
Semi-Partitioned Hard-Real-Time Scheduling
Under Locked Cache Migration in Multicore

Systems

Mayank Shekhar1, Abhik Sarkar2 Harini Ramaprasad1, Frank Mueller2

mayank@siu.edu, asarkar@ncsu.edu, harinir@siu.edu, mueller@cs.ncsu.edu
1Southern Illinois University Carbondale, 2North Carolina State University

Abstract
As real-time embedded systems integrate more and more functionality, they

are demanding increasing amounts of computational power that can only be

met by deploying multicore architectures. The use of multicore architectures

with on-chip memory hierarchies and shared communication infrastructure in

the context of real-time systems poses several challenges for task scheduling.
In this paper, we present a predictable semi-partitioned strategy for

scheduling a set of independent hard-real-time tasks on homogeneous mul-

ticore platforms using cache locking and locked cache migration. Semi-

partitioned scheduling strategies form a middle ground between the two

extreme approaches, namely global and partitioned scheduling. By making

most tasks non-migrating (partitioned), runtime migration overhead is mini-

mized. On the other hand, by allowing some tasks to migrate among cores,

schedulability of task sets may be improved.
Simulation results demonstrate the effectiveness of our approach in im-

proving task set schedulability over purely partitioned approaches while

maintaining real-time predictability of migrating tasks. In our simulations, we

achieve an average increase in utilization of 37.31% and an average increase

in density of 81.36% compared to purely partitioned task allocation.

1. Introduction

As real-time embedded systems integrate more and more

functionality, they are demanding increasing amounts of com-

putational power that can only be met by deploying multicore

architectures. Modern multicore architectures typically have

on-chip memory hierarchies (e.g., caches) and other shared

on-chip resources such as the communication infrastructure.

Since real-time systems require a-priori guarantees of task

set schedulability, the use of such multicore architectures in

these systems poses several challenges. It is imperative that

tasks are carefully scheduled and accesses to shared on-chip

resources are suitably arbitrated to guarantee functional and

timing correctness without severely compromising schedulable

utilization or introducing unreasonable imbalance in core

loads.

Multicore real-time scheduling algorithms may be broadly

classified into two categories, namely global and partitioned

algorithms. In global scheduling, all jobs are stored in a single

prioritized queue and the scheduler allocates them to cores

according to their priority. As a result, jobs may be scheduled

on different cores at different times, thus requiring migration

of jobs among cores. While this allows for optimal scheduling

policies, high schedulable utilization and good load balancing,

providing predictable task migration is very challenging.

This work was supported in part by NSF grants CNS-0905212, CNS-0720496

and CNS-0905181.

On the other hand, in partitioned scheduling, tasks are

statically partitioned onto cores and remain there throughout

their lifetime. A local scheduler then schedules tasks on that

core according to a given unicore scheduling algorithm. The

advantage of this approach is improved predictability due to

elimination of online migration overhead. However, deriving

an optimal partitioning of tasks is an NP hard problem, schedu-

lable utilizations that can be achieved in a partitioned approach

are typically much lower than those in global scheduling

algorithms and load imbalance may be unavoidable due to

task set characteristics.

In this paper, we present a semi-partitioned approach for

predictably scheduling periodic hard-real-time tasks using

cache migration on a Network-on-Chip (NoC) based multi-

core architecture. As many tasks as possible are statically

partitioned onto cores to minimize online cache migration

overhead. The remaining tasks are allowed to migrate in a

predetermined manner among a preselected subset of cores

to improve task set schedulability. On each core, tasks are

scheduled using an Earliest Deadline First (EDF) policy since

it maximizes core utilization bound.

In order to improve the predictability of multi-task execution

on a single core, we allow tasks on a given core to statically

choose and lock a subset of their memory lines in the core’s

private cache. For a migrating task, locked lines belonging to

the task are migrated and re-locked on its target core. Since we

use locked cache migration, migration overhead is predictable

even though a task may be migrated in the middle of a given

job’s execution. In order to guarantee predictable sharing of

the on-chip communication infrastructure, we employ a time-

division multiplexed (TDM) arbitration scheme.

2. Background and Related Work

In this section, we present relevant background information

and discuss related work.

2.1. Cache Locking

Schedulability theory for real-time systems requires a-priori

estimates on the worst-case execution times (WCETs) of tasks.

Architectural features such as caches complicate the process of

estimating task WCETs, specially in the context of prioritized



multi-task systems. Cache locking is a technique that may be

used to improve the timing predictability of real-time tasks.

The idea is that a task may explicitly load and lock predeter-

mined content into the cache. For the duration that the content

is locked, cache behavior becomes completely predictable.

Cache locks may be applied statically or dynamically. In static

cache locking, the system locks cache lines for a given task

during the start-up phase and these lines remain locked during

the lifetime of the task. On the other hand, dynamic locking

allows a task to change the contents of its locked regions

at pre-selected cache reload points. In our paper, we employ

static cache locking.

Several techniques have been proposed in recent years for

static and dynamic cache locking. Puaut et al. have proposed

static and dynamic cache locking techniques for instruction

caches [16], [15] and cache locking techniques that provide

performance comparable with scratchpad-based techniques

[17]. Lisper et al. have proposed techniques for locking data

caches [11]. Recently, cache locking techniques for multicore

systems with shared L2 caches have been proposed by Suhen-

dra et al. [24].

2.2. Real-Time Execution on Multicores

Scheduling of real-time tasks on cores is paramount to prop-

erly utilize multicore systems. Multicore scheduling schemes

may be broadly classified into partitioned and global schedul-

ing policies.

In partitioned scheduling [7], [5], tasks are assigned to cores

statically and are not allowed to migrate between cores. The

advantage is that there is no migration overhead. However,

partitioned schemes have three main disadvantages. First, they

are inflexible and cannot easily accommodate dynamic tasks

without a complete re-partition. The re-partitioning problem

may be resolved by allocating incoming dynamic tasks to the

first available core, but this may not be optimal in terms of

overall system utilization. Second, optimal assignment of tasks

to cores is an NP-hard problem for which polynomial-time

solutions result in sub-optimal partitions, thereby resulting in

lower schedulable utilizations. Finally, task set characteristics

may force an unbalanced load on cores.

In global scheduling policies, tasks are allowed to migrate

among cores. An advantage of task migration is that it may

be used to dynamically balance the system load and allow

optimal scheduling of tasks onto cores [4], [13], [1], [23],

[3]. However, the number of task migrations introduced in

such schemes could be prohibitive in the context of real-

time systems due online migration overheads that change the

timing behavior of tasks, thus affecting the overall timing

predictability of the system.

In recent work, semi-partitioned approaches have been

explored to reduce the number of migrations [10], [2], [8].

Although these approaches significantly reduce the number of

task migrations, they assume that constants may be added to

task WCETs, given a bound on the number of migrations,

to account for migration costs. In cache-based systems, the

calculation of migration overheads is not trivial. In our work,

we explicitly model cache migration and calculate the cost of

migrating cache lines over the communication infrastructure.

Sarkar et al. have proposed proactive, push-based migration

mechanisms for bus-based multicore architectures [22] and

mechanisms to support migration of locked cache lines among

cores [20]. In our current paper, we adopt such a push-based

migration mechanism. In more recent work, Sarkar et al. have

proposed algorithms for statically partitioning tasks that use

cache locking on multicore architectures [21]. In contrast,

our paper employs a semi-partitioned scheduling scheme to

improve schedulability.

2.3. Networks-on-Chip

A Network-On-Chip (NoC) is an infrastructure designed

for communication among the resources on a chip, as an

alternative to traditional bus-based communication and has

been extensively studied by researchers [6], [14], [19], [26].

Every core has a router that makes decisions for movement of

data through the NoC. Efficiency of communication depends

on the topology of the network and the routing algorithm

used. A two-dimensional mesh topology has been found to

be a viable solution for many-core architectures, providing

both massive bandwidth and scalability in practice [25], [9]. In

order to support predictable real-time execution, we employ a

time-division-multiplexed (TDM) approach for arbitrating core

memory requests across the NoC.

3. Assumptions

Architectural and Task Model. We assume a homoge-

neous multicore architecture where each core has private, set

associative, lockable caches. We assume a two dimensional

(2D) mesh-based NoC interconnect with dedicated, bidirec-

tional channels for cache-to-cache transfers between cores that

does not interfere with channels for regular main memory

accesses. An example of such an architecture in practice is

the recent 64-core TilePro64 architecture from Tilera [25]

that has five independent mesh-based NoC interconnects. We

also assume support for message prioritization similar to that

provided by the CAN bus protocol [12]. We assume that each

core’s router has a buffer with size at least equal to the size

of one cache line. We assume that all memory requests are

pipelined at the memory controller and that the memory access

latency includes the delay due to pipelining.

We assume a periodic hard-real-time task model with rela-

tive deadlines of tasks being less than or equal to their periods.

Task characteristics are represented by the tuple (Pi, Ci, Di),

where Pi is the period, Ci is the WCET and Di is the relative

deadline of task Ti. We assume that tasks are independent of

each other and may lock cache lines on the core to which they

are allocated. Memory lines that are not locked are assumed

to bypass the cache. For each task, a static timing analyzer

developed in prior work [18] is used to calculate the worst-

case execution time (WCET) of the task with a chosen set



of cache lines locked (Clocked
i ). 1 We assume that partitioned

tasks may use at most k−1 ways of the k available ways in a

core’s private cache and that each such task may lock at most

one way in a given cache set. We assume that the kth way is

dedicated for migrating tasks. Currently, we also assume that

only one migrating task may be allocated to any given core.

This is done in order to avoid the possibility of contention

among migration traffic when two or more migrating tasks are

allocated to the same core in an effort to minimize migration

overheads.

NoC Routing and Arbitration Model. Memory requests

issued by cores are assumed to be statically routed along a

straight path to the memory controller and arbitrated using

a time-division-multiplexed (TDM) approach, as described

below. Consider the example mesh in Figure 1. We only depict

the channel for memory traffic and consider the flow of traffic

to/from a single memory controller M along a straight vertical

path.

Fig. 1. Memory Traffic Routing

Bus C conveys traffic from cores A, B and C, Bus B, that

from from cores A and B and Bus A, from core A. The

bandwidth allocated to memory traffic from a given core along

a given bus is proportional to the number of hops from the core

to the target of that bus. For example, the bandwidth along Bus

C is divided among cores A, B and C in the ratio 3:2:1 since

traffic from core A crosses three hops to get to the target of

Bus C (memory controller M), core B crosses two hops and

core C crosses one hop. If we assume that each hop takes one

cycle, the NoC latencies for cores A, B and C across Bus C

are 2, 3 and 6 cycles, respectively. Similarly, NoC latencies

for core A and B across Bus B are 2 and 3 cycles and that for

core A across Bus A is 1 cycle. Hence, the total NoC latency

for traffic from core A is 5, that for traffic from core B 6

cycles and that for traffic from core C 6 cycles. For safety, we

assume that the NoC latency of every memory request is the

maximum of these three latencies, namely 6 cycles.

By employing the prioritized TDM approach described

above, the main memory access time for a given core becomes

independent of the location of the core on the mesh, thus

making the worst-case execution time (WCET) independent

1. We assume that the regions that each task wishes to lock are pre-selected.
Methods used to make this choice are out of the scope of this paper.

of the physical location of the core on which it is allocated.

This enables us to perform task allocation onto virtual cores

and then place cores that contain different portions of a given

migrating task physically close to each other in an effort to

decrease the migration overhead.

Architectures such as Tilera’s TilePro64 have main memory

symmetrically distributed into four parts around the chip, each

serviced by a separate memory controller. Since our latency

calculation assumes that all traffic from a given core is routed

along the straight path to the appropriate memory controller,

is easily extends to this case.

4. Methodology

In this section, we describe our task allocation strategy in

detail. The algorithm consists of two main steps. In the first

step, we partition as many tasks as possible onto cores. Tasks

that get partitioned are known as non-migrating tasks. Any

remaining tasks are classified as migrating tasks. In the second

step, each migrating task is allocated onto a set of cores. A

migrating task executes on each core it is allocated to for a

prescribed amount of time and in a prescribed order. Algorithm

1 depicts these steps.

We explain our algorithm with the help of a simple example

task set whose characteristics are shown in Table 1. The first

column shows the task ID and the second column shows

the period of the task. The third and fourth columns show

the locked WCET (when all of a task’s chosen lines are

locked) and the corresponding utilization, respectively. The

last column shows the number of locked lines for the task.

We assume a 9-core (3 X 3) 2D mesh in this example.

i Pi C
locked

i ui nl
locked

i

1 10000 7000 0.7 250

2 10000 6000 0.6 200

3 50000 30000 0.6 150

4 40000 24000 0.6 200

5 50000 30000 0.6 250

6 50000 30000 0.6 150

7 50000 30000 0.6 100

8 100000 60000 0.6 100

9 100000 60000 0.6 150

10 100000 60000 0.6 150

TABLE 1. Example Task Set

4.1. Allocation of Tasks by Partitioning

Algorithm. Our partitioning algorithm (Lines 9 - 19 in

Algorithm 1) sorts tasks in decreasing order of their (locked)

utilizations and tries to allocate them one by one onto cores

using a best-fit strategy. When a new task is allocated onto a

core that already contains tasks, its locked cache regions may

conflict with those of tasks already on the core. Thus, one

or more tasks (including the new task) may be required to

unlock a subset of its regions to resolve the conflicts, thereby



Algorithm 1 Semi-Partitioned Task Allocation Algorithm

1: Task Allocator(Tasks, Cores)

2: Partition Tasks(Tasks, Cores)

3: if (Tasks not Empty) then

4: schedulable ←
5: Allocate Migrating Tasks(Tasks, Cores)

6: end if

7:

8: Partition Tasks(Tasks, Cores)

9: while (Tasks not Empty) do

10: Task ← Max Util Task(Tasks)

11: Core ← Min Util Change Core(Task, Cores)

12: if (Util(Core) + Util(Task) ≤ 1) then

13: Allocate Task To Core(Task, Core)

14: Delete Task(Tasks, Task)

15: else

16: Add Task(Migrate List,Task)

17: Delete Task(Tasks, Task)

18: end if

19: end while

20:

21: Allocate Migrating Tasks(Migrate List, Cores)

22: while (Migrate List not Empty) do

23: Task ← Max Util Task(Migrate List)

24: Done ← false

25: while (Done 6= true) do

26: Core ← Find Max Slack Core(Cores)

27: if (Valid(Core)) then

28: Allocate Task To Core(Task, Core)

29: Delete Core(Cores, Core)

30: else

31: return false

32: end if

33: Mig Curr ← Calc Curr Migration Overhead(Task)

34: uTask ← Calc Rem Util(Task, Mig Curr)

35: Mig Last ← Calc Last Migration Overhead(Task)

36: if (uTask + Mig Last ≤
(1 - Max Util Core(Cores))) then

37: Core ← Min Util Min Slack Core(Cores, Task)

38: if (Valid(Core)) then

39: Allocate Task To Core(Task, Core)

40: Delete Task(Migrate List, Task)

41: Delete Core(Cores, Core)

42: Done ← true

43: else

44: return false

45: end if

46: end if

47: end while

48: end while

49: return true

increasing the utilization of these tasks. In such a situation, our

algorithm chooses to unlock conflicting regions with minimum

access frequency.

The change in WCET of a task resulting from a reduction

in its locked cache lines is calculated as the product of the

number of accesses to each line being unlocked and the time

taken to fetch the line. The (locating independent) memory

access latency for each line is calculated using the NoC routing

and arbitration model presented in Section 3. The new task

is allocated to the core that suffers the minimum change

in utilization due to the addition of the new task, including

both the utilization of the new task itself and the change in

utilizations of existing tasks on the core, if any, due to region

unlocking. If two or more cores have the same change in

utilization, the core with the least absolute utilization among

them is chosen. If the new task cannot be accommodated on

any core due to utilization bounds, it becomes a candidate for

migration.

Example. In the example shown in Table 1, since there

are 10 tasks to be allocated onto 9 cores, tasks 1 to 9 get

allocated onto the 9 cores according to our algorithm and

each task is allowed to retain its chosen locked regions due

to the absence of conflicts. When we try to schedule task 10

that has a (locked) utilization of 0.6, we find that it cannot

be accommodated on any of the cores. Hence, this task is

considered for execution as a migrating task.

Justification of Partitioning Heuristics. Tasks are allo-

cated in decreasing order of utilizations in order to maximize

the chances of high utilization tasks being partitioned. By

doing so, our algorithm retains lower utilization tasks as

candidates for migration, potentially resulting in lower online

migration overhead and more room for accommodating this

overhead.

When allocating a new task to a core that already contains

tasks, our algorithm chooses the core that suffers the minimum

change in utilization due to the addition of the new task. This

is to minimize the additional off-chip memory traffic generated

due to cache region unlocking which, in turn, could lead to

savings in power/energy consumption.

When there are two or more cores on which addition of a

new task leads to the same change in utilization, our algorithm

chooses the core that has minimum absolute utilization among

them. This is done to improve load balancing and, hence,

minimize thermal degradation of cores.

4.2. Allocation of Migrating Tasks onto a Set of Cores

The subset of tasks that cannot be accommodated by the

partitioned approach presented above are considered as can-

didates for migration. We first present necessary terms and

theorems and then present the algorithm for the allocation of

migrating tasks onto a set of cores.

Definition 1: Slack time ∆c
i for a migrating task Ti on a



core c is defined as shown in Equation 1.

∆c
i = max(U c

max ∗Dc
min −

∑

j∈p(c)

Cc
j , 0)/ max(⌊

P c
min

Pi

⌋, 1)

(1)

Here, p(c) is the set of non-migrating tasks allocated on

core c and Cc
j is the WCET of task Tj on core c, based

on locked regions it retains on core c. Dc
min is the shortest

relative deadline among non-migrating tasks allocated to core

c, given by minj∈p(c) Dj , and P c
min is the period of this task

with shortest relative deadline. U c
max is the utilization cap for

a core. We incorporate this aspect because it is sometimes

useful, from a power/energy consumption standpoint, to run

cores below 100% load. On a core with maximum available

utilization of 1 where the period of the migrating task is greater

than or equal to the period of the task with shortest relative

deadline, ∆c
i is simply max(Dc

min −
∑

j∈p(c) Cc
j , 0).

Theorem 1: If a migrating task Tmig has a slack time of

∆c
mig on core c, it is guaranteed to get the highest priority for

∆c
mig amount of time on core c within any time interval equal

to the relative deadline of the task with the shortest relative

deadline among non-migrating tasks allocated to core c and is

guaranteed not to violate schedulability of non-migrating tasks

on core c.

Proof: Part 1. Suppose a task Tmig arrives at time tmig .

Tmig has relative deadline of ∆c
mig on core c. Let us assume

that Tmig does not get highest priority when it arrives. Let

dnon−mig and eleft
non−mig be the absolute deadline and the

remaining execution time of the current highest priority non-

migrating task Tnon−mig on the core. This implies that

dnon−mig < tmig + ∆c
mig (2)

eleft
non−mig > 0 (3)

From Equation 1, we know that in a period Pmin, we

always have slack time of ∆c
mig . So the effective slack

time ∆non−mig of task Tnon−mig will be at least equal

to ⌊Pnon−mig/Pmin⌋ ∗ ∆c
mig . Since Pnon−mig ≥ Pmin,

∆non−mig ≥ ∆c
mig .

Let us assume that Tmig gets highest priority after the

execution of Tnon−mig . So, the slack time ∆non−mig left after

the execution of Tnon−mig is dnon−mig − (tmig + eleft
non−mig).

From Equation 2, we get ∆non−mig < ∆c
mig−eleft

non−mig From

Equation 3, ∆non−mig < ∆c
mig . This is a contradiction since

∆non−mig ≥ ∆c
mig .

Part 2. Since non-migrating tasks are allocated to a core

only if they are schedulable according to the EDF schedula-

bility test, any deadline miss must be due to the arrival and

immediate execution of Tmig . By definition, even the task

with the shortest relative deadline can accommodate a slack

of ∆c
mig under the worst-case scenario that it is delayed by

one job of every other task in the set of non-migrating tasks.

Thus, no task can miss its deadline due to the execution of

Tmig .

Algorithm. We now describe the various steps of our

algorithm for allocating migrating tasks onto a set of cores

(Lines 22 - 49 of Algorithm 1).

Step 1. Calculate Slack Times. The slack time available

for a given migrating task on each core is calculated according

to Equation 1.

Step 2. Allocate Task Portion. Cores are sorted in de-

creasing order of the slack time available on them and a

portion of the migrating task is allocated to the core with the

maximum slack time. That core is then removed from further

consideration by the algorithm since only one migrating task

may be allocated to a given core according to our current

assumption. These steps are shown in Lines 26 - 32 of

Algorithm 1. The relative deadline of this portion of the

migrating task is set to be equal to the available slack time

and the migrating task is guaranteed to execute at the highest

priority on this core without violating schedulability of non-

migrating tasks on the core in accordance with Theorem 1. So,

the portion of the migrating task effectively executes at 100%

utilization for a duration equal to the available slack time.

This method has the advantage that the underlying scheduling

policy (EDF) and, hence, the corresponding schedulability

test, remain unchanged. This is in contrast to other semi-

partitioned scheduling approaches that require modifications

to the scheduling policy and the schedulability analysis [10].

Step 3. Calculate Remaining Task Utilization. The re-

maining WCET of the migrating task, including the overhead

of migration is calculated using Equation 4 (Lines 33 - 34 of

Algorithm 1).

Crem,m
i = Crem,m−1

i − max
c∈cores

∆c
i + Mm

i (4)

Here, Crem,m
i is the WCET remaining after the mth migration,

cores is the set of cores currently available for consideration

and Mm
i is the migration overhead for the mth migration,

calculated using Equation 5.

Mm
i = (Read + Write +

nh(srcm,dstm)∑

h=1

lh) ∗ nlmigrated
i (5)

Here, srcm and dstm are the source and destination cores

for the mth migration. Read and Write are the latencies

for reading from and writing to a cache line, respectively,

at the source and target of the migration. nh(srcm, dstm)
is the number of hops between the source and destination

of the migration, lh is the latency of migration of a cache

line over a single hop and nlmigrated
i is the number of lines

migrated (subset of nllocked
i ). The remaining utilization of the

migrating task is calculated using the remaining WCET and

the time available before the migrating task’s deadline. If this

remaining utilization plus the overhead of migrating the task

back to the core where its first portion is allocated (for the next

job) can be accommodated on some core (Lines 35 - 36 of

Algorithm 1), this remaining portion becomes the last portion

of the task. Otherwise, steps 2 and 3 are repeated until the

remaining utilization of the migrating task under consideration

is less than or equal to the available utilization on some core.

Due to the use of the TDM approach described in Section

3, physical core locations do not affect the WCETs of tasks.

Hence, our algorithm uses virtual core numbers and we assume



that migrating tasks are allocated onto physically neighboring

cores, hence making the number of hops small (equal to 1

when possible).

Step 4. Choose Core for Last Task Portion. If more than

one core can accommodate the last portion of a migrating

task, we choose the one with the minimum current utilization.

If more than one core has the same current utilization, we

choose the one with the minimum slack time. These steps

are shown in Lines 37 - 42 of Algorithm 1. Both these non-

greedy heuristics are in an effort to ensure that cores with

larger utilizations and larger slack times are available for other

migrating tasks.

Steps 1, 2, 3 and 4 are repeated for each migrating task

until either all of them are successfully allocated or no more

cores remain for consideration. In the latter case, the task

set is declared unschedulable on the given number of cores.

Note that, since we dedicate one cache way on each core for

migrating tasks, it always retains its chosen locked regions on

all cores to which it may be allocated.

Example. Step 1. Table 2 shows the slack times of cores

for our running example. The first column shows the core ID

and the second column shows the IDs of non-migrating tasks

allocated to the core. The third and fourth columns show the

periods and WCETs of tasks allocated to the core, respectively

(repeated for convenience) and the last column shows the slack

time of the core.

c i Pi C
c

i ∆
c

i

1 1 10000 7000 3000

2 2 10000 6000 4000

3 3 50000 30000 20000

4 4 40000 24000 16000

5 5 50000 30000 20000

6 6 50000 30000 20000

7 7 50000 30000 20000

8 8 100000 60000 40000

9 9 100000 60000 40000

TABLE 2. Core Slack Times After Partitioning

Step 2: A portion of the migrating task 10 is allocated

to core 8 since core 8 has the maximum slack time (the tie

between cores 8 and 9 that have the same slack time is resolved

using the core ID).

Step 3: Task 10 is allocated on core 8, on which it gets a

continuous execution interval of 40000 units since, according

to Theorem 1, it executes at the highest priority for that

duration. Its remaining execution time is 20000 units and the

remaining time before its deadline is 60000 units. As seen

from Table 1, the number of locked lines for task 10 is 150.

The overhead for migrating one cache line is assumed to be 10

cycles. This causes an overhead of 1500 cycles, which is added

to the remaining WCET, according to Equation 4. We then

check whether this updated utilization plus another migration

overhead to account for the task’s return to core 8 can be

accommodated on some core. If so, this portion becomes the

last portion. In our example, a further overhead of 1500 cycles

is added and the updated remaining utilization is (20000 +

1500 + 1500)/(60000) = 0.38, which can be accommodated

on several possible cores.

Step 4: We find that the last portion of task 10 (with

utilization 0.38), can be accommodated on cores 1, 2, 3, 4,

5, 6, 7 or 9. Core 8 is eliminated from consideration since

the first portion of task 10 has already been allocated to

it. In accordance with the non-greedy heuristics used in our

algorithm, core 2 is chosen to host the last portion of task 10.

4.3. Discussion

4.3.1. Applicability of our Algorithm. Our method is par-

ticularly suited to task sets in which several tasks have high

utilizations (≥ 0.5) and a few tasks have lower utilizations.

Due to high utilizations (possibly increased due to conflicts

in locked cache regions), partitioning may be able to ac-

commodate only one or two tasks on each core. Although

the remaining tasks have high enough utilizations that they

cannot be partitioned onto cores, if some of them have shorter

WCETs, it is likely that there are cores on which there is

sufficient slack time to accommodate such tasks. Furthermore,

we explicitly allow consideration of different utilization caps

for cores.

4.3.2. Comparison with Existing Work. An advantage of

our algorithm for allocating migrating tasks compared to a

semi-partitioned approach proposed in related work [8] is that

we maintain the periodicity of tasks in contrast to that work

where each job of a migrating task over the entire hyperperiod

must be explicitly considered. Another related work [10]

uses a restricted migration model, thus avoiding the overhead

of migrations within a single job of a task. However, the

method requires a modification to the underlying scheduling

policy and, hence, the schedulability test. On the other hand,

our algorithm uses the EDF policy and the corresponding

schedulability test.

In our work, we specifically target locked-cache-based

systems and strive to maximize locking while minimizing

migration overheads. In contrast, existing techniques assume

a cacheless system and, hence, do not explicitly consider

migration overheads. This results in a significantly higher

baseline for existing techniques in terms of system utilization

and schedulability, thus preventing a fair comparison.

4.3.3. Algorithm Complexity. The partitioning stage of our

algorithm iterates over tasks, and, for each task, iterates

over cores to check for possible allocations. Similarly, to

allocate migrating tasks onto cores, our algorithm iterates over

migrating tasks and, for each task, could allocate portions of

the task on every core in the system in the worst-case. Hence,

the overall time complexity of our algorithm is O(n ∗ m),
which is acceptable since the algorithm is offline.



5. Simulation Setup

We have designed and implemented a software simulator

for the algorithm presented in Section 4. The architectural

configuration for our simulations is shown in Table 3. The

external memory latency shown in the last row is the sum of

1) the NoC latency for the request to travel from the core to the

memory controller (6 cycles, calculated using the NoC routing

and arbitration model described in Section 3), 2) the latency of

the actual memory access once the request reaches the memory

controller (60 cycles - this latency includes the delay due to

pipelining of multiple memory pending requests at the memory

controller), and 3) the NoC latency for the returned 32-byte

cache line to travel back from the memory controller to the

requesting core (24 cycles - different from the latency for

the memory request to travel to the memory controller due

to difference in the size of the transferred data). We assume

that all four ways of the L1 data cache are lockable by tasks.

However, one lockable way is reserved for migrating tasks.

In our current experiments, we have only modeled data cache

migration. Note that this is just a choice for our experimental

setup. Our methodology itself is not limited to any one kind

of cache.

Parameter Configuration

Processor Model in-order

Cache Line Size 32Bytes

L1 D-Cache Size/Associativity 256KB/4-way
L1 hit latency 1 cycle
Replacement Policy Least Recently Used

Number of Cores 9

Cache to cache Transfer latency 13 cycles

External Memory Latency 90 cycles

TABLE 3. System Configuration

6. Simulation Results

In this section, we present our simulation results. In all our

simulations, tasks are assumed to have relative deadlines equal

to their periods and phases of zero (synchronous task set). We

conducted simulations with benchmarks from the DSPStone

benchmark suite [27]. WCET values for tasks constructed

with these benchmarks were calculated using a static timing

analysis framework developed in prior work [18]. We also

conducted simulations with synthetically generated tasks.

Table 4 shows details of tasks constructed using benchmarks

from the DSPStone suite. The first column indicates task

IDs and the second column indicates task names. The prefix

attached to some benchmark names indicates the data set size

used for the task. The third column shows the locked WCETs

of tasks and the last column shows their locked cache sets.

We first show detailed simulation results for one task set

constructed using a subset of benchmarks shown in Table 4.

Table 5 shows the characteristics of this task set. The first/third

columns indicate task IDs and the second/fourth columns

i Task Name C
locked

i Locked Sets

1 1000fir 121667 0-250

2 1000lms 226196 100-350

3 200n real updates 45558 200-299

4 matrix1 90956 300-337

5 1000convolution 82571 400-649

6 300convolution 25171 500-574

7 400n real updates 90158 769-919

8 500fir 61167 1911-2036

9 200convolution 8992 800-849

10 300n real updates 67858 825-974

11 400convolution 33371 925-1024

12 600convolution 49771 652-802

13 500convolution 41571 1175-1299

14 500n real updates 112458 1275-1399

15 500lms 113696 1375-1500

16 600fir 73267 1000-1250

17 600lms 136196 1200-1500

18 700convolution 57971 700-900

19 700fir 85367 100-350

20 700lms 158696 200-450

21 lms 23696 100-350

22 convolution 8771 200-325

TABLE 4. Tasks from the DSPStone Benchmark Suite

show task periods. The results of the partitioning stage of our

i Pi i Pi

1 357000 11 84000

21 60000 12 117000

3 116000 13 98000

4 204000 14 320000

5 220000 15 250000

6 60000 16 168000

7 250000 17 264000

8 142000 18 150000

9 30000 19 190000

10 178000 22 30000

TABLE 5. Characteristics of Task set using Real

Benchmarks

algorithm for the above task set are shown in Table 6. The first,

second and third columns show the core ID, task IDs and core

utilization, respectively. In the second stage of our algorithm,

we allocate the remaining migrating tasks onto cores. Table 7

shows the allocation of portions of the migrating tasks onto

cores. The first column shows the core ID. The second and

third columns show task IDs and their slice numbers allocated

to a given core, respectively. The fourth and fifth columns

show the updated utilization and density of the cores. The last

column shows the total migration overhead incurred.

We conducted a similar set of simulations for four other task

sets, each containing thirteen tasks chosen from those shown

in Table 4. Table 8 shows the characteristics of these four task

sets. The first column shows the task set ID. The second, third

and fourth columns show the set of task IDs, task periods and



c Task IDs U
c

1 17,1 0.86

2 15,14 0.81

3 19,7 0.81

4 4,5 0.82

5 16,10 0.82

6 8,18 0.82

7 12,3 0.82

8 13,21 0.82

9 6,11 0.82

TABLE 6. Non-Migrating Task Allocation: Real Task Set

c i slicei U
c

δ
c

Mi

3 9 1 0.97 1.82 650

1 9 2 1 1 650

4 22 1 0.97 1.82 1625

5 22 2 0.97 1.82 1625

TABLE 7. Migrating Task Allocation: Real Task Set

migrating task IDs. In this set of simulations, we show that the

task sets that cannot be scheduled using a purely partitioned

approach are schedulable using our algorithm. In each of the

four task sets, there are four migrating tasks. Although we

use reasonably small task sets, we believe that it suffices

to demonstrate the utilization benefit obtained by using our

algorithm compared to a partitioned approach.

Figure 2 shows the increase in utilization and density

(density is the ratio of execution time of a task to its

relative deadline.) achieved by our algorithm compared to

a purely partitioned approach for the four task sets shown

in Table 8 and for the task set (labeled task set 5) shown

in Table 5. The x-axis shows task set numbers and the y-

axis shows utilization/density. Each stacked bar shows the

total utilization/density of the non-migrating and migrating

tasks, respectively, for a given task set. The total density

of a core reflects the actual load a core is supporting when

even one task on the core has a deadline less than its period.

So we choose density along with utilization to reflect the

increase in work load on the core. The difference between

the increase in utilization and that in density is due to the

fact the migrating tasks have shorter intermediate deadlines

on each core they are allocated to. As expected, our algorithm

is able to achieve significantly higher utilizations compared to

a purely partitioned approach.

Overall, in our simulations, we observe an average increase

in utilization of 37.31% and an average increase in density of

81.36% compared to purely partitioned task allocation.

In practice, it is sometimes useful, from a power/energy

consumption standpoint, to run cores below 100% load. We

demonstrate the effectiveness of our algorithm under different

utilization caps for individual cores, namely 0.5, 0.75 and 1.

Table 9 shows task set characteristics for a set of simulations

where task sets are constructed using benchmarks from the list

Set ID Task IDs Periods Migrating Tasks

Set 1 1-13 200k, 400k,
90k, 150k,
140k, 50k,
150k, 100k,
18k,110k, 66k,
80k, 80k

3,11,6,9

Set 2 7-19 150K,
100K, 18K,
110K, 66K,
100K, 80K,
200K, 190K,
120K,220K,
100K, 140K

13, 11, 9, 12

Set 3 1-7,14-20 200K, 380K,
90K, 150K,
140K, 50K,
150K, 200K,
190K, 150K,
220K, 120K,
250K

3, 6, 16, 18

Set 4 1-3, 7-13, 14-20 200K, 380K,
90K, 150K,
100K,
18K, 110K,
66K,80K,
220K, 115K,
140K, 250K

3,11,18,9

TABLE 8. Task Set Characteristics

Fig. 2. Comparison of Utilization and Density for Parti-

tioned and Semi-Partitioned Approaches

shown in Table 4 for different core utilization caps. Figure 3

shows the results obtained for this set of simulations. The x-

axis shows task sets, each with a different utilization cap, and

the y-axis shows the utilization of these task sets under our

algorithm and the increase in utilization required in order to

schedule the same task sets using a partitioned approach. For

example, task set 2 needs a minimum of 0.85 utilization cap on

each core to completely partition the tasks onto cores. Using

our semi-partitioned approach, the same task set is schedulable

under a utilization cap of 0.75 for each core. So if we chose to

execute the cores uniformly on a lower load than partitioned

would allow, then we can use our algorithm to schedule tasks



Utilization 0.5 0.75 1
Cap

Set ID 1 2 3

Task IDs 1-13 1-13 1-13

Periods 400k, 750k,
150k, 300k,
275k, 100k,
300k, 200k,
30k, 225k,
116k, 150k,
140k

240K, 450K,
150K, 180K,
160K, 80K,
180K,
120K, 30K,
130K,65K,
100K, 140K

200K, 400K,
90K, 150K,
140K, 50K,
150K, 100K,
18K, 110K,
66K, 80K, 80K

Migrating 5,13,6,9 6, 3, 9, 13 3, 11, 6, 9
Tasks

TABLE 9. Task Set Characteristics under Utilization

Caps

onto cores.

Fig. 3. Minimum Required Core Utilization Caps for
Partitioned and Semi-Partitioned Approaches

Fig. 4. Comparison of Utilization and Density for Par-

titioned and Semi-Partitioned Approaches under Core
Utilization Caps

Figure 4 shows the results of a set of simulations using

synthetically constructed task sets, under core utilization caps

of 0.5, 0.75 and 1, respectively. The x-axis shows task sets and

the y-axis shows the utilization/density achieved, with each

stacked bar showing total utilization/density for non-migrating

and migrating tasks, respectively. Once again, this set of

simulations show that, under the same utilization caps, our

algorithm allows significantly higher utilization and density

compared to a partitioned approach.

7. Conclusions

Real-time/embedded systems are demanding increasing

amounts of computational power that can only be satisfied

by the use of multicore architectures. In such systems, pro-

viding a-priori schedulability guarantees is paramount, even

in the presence of task migration among cores on systems

with architectural features such as caches and shared on-chip

communication infrastructure.

In this paper, we present a semi-partitioned scheduling

strategy that, in conjunction with cache locking and locked

cache migration, offers a concrete and practical approach

towards achieving real-time guarantees on multicore architec-

tures without severe degradation in schedulable utilization. We

demonstrate the effectiveness of our approach compared to a

purely partitioned approach using software simulations.

References

[1] J. Anderson and A. Srinivasan. Early-release fair scheduling. In
Euromicro Conference on Real-Time Systems, pages 35–43, June 2000.

[2] B. Andersson and K. Bletsas. Sporadic multiprocessor scheduling with
few preemptions. In Proceedings of the 2008 Euromicro Conference on

Real-Time Systems, ECRTS ’08, pages 243–252, 2008.
[3] S. Baruah. Techniques for multiprocessor global schedulability analysis.

In IEEE Real-Time Systems Symposium, pages 119–128, 2007.
[4] S. Baruah, N. Cohen, C. Plaxton, and D. Varvel. Proportionate progress:

A notion of fairness in resource allocation. Algorithmica, 15:600–625,
1996.

[5] A. Burchard, J. Liebeherr, Y. Oh, and S. Son. New strategies for
assigning real-time tasks to multiprocessor systems. IEEE Trans. on

Computers, 44(12):1429–1442, 1995.
[6] C.-L. Chou and R. Marculescu. Contention aware application mapping

for network-on-chip communication architecutres. International Con-

ference on Computer Design - ICCD, pages 164–169, 2008.
[7] S. Dhall and C. Liu. On a real-time scheduling problem. Operations

Research, 26(1):127–140, 1978.
[8] F. Dorin, P. M. Yomsi, J. Goossens, and P. Richard. Semi-partitioned

hard real-time scheduling with restricted migrations upon identical
multiprocessor platforms. CoRR, abs/1006.2637, 2010.

[9] Intel’s single-chip cloud computer. techre-
search.intel.com/ProjectDetails.aspx?Id=1.

[10] S. Kato and N. Yamasaki. Portioned edf-based scheduling on multi-
processors. In Proceedings of the 8th ACM international conference on

Embedded software, pages 139–148, 2008.
[11] B. Lisper and X. Vera. Data cache locking for higher program

predictability. In ACM SIGMETRICS international conference on Mea-

surement and modeling of computer systems, pages 272–282, Mar. 06
2003.

[12] M. A. Livani, J. Kaiser, and W. Jia. Scheduling hard and soft real-time
communication in a controller area network. In IFAC/IFIP Workshop

on Real-Time Programming, 1999.
[13] M. Moir and S. Ramamurthy. Pfair scheduling of fixed and migrating

periodic tasks on multiple resources. In IEEE Real-Time Systems

Symposium, pages 294–303, Dec. 1999.
[14] S. Murali and G. D. Micheli. Bandwidth-constrained mapping of

cores onto noc architectures. Design, Automation and Test in Europe

Conference and Exhibition, pages 896 – 901, 2004.
[15] I. Puaut. Wcet-centric software-controlled instruction caches for hard

real-time systems. In ECRTS ’06: Proceedings of the 18th Euromicro

Conference on Real-Time Systems, pages 217–226, Washington, DC,
USA, 2006. IEEE Computer Society.

[16] I. Puaut and D. Decotigny. Low-complexity algorithms for static cache
locking in multitasking hard real-time systems. In In IEEE Real-Time

Systems Symposium, pages 114–123, 2002.



[17] I. Puaut and C. Pais. Scratchpad memories vs locked caches in hard
real-time systems: a quantitative comparison. In Design, Automation

and Test in Europe, pages 1484–1489, San Jose, CA, USA, 2007. EDA
Consortium.

[18] H. Ramaprasad and F. Mueller. Tightening the bounds on feasible
preemptions. ACM Transactions on Embedded Computing Systems,
10:27:1–27:34, 2010.

[19] C.-E. Rhee, H.-Y. Jeong, and S. Ha. Many-to-many core-switch mapping
in 2-d mesh noc architectures. Computer Design: IEEE International

Conference on VLSI in Computers and Processors,ICCD, pages 438 –
443, 2004.

[20] A. Sarkar, F. Mueller, and H. Ramaprasad. Predictable task migration
for locked caches in multi-core systems. In ACM SIGPLAN Conference

on Language, Compiler, and Tool Support for Embedded Systems, pages
131–140, Apr. 2011.

[21] A. Sarkar, F. Mueller, and H. Ramaprasad. Static task partitioning for
locked caches in multi-core real- time systems. Technical Report TR
2011-11, Dept. of Computer Science, North Carolina State University,
2011.

[22] A. Sarkar, F. Mueller, H. Ramaprasad, and S. Mohan. Push-assisted
migration of real-time tasks in multi-core processors. In ACM SIGPLAN

Conference on Language, Compiler, and Tool Support for Embedded

Systems, pages 80–89, June 2009.
[23] A. Srinivasan and J. Anderson. Optimal rate-based scheduling on

multiprocessors. In ACM Symposium on Theory of Computing, pages
189–198, May 2002.

[24] V. Suhendra and T. Mitra. Exploring locking & partitioning for
predictable shared caches on multi-cores. In Design Automation Con-

ference, pages 300–303, New York, NY, USA, 2008. ACM.
[25] Tilera processor family. http://www.tilera.com/.
[26] J. van den Brand, C. Ciordas, K. Goossens, and T. Basten. Congestion-

controlled best-effort communication for networks-on-chip. Proceedings

of the conference on Design, automation and test in Europe, 2007.
[27] V. Zivojnovic, J. Velarde, C. Schlager, and H. Meyr. Dspstone: A dsp-

oriented benchmarking methodology. In Signal Processing Applications

and Technology, 1994.


