Fori ∈ [1, r − 1], the function
for OGi is shown in Table 1. For the last case, we have
a sphere withr failed nodes, so we generate one token in
Pr−fail. As a result, the whole system has failed, so we
remove the tokens from all the states and generate one token
in Psysfail.

Figure 4 depicts the model for dual redundancy with
cloning. In the case of live process cloning, a new activity
is added to perform the clone functionality when a node
fails. The system starts with all nodes (N × 2) in working
state (Pup) and 0 tokens in other places (P1−fail, P2−fail,
Psys−fail). After the first node failure (Tfail is enabled), a
token is removed from (Pup). Where this token is transferred
to depends on the current values ofc1 and c2 (i.e., c2 = 0
and c1 = 1). In this case, it will be transferred toP1−fail.

N × r

Pup

Tfail

P1-fail

P2-fail

�. �.

c1

c2

cr Pr-fail

Psys-fail

OGr-1

OG1

OG2
P3-fail

c3

Figure 3: SAN Model for a Redundancy Degree of r

Table I: Gate Functions for Redundancy Model
Gate name Function

OGi i ∈ [1, r − 2]
Pi−fail = Pi−fail − 1;

P(i+1)−fail = P(i+1)−fail + 1;

OGr−1

Pi−fail = 0; i ∈ [1, r − 1]

Pup = 0;

Pr−fail = 1;

Psys−fail = 1;

This state indicates that we have one sphere with one
failed node (one token inP1−fail). A failed node could be
recovered by cloning processes from its healthy replica to
a backup nodev(Tclone). Let us suppose another node fails.
c1 and c2 are recalculated based on the current marking of
the model. Using formula 1, we getc2 = 1

(N×2−1) and
c1 = 1 −

1
(N×2−1) . This second failed node belongs to the

sphere with the first failed node with probabilityc2, and
it belongs to the other spheres with probabilityc1. In the
first case, a token is transferred toP2−fail and Psys−fail

via gate functionOG1 and results in a system failure. In
the second case, a token is transferred toP1−fail (now
becomingMark(P1−fail) = 2). This means that there
are 2 spheres, each with one failed node. Models for dual
and triple redundancy without cloning can be derived from
Figure 3.

Figure 5 shows the results for reliability modeling of a
system withN = 200K nodes, each with aMTTF of
5 years. The time to clone all processes on one node is
assumed to be two minutes. Reliability of dual redundancy
without cloning decreases to 75% after 400 hours for a
long running job. The two curves, dual redundancy with
cloning and triple redundancy without redundancy, overlap
and provide high reliability (very close to 100%) during the
entire period. This figure shows thatr = 2 with cloning has
a reliability as good asr = 3 without cloning. This is an
interesting result showing that live process cloning can save
system cost while providing the same reliability level of a
system with larger redundancyr.

N × 2

Pup

Tfail

P1-fail

c1

c2 P2-fail

Psys-fail

OG1

Tclone

Figure 4: Redundancy Models for r=2 with Clone

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

0 40 80 120 160 200 240 280 320 360 400

R
el

ia
bi

lit
y

(R
)

Time (hours)

r=2-w/o-clone
r=2-with-clone
r=3-w/o-clone

Figure 5: Reliability forN = 200K

C. Node Failure Analysis

Assume that every node has an identical exponential
failure rate (λ) and that the reliability of the node isR(t) =
e−λt. Consider all nodes (N × r) in N spheres, where each
sphere contains nodes of the same replica, reliability and
MTTI of a sphere is:

Rsphere(t) = 1 − (1 − R(t))r

MTTIsphere = (

∫

∞

0

Rsphere(t) dt)

= (

∫

∞

0

1 − (1 − R(t))r dt)

System reliability and MTTI [37] can be calculated as:

Rsys(t) = (Rsphere(t))
N

MTTI =

N
∑

i=1

i.r
∑

j=1









(

N

i

)(

i.r

j

)

(−1)i+j

λj









(2)

We want to investigate the time interval to a system failure
for dual redundancy. We also want to determine the effect of
multiple concurrent node failure and maximum simultaneous
failures tolerable by our system. Please note that our policy
is to clone from a replica to a spare node as soon as a node
failure is detected. Thus, as long as there are one or more
failed nodes in the system, cloning is in progress. From now
on we focus on the case of dual redundancyr = 2.

1) First Node Failure: Suppose at timet the first node
failure occurs. Thus, there areN − 1 spheres withr = 2
nodes and 1 sphere withr = 1. Following shows the
corresponding system reliability:

Rsys(t) = (Rsphere(t))
N−1

× (R(t))

= (1 − (1 − e−λt)2)N−1
× (e−λt).

(3)

The MTTI could be computed as following:

=

∫

∞

0

(Rsys(t)dt)

=

∫

∞

0

((1 − (1 − e−λt)2)N−1(e−λt)dt)

=

∫

∞

0

(

N−1
∑

i=0

(

N − 1

i

)

(−1)i(1 − e−λt)2i(e−λt)dt)

=

N−1
∑

i=0

(

N − 1

i

)

(−1)i

(∫

∞

0

(1 − e−λt)2ie−λtdt

)

=

N−1
∑

i=0

(

N − 1

i

)

(−1)i

(

1

λ(2i + 1)

)

Thus:

MTTI =

N−1
∑

i=0

(

N − 1

i

) (

(−1)i

λ(2i + 1)

)

(4)

Let us assume that the system has an exponential failure
distribution. We can then approximate the system failure rate
by

Rsys(t) = (e−λspheret)N−1
× (e−λt)

λsys = (N − 1)λsphere + λ. (5)

Comparing 5 to the old system failure rate (Nλsphere), we
see that the system failure rate is increased byλ− λsphere.
Considering the very short time to clone(a few minutes) the
change in the failure rate is still negligible.

2) Multiple Concurrent Node Failures: Suppose at time
t, x simultaneous yet independent node failures happen (1 <
x < N). Assume the system is still functional. Thus, failures
happened in different spheres. Then there areN −x spheres
with r = 2 nodes andx spheres withr = 1. Thus the system
reliability:

Rsys(t) = (Rsphere(t))
N−x

× (R(t))x

= (1 − (1 − e−λt)2)N−x
× (e−λt)x

The MTTI of the whole application could be calculated as:

=

∫

∞

0

(Rsys(t)dt)

=

∫

∞

0

((1 − (1 − e−λt)2)N−x(e−xλt)dt)

=

∫

∞

0

(
N−x
∑

i=0

(

N − x

i

)

(−1)i(1 − e−λt)2i(e−xλt)dt)

=

∫

∞

0

N−x
∑

i=0

(

N − x

i

)

(−1)i





2i
∑

j=0

(

2i

j

)

(−1)je−λjt



 e−xλtdt

=
N−x
∑

i=0

(

N − x

i

)

(−1)i





2i
∑

j=0

(

2i

j

)

(−1)j

∫

∞

0

e−λ(j+x)tdt





=

N−x
∑

i=0

(

N − x

i

)

(−1)i









2i
∑

j=0

(

2i

j

)

(−1)j

λ(j + x)









=

N−x
∑

i=0

2i
∑

j=0









(

N − x

i

)(

2i

j

)

(−1)i+j

λ(j + x)









MTTI =

N−x
∑

i=0

2i
∑

j=0









(

N − x

i

)(

2i

j

)

(−1)i+j

λ(j + x)









(6)

Again, let us assume an exponential failure distribution
for the system. We can then approximate the failure rate by

Rsys(t) = (e−λspheret)N−x
× (e−λt)x

λsys = (N − x)λsphere + xλ.

In this situation, the system failure rate is increased to:

λsys = λold + x(λ − λsphere)

We can recover fromx simultaneous failure via cloning
if

x × Tc <
MTTF

(2 × N) − x
(7)

whereTc is the time to clone and the right-hand side is the
average time between two consecutive node failures. Cloning
to recreate the processes that are co-located on a single node
could be carried out in parallel. We assume that x node
failures overlap by just one cycle. Thus,x × Tc is a good
approximation of the time to clonex nodes. Lets assume
TTC(x) = x × Tc as the time to clone forx concurrent
failures.

 0

 10

 20

 30

 40

 50

 60

 70

200K 300K 400K 500K 600K 700K 800K 900K 1M 1.1M 1.2M 1.3M 1.4M 1.5M

T
im

e(
M

in
ut

es
)

System size(N)

AVG time between failures
TTC(10)

TTC(8)
TTC(4)
TTC(2)
TTC(1)

Figure 6: Average Time between Failures vs.TTC(x)

Figure 6 shows the average number of required spare
nodes with non-repairable nodes. As long as the time to
clone for x concurrent failures (TTC(x)) is less than the
average time between failures, we can guarantee that cloning
completes and we can recover from failures. Thus, we are
interested in the area whereTTC(x) is less than the average
time between failures. Let us considerTTC(2). The graph
indicates that one can recover from failures for a system
exceeding 1.5M nodes. Ten concurrent failures (TTC(10))
can be tolerated for systems up toN = 600k nodes, four
concurrent failures are tolerated up toN = 1M nodes, and
four concurrent files up toN = 1.5M nodes.

D. Average Number of Required Spare Nodes

This section analyzes the effect of cloning on the average
number of required spare nodes to still complete a job when
using live process cloning. Letα be the communication-to-
computation ratio of an application. Equation 8 shows the
execution time with redundancy [6]:

TRed = (1 − α)T + αTr (8)

Suppose there is a job that requiresT hours to run on
N machines to complete without any failures. This is called
plain execution time. Assume each node has aMTTF of
50 years. On average, everyMTTF/(r×N) a node fails in
the system. Further, assumer = 2, T = 200 hours, and live
cloning is used in case of a failure. The time to complete
the job with α = 0.2, 0.4 and 0.6 using Equation 8 is
240, 280 and 320 hours, respectively. Figure 7 shows the
number of spare nodes needed for successful job completion
for different values ofN ranging from 110 (N = 100k ,
α = 0.2) to 1462 (N = 1M , α = 0.6). In this case, the
MTTR of a node is not taken into account.

If the mean time to repair of a computing node is assumed
to be 20 hours, the average number of spare nodes for an
application with any α is shown in Figure 8. As we can
see, the average number of spare nodes is ranging from 10
to 92, which is only 0.01% of total number of nodes (N).
Assuming that nodes are repairable, the average number of
required spare nodes turns out to be independent of theα

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

100K 200K 500K 1M

A
ve

ra
ge

 N
o.

 o
f r

eq
ui

re
d

no
de

s

System Size(N)

alpha=0.2
alpha=0.4
alpha=0.6

Figure 7: Avg. # Required Spare Nodes (Without repair)

 0

 20

 40

 60

 80

 100

100K 200K 500K 1M

A
ve

ra
ge

 N
o.

 o
f r

eq
ui

re
d

no
de

s

System Size(N)

Figure 8: Avg. # of Required Spare Nodes (With repair)

value. For example, consider N=100k at MTTR=20h. When
α = 0.2, the job takes 240 hours, and we have 240/20 = 12
repair intervals. Similarly, forα= 0.4, there are 280/20 = 14
repair interval, and forα=0.6, there are 320/20=16 repair
intervals. If we divide the number of required spare nodes
by the number of repair intervals, we obtain a bound on
the number of required spare nodes. This value is 110/12,
128/14 and 147/16 for α=0.2, 0.4 and 0.6, respectively.
In all three cases, ten spare nodes are required. The same
holds for 200K, 500K and 1M, meaning that results are
independent ofα.

V. CONCLUSION

In this paper, we studied the combination of redundancy
and live process cloning to increase reliability of high-
performance computing systems at large scales. We dis-
cussed different approaches that have been proposed to mit-
igate node failures in HPC. We presented a reliability model
for redundant computing based on SAN. The modeling
results show that dual redundancy with clone is as good as
triple redundancy with regards to reliability. We analyzedthe
effect of multiple simultaneous node failures on the system
MTTI. We also investigated the average number of required
spare nodes and showed that it is only 0.01% of total number
of nodes.

ACKNOWLEDGEMENT

This work was funded in part by NSF grants 0958311,
0937908 and 1058779.

REFERENCES

[1] W. Gropp, E. Lusk, N. Doss, and A. Skjellum, “A high-
performance, portable implementation of the MPI message
passing interface standard,”Parallel Computing, vol. 22,
no. 6, pp. 789–828, Sep. 1996.

[2] N. Palix, G. Thomas, S. Saha, C. Calvès,
J. Lawall, and G. Muller, “Faults in Linux: Ten
years later,” SIGARCH Comput. Archit. News, vol. 39,
no. 1, pp. 305–318, Mar. 2011. [Online]. Available:
http://doi.acm.org/10.1145/1961295.1950401

[3] D. Cotroneo, R. Natella, R. Pietrantuono, and S. Russo,
“Software Aging Analysis of the Linux Operating System,” in
Proceedings of the 2010 IEEE 21st International Symposium
on Software Reliability Engineering, ser. ISSRE ’10. Wash-
ington, DC, USA: IEEE Computer Society, 2010, pp. 71–80.

[4] I. Philp, “Software failures and the road to a petaflop
machine,” in HPCRI: 1st Workshop on High Performance
Computing Reliability Issues, in Proceedings of the 11th
International Symposium on High Performance Computer
Architecture (HPCA-11). IEEE Computer Society, 2005.

[5] K. Ferreira, J. Stearley, J. H. L. III, R. Oldfield, K. Pedretti,
R. Brightwell, R. Riesen, P. Bridges, and D. Arnold, “Evaluat-
ing the viability of process replication reliability for exascale
systems,” inSupercomputing, nov 2011.

[6] J. Elliott, K. Kharbas, D. Fiala, F. Mueller, K. Ferreira,
and C. Engelmann, “Combining Partial Redundancy and
Checkpointing for HPC,” inProceedings of the 32nd In-
ternational Conference on Distributed Computing Systems
(ICDCS) 2012, Macau, China, Jun. 18-21 2012.

[7] L. Lamport, R. Shostak, and M. Pease, “The Byzantine
Generals Problem,”ACM Trans. Program. Lang. Syst., vol. 4,
no. 3, pp. 382–401, Jul. 1982.

[8] D. Fiala, F. Mueller, C. Engelmann, R. Riesen, K. Ferreira,
and R. Brightwell, “Detection and correction of silent data
corruption for large-scale high-performance computing,”in
Supercomputing, nov 2012.

[9] C. Clark, K. Fraser, S. Hand, J. Hansem, E. Jul, C. Limpach,
I. Pratt, and A. Warfield, “Live migration of virtual machines,”
in 2nd Symposium on Networked Systems Design and Imple-
mentation, May 2005.

[10] C. Wang, F. Mueller, C. Engelmann, and S. Scott, “Proactive
Process-Level Live Migration in HPC Environments,” in
Supercomputing, 2008.

[11] C. Wang and F. Mueller and C. Engelmann and S. Scott,
“Proactive Process-Level Live Migration and Back Migration
in HPC Environments,”Journal of Parallel Distributed Com-
puting, vol. 72, no. 2, pp. 254–267, Feb. 2012.

[12] G. Stellner, “CoCheck: Checkpointing and Process Migration
for MPI,” in Proc. of 10th International Parallel Processing
Symposium (IPPS 96). IEEE CS Press, 1996, pp. 526–531.

[13] M. Litzkow, T. Tannenbaum, J. Basney, and M. Livny,
“Checkpoint and migration of UNIX processes in the Condor
distributed processing system,” University of Wisconsin -
Madison Computer Sciences Department, Tech. Rep. UW-
CS-TR-1346, April 1997.

[14] A. Agbaria and R. Friedman, “Starfish: Fault-Tolerant Dy-
namic MPI Programs on Clusters of Workstations,” inPro-
ceedings of the 8th IEEE International Symposium on High
Performance Distributed Computing, ser. HPDC ’99. Wash-
ington, DC, USA: IEEE Computer Society, 1999, pp. 167–
176.

[15] S. Sankaran, J. M. Squyres, B. Barrett, and A. Lumsdaine,
“The LAM/MPI Checkpoint/Restart framework: System-
initiated checkpointing,” inin Proceedings, LACSI Sympo-
sium, Sante Fe, 2003, pp. 479–493.

[16] J. Duell, “The design and implementation of Berkeley Labs
Linux Checkpoint/Restart,” Lawrence Berkeley National Lab-
oratory, Technical Report, 2003.

[17] J. T. Daly, “A higher order estimate of the optimum check-
point interval for restart dumps,”Future Gener. Comput. Syst.,
vol. 22, no. 3, pp. 303–312, Feb. 2006.

[18] X. Ouyang, K. Gopalakrishnan, D. K. Panda, and et al., “ Fast
Checkpointing by Write Aggregation with Dynamic Buffer
and Interleaving on Multicore Architecture,” 2009.

[19] B. Randell, “System structure for software fault tolerance,”
in Proceedings of the international conference on Reliable
software. New York, NY, USA: ACM, 1975, pp. 437–449.

[20] G. Cao and M. Singhal, “On Coordinated Checkpointing
in Distributed Systems,”IEEE Trans. Parallel Distrib. Syst.,
vol. 9, no. 12, pp. 1213–1225, Dec. 1998.

[21] J. Dongarra, P. Beckman, T. Moore, P. Aerts, G. Aloisio,
J. C. Andre, D. Barkai, J. Y. Berthou, T. Boku, B. Braun-
schweig, and et al., “The international exascale software
project roadmap,”International Journal of High Performance
Computing Applications, vol. 25, no. 1, pp. 3–60, 2011.

[22] L. Alvisi, S. Rao, S. A. Husain, A. de Mel, and E. Elnozahy,
“An Analysis of Communication-Induced Checkpointing,”
in Proceedings of the Twenty-Ninth Annual International
Symposium on Fault-Tolerant Computing, ser. FTCS ’99.
Washington, DC, USA: IEEE Computer Society, 1999, pp.
242–249.

[23] A. Guermouche, T. Ropars, E. Brunet, M. Snir, and F. Cap-
pello, “Uncoordinated Checkpointing Without Domino Effect
for Send-Deterministic MPI Applications,” inProceedings of
the 2011 IEEE International Parallel & Distributed Process-
ing Symposium, ser. IPDPS ’11. Washington, DC, USA:
IEEE Computer Society, 2011, pp. 989–1000.

[24] F. Cappello, A. Guermouche, and M. Snir, “On Communi-
cation Determinism in Parallel HPC Applications,” inPro-
ceedings of the 19th International Conference on Computer
Communications and Networks, IEEE ICCCN 2010, Switzer-
land, August 2-5, 2010. IEEE, 2010, pp. 1–8.

[25] K. Sato, A. Moody, K. Mohror, T. Gamlin, B. R. de Supinski,
N. Maruyama, and S. Matsuoka, “Design and Modeling of a
Non-Blocking Checkpointing System,” inProceedings of the
2012 IEEE conference on Supercomputing, ser. SC ’12, 2012.

[26] D. B. Johnson and W. Zwaenepoel, “Sender-based message
logging,” Department of Computer Science, Rice University,
Houston, Texas, Technical report, 1987.

[27] E. Elnozahy and W. Zwaenepoel, “Replicated distributed
processes in Manetho,” inFault-Tolerant Computing, 1992.
FTCS-22. Digest of Papers., Twenty-Second International
Symposium on, jul 1992, pp. 18–27.

[28] R. Batchu, A. Skjellum, Z. Cui, M. Beddhu, J. P. Nee-
lamegam, Y. Dandass, and M. Apte, “MPI/FTTM: Archi-
tecture and Taxonomies for Fault-Tolerant, Message-Passing
Middleware for Performance-Portable Parallel Computing,”
Cluster Computing and the Grid, IEEE International Sympo-
sium on, vol. 0, pp. 26–33, 2001.

[29] G. Bosilca, A. Bouteiller, F. Cappello, S. Djilali, G. Fedak,
C. Germain, T. Herault, P. Lemarinier, O. Lodygensky,
F. Magniette, V. Neri, and A. Selikhov, “MPICH-V: toward
a scalable fault tolerant MPI for volatile nodes,” inProceed-
ings of the 2002 ACM/IEEE conference on Supercomputing,
ser. Supercomputing ’02. Los Alamitos, CA, USA: IEEE
Computer Society Press, 2002, pp. 1–18.

[30] R. Brightwell, K. Kurt Ferreira, and R. Riesen, “Transparent
redundant computing with MPI,” inProceedings of the 17th
European MPI users’ group meeting conference on Recent
advances in the message passing interface, ser. EuroMPI’10.
Berlin, Heidelberg: Springer-Verlag, 2010, pp. 208–218.

[31] C. Engelmann and S. Böhm, “Redundant execution of HPC
applications with MR-MPI,” in Proceedings of the 10th
IASTED International Conference on Parallel and Distributed
Computing and Networks (PDCN) 2011. Innsbruck, Austria:
ACTA Press, Calgary, AB, Canada, Feb. 15-17, 2011, pp. 31–
38.

[32] K. Ferreira, J. Stearley, J. H. Laros, III, R. Oldfield,
K. Pedretti, R. Brightwell, R. Riesen, P. G. Bridges, and
D. Arnold, “Evaluating the viability of process replication
reliability for exascale systems,” inProceedings of 2011
International Conference for High Performance Computing,
Networking, Storage and Analysis, ser. SC ’11. New York,
NY, USA: ACM, 2011, pp. 44:1–44:12. [Online]. Available:
http://doi.acm.org/10.1145/2063384.2063443

[33] D. Fiala, F. Mueller, C. Engelmann, K. Ferreira, and
R. Brightwell, “Detection and Correction of Silent Data
Corruption for Large-Scale High-Performance Computing,”in
Proceedings of the 2012 IEEE conference on Supercomputing,
ser. SC ’12, 2012.

[34] C. Wang, F. Mueller, C. Engelmann, and S. L. Scott, “Proac-
tive process-level live migration in HPC environments,” in
Proceedings of the 2008 ACM/IEEE conference on Super-
computing, ser. SC ’08. Piscataway, NJ, USA: IEEE Press,
2008, pp. 43:1–43:12.

[35] C. Engelmann, G. R. Vallee, T. Naughton, and S. L. Scott,
“Proactive Fault Tolerance Using Preemptive Migration,” in
Proceedings of the 2009 17th Euromicro International Con-
ference on Parallel, Distributed and Network-based Process-
ing, ser. PDP ’09. Washington, DC, USA: IEEE Computer
Society, 2009, pp. 252–257.

[36] N. Naksinehaboon, N. Taerat, C. Leangsuksun, C. F. Chan-
dler, and S. L. Scott, “Benefits of Software Rejuvenation on
HPC Systems,” inProceedings of the International Sympo-
sium on Parallel and Distributed Processing with Applica-
tions, ser. ISPA ’10. Washington, DC, USA: IEEE Computer
Society, 2010, pp. 499–506.

[37] H. Casanova, Y. Robert, F. Vivien, and D. Zaidouni,
“Combining Process Replication and Checkpointing for
Resilience on Exascale Systems,” INRIA, Rapport de
recherche RR-7951, May 2012. [Online]. Available:
http://hal.inria.fr/hal-00697180

