
HPC I/O Trace Extrapolation ∗

Xiaoqing Luo1, Frank Mueller1,
Philip Carns2, John Jenkins2, Robert Latham2, Robert Ross2, Shane Snyder2

1 Department of Computer Science, North Carolina State University, Raleigh, NC
2 Mathematics & Computer Science Division, Argonne National Laboratory, Argonne, IL 60439

ABSTRACT
Today’s rapid development of supercomputers has caused I/O per-
formance to become a major performance bottleneck for many sci-
entific applications. Trace analysis tools have thus become vital for
diagnosing root causes of I/O problems.

This work contributes an I/O tracing framework with elastic traces.
After gathering a set of smaller traces, we extrapolate the applica-
tion trace to a large numbers of nodes. The traces can in principle
be extrapolated even beyond the scale of present-day systems. Ex-
periments with I/O benchmarks on up to 320 processors indicate
that extrapolated I/O trace replays closely resemble the I/O behav-
ior of equivalent applications.

1. INTRODUCTION
I/O behavior is one of the key factors that impacts application

performance, particularly for large-scale high-performance com-
puting (HPC) and big data analytic applications that rely on par-
allel file systems (PFSs). I/O presents a challenge due to complex
interactions of multiple software components [5]. Understanding
inefficiencies and determining bottlenecks in I/O are thus impera-
tive, and are facilitated by tracing and analyzing I/O performance of
parallel applications. However, I/O analysis in parallel systems is
not trivial due to multiple I/O layers [17] and multiple I/O patterns.
The following general I/O patterns can be distinguished (proces-
sors are synonymous for compute tasks on nodes): (A) Serial I/O
(SIO): Data is aggregated from all the processors to a single pro-
cessor, the “spokesperson”/proxy, and only the spokesperson per-
forms I/O (PFS). (B) Parallel I/O, one file per process (N-to-N):
All processors perform I/O simultaneously on individual files (lo-
cal or PFS), each with a different name/path. (C) Parallel I/O,
shared-file (N-to-1): Processors perform I/O on a single shared
file simultaneously, each within a disjoint block of the file (PFS).

To understanding I/O behavior, two general types of techniques

∗This work was supported in part by NSF grants 0958311,
1058779, 1217748 and by the U.S. Department of Energy, Office
of Science, Advanced Scientific Computing Research, under Con-
tract DE-AC02-06CH11357. This research used resources of the
Argonne Leadership Computing Facility.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
ESPT2015, November 15-20, 2015, Austin, TX, USA
c© 2015 ACM. ISBN 978-1-4503-3997-1/15/11 ...$15.00

http://dx.doi.org/10.1145/2832106.2832108

may be employed:
• Dynamic I/O analysis, such as ScalaIOTrace [12, 20], which

needs to be linked to the original applications and run together
with the applications on high-performance computing (HPC) sys-
tems. Detailed I/O access information can be collected with such
a tracing tool. However, the system overhead of such tracing tool
is significant, especially for a large-scale production HPC system
[19] (e.g., long application execution time and large number of
nodes participating).

• Static I/O analysis: Gather the trace information at compile
time. Although such analysis can be performed without actu-
ally executing the programs, it requires the access to program
sources, which may not be available for some applications. It
may also fail to capture I/O patterns that are dependent upon
runtime calculations.

I/O tracing can also be performed by modeling and predicting ap-
plications’ behavior [4]. Unfortunately, such an approach can only
provide overall statistics for an application on a particular architec-
ture, and may not satisfy the needs for detailed analysis.

Due to the restrictions of analysis methods mentioned above,
we created a novel tool, ScalaIOExtrap. It obtains the lossless
I/O access behavior of an application running in a large-scale sys-
tem without requiring source code. Fig. 1 gives an overview of
ScalaIOExtrap, where RS (Rank Size) defines the number of ranks
of a job’s communicator obtained from MPI_Comm_size.

Figure 1: Framework of ScalaIOTrace,ScalaIOExtrap and
ScalaIOReplay

The high level methodology is (1) to gather a set of lossless and
scalable I/O trace files in a relatively small system via ScalaIO-
Trace; (2) to analyze the set of trace files and extrapolate small
files into large size trace files via ScalaIOExtrap; (3) to calculate
the extrapolated data and generate a single trace file; and (4) to
enable I/O replay and verify the correctness of extrapolation via
ScalaIOReplay.

Contributions of ScalaIOExtrap:
In this work, we augment the existing ScalaIOTrace tracing tool

to capture additional information (including POSIX I/O operations)
necessary for extrapolation. We then propose a set of novel I/O ex-
trapolation techniques to account for strong and weak scaling, N-1,
N-M and N-N file access models, and a variety of access patterns.
Finally, we demonstrate the effectiveness of our techniques by im-
plementing an extrapolation tool (ScalaIOExtrap) and applying it
to representative HPC I/O workloads.

We conducted experiments on a real-world HPC cluster to verify
the accuracy and portability of our approach. The results indicate
that the extrapolated trace file captured exactly the same behavior
as performed by the I/O application.

2. BACKGROUND
ScalaIOTrace is designed on our prior work on MPI tracing via

ScalaTrace V2 [20]. Similarly, we reuse some techniques of ScalaEx-
trap [19] for developing ScalaIOExtrap.

ScalaTrace is an MPI communication tracing framework for par-
allel applications [11]. It utilizes the MPI profiling layer (PMPI) to
intercept MPI calls. ScalaTrace collects lossless, order-preserving,
and space-efficient communication traces by exploiting the pro-
gram structure and performing a two-stage trace compression, i.e.,
intra-node and inter-node compression while preserving timing [13].

Intra-node compression captures repetitive MPI events in a loop
using regular section descriptors (RSDs) as a tuple {length, event1, ...eventn}
in constant size [12]. Nested loops become power-RSDs (PRSDs),
i.e., recursively structured RSDs.

Inter-node compression is performed over a radix tree to unify
event parameters for calls. The output trace file is a single file of
nearly constant size with sufficient information to capture all tasks.

Parameters of I/O events are captured as elastic data element rep-
resentations in ScalaTrace V2 [20], which represents trace data as
a list of < valuevector, ranklist > pairs subject to compression.

ScalaTrace records delta times of computation durations between
adjacent trace events instead of recording absolute timestamps [13,
10, 21, 14]. Optionally, delta time capturing the duration of an
event is recorded as well. Delta time is concisely represented as sta-
tistical data of maximum, minimum, average and variance of delta
times and, to provide more detail, also as histograms. During event
replay, randomly picked histogram times are emulated to offset na-
tive execution of MPI events with their parameters. The timing of
replays thus closely resembles that of the original application.

ScalaExtrap[19] exploits a set of algorithms and techniques to
extrapolate full communication traces and execution times of an
application at larger scale. Since topology is the basis of commu-
nication trace extrapolation, ScalaExtrap focuses on identifying the
communication pattern of mesh/stencil patterns by calculating the
dimension and corner node of the communication stencil. In order
to extrapolate a communication parameter, ScalaExtrap constructs
a number of linear equations to indicate how the topology informa-
tion is related to the parameter by employing Gaussian Elimination
to solve the equations.

ScalaTrace preserves the delta time between two events and records
the time as multi-bin histograms and extrapolates the timing in-
formation of the application via curve fitting using four statistical
models for each extrapolation: (1) constant, (2) linearly increas-
ing/decreasing, (3) inverse proportional, and (4) inverse propor-
tional plus some constant.

3. DESIGN AND IMPLEMENTATION
I/O analysis is a challenge to multi-layer I/O stacks and multiple

I/O patterns in the program. In this section, we introduce (a) capa-
bilities for trace compression, (b) analysis of the trace and extrap-
olation into target sizes of nodes, (c) replay capabilities on elastic
data representations of MPI-IO and POSIX I/O function calls. In
contrast to MPI communication tracing and past work on extrapola-
tion, we propose a number of novel tracing techniques necessitated
by the unique characteristics of parallel I/O.

We design the ScalaIOTrace, ScalaIOExtrap and ScalaIOReplay
tools suitable for single program multiple data (SPMD) programs.
Each I/O call is regarded as an event, and sequences of such events
are represented as a PRSD using the techniques of ScalaTrace,
ScalaExtrap and ScalaReplay. Hence, this work focuses on the pa-
rameter level of I/O events.

3.1 ScalaIOTrace
Lossless tracing is imperative for accurate replay. We record the

delta time between events and I/O calls with all parameters, except
for the actual data that is read/written to a file system. Applications
may interleave MPI-IO (for parallel I/O) with I/O syscalls, depend-
ing on the software layer. Our objective is to trace and compress
I/O at all levels and preserve event ordering. Yet, different interpo-
sitioning techniques are required per level. MPI-IO is intercepted
at the MPI profiling layer (PMPI). PMPI wrappers trace all param-
eters of MPI-IO calls, but some require domain-specific compres-
sion detailed later. POSIX I/O at a lower level is captured via
GNU link time entry interpositioning with domain-specific param-
eter compression (using a “__wrap_ ” syntax) resembling that of
PMPI. Inside wrappers, parameters are collected and compressed
before the actual POSIX I/O call (“__real_ ”) is invoked. Notice
that MPI-IO often uses POSIX I/O to implement its primitives.
Wrapping both layers allows us to detect if a lower layer (POSIX
I/O) call is made within one of the upper layer (MPI-IO) so that
inner calls are not replayed (even though they are traced) as outer
ones provide a richer semantics.

3.2 ScalaIOExtrap
In order to meet the objective of rapidly obtaining the I/O behav-

ior of parallel applications at arbitrary scale without actual execu-
tion, we developed ScalaIOExtrap. We exploit different meth-
ods for different types of parameters based on their characteristics,
e.g., for string-based parameters such as filenames and data-based
parameters such as offsets. ScalaTrace is a lossless and scalable
tracing tool. The challenge of ScalaIOExtrap is how to maintain
the properties of ScalaTrace. We need to extrapolate all processors
with exact parameters. ScalaTrace will generate an identical pat-
tern in a trace for most SPMD programs regardless of the number
of ranks. For extrapolation, we utilize four trace files of smaller
size as input, assuming that they have the same number of events.

3.2.1 High-level extrapolation
Since we assume the patterns of trace files generated from a

SPMD program to be identical irrespective of the number proces-
sors it runs on, we maintain the event numbers and event names.
For example, if the n0th event is MPI_File_open for input trace
files, then we also generate an MPI_File_open as the n0th event for
the target trace file. ScalaTrace records rank lists at the event level.
We exploit Gaussian Elimination introduced in our prior work [19]
to extrapolate these ranklists for mesh/stencil patterns.

Another aspect to be considered, which is unique to ScalaTrace,
is loop iteration. For scalablility, ScalaTrace uses RSDs during
intra-node-compression to generate a loop number recording the it-
eration times of each event. For weak scaling (where the workload
assigned to each processor stays constant as number of processor

increases) extrapolation is easy, e.g., each rank reads N bytes no
matter how many ranks are running, and the loop iterations will
not change regardless of rank size. However, under strong scal-
ing (where the total workload is fixed, i.e., the workload assigned
to each processor decreases as number of processor increases) and
also for tracing the lower level POSIX-IO for collective MPI-IO
calls [1], loop iterations will change. In most cases, loop iterations
will be inverse proportional to the size of ranks. We construct a set
of equations based on the number of ranks and loop iterations to
determine the factors and calculate the loop iterations for a target
number of ranks.

3.2.2 Elastic string extrapolation
Extrapolation for strings, especially filenames, is important in

ScalaIOExtrap. Filenames plays major role in distinguishing dif-
ferent I/O patterns (see section 1). For pattern A (Serial I/O) and
C (Parallel I/O, shared-file), merged filenames are identical regard-
less of the number of ranks. Hence, we also generate the same
filenames as for trace files of smaller number of ranks.

For pattern B (Parallel I/O with one file per process, N-to-N),
filenames are traced and compressed as an RSD [start stride size]
pattern. We assume the variables in filenames have a linear relation-
ship to the rank numbers, which is common for the N-to-N pattern
and even the N-to-N/n pattern. Example: a) N-to-N pattern: If the
filename in the program is “/dir0/file_<rank>”, the vari-
able is <rank> and it has a linear relationship to rank numbers,
variable = 1 × rank + 0. b) N-to-N/n pattern: This means all
the ranks are gathered as groups, and each root of the group acts the
“spokesperson” performing I/O. The variables also have a linear re-
lationship to rank numbers. Example: A program with four ranks
acting as a group has a filename “/dir0/file_<rank/4>”,
i.e., the variable also has a linear relationship to the ranks. With
this assumption, we determine that start, stride, size of an RSD
pattern have linear relationships to rank size. In most cases, the
start and stride does not change, only size changes with rank
size. We simply generate the equations over the reference of traces
and solve them using Gaussian Elimination.

Table 1: Offset parameters for Rank0-Rank5

Rank size i=0 i=1 i=2 size i=0 i=1 i=2
Rank0 0 960 1920 0 960 1920
Rank1 240 1200 2160 160 1120 2080
Rank2 4 480 1440 2400 6 320 1280 2240
Rank3 720 1680 2640 480 1440 2400
Rank4 - - - 640 1600 2560
Rank5 - - - 800 1769 2720

3.2.3 Elastic data element extrapolation
Elastic data, such as offset and count , are the most challenging

to extrapolate since (a) we do not know a mathematical model and
(b) the two dimensions of matrix data need to be extrapolated, and
(c) we want to extrapolate exact data for all ranks at target size.

We first motivate the two dimensions of the matrix data. Since
ScalaTrace can perfectly compress trace data both intra-node and
inter-node, the following strong scaling code will generate the off-
set parameter in Table 1 after compression.

for(int i=0; i<3; i++){
offset = rank*(960/rank_size)+960*i;
MPI_File_seek(...offset...);

}

For the column dimension, the values of each column in Table 1
denote offsets for different ranks for the same loop iteration while
values per row are offsets of the same rank number for different
loop iterations. If we extrapolated to 8 ranks, we cannot just ex-
trapolate in one dimension: (a) If we only extrapolated in column
dimension, we would not know the value for different loop iter-
ations. (b) If we only extrapolated in row dimension, we would
not have data for Rank 6 and Rank 7. We create a mathematical
model for column extrapolation using the four models introduced
in Section 2 plus a new model:

5) offset = ((rank + a)%RankSize)× b, where a and b are con-
stants, rank is the rank number and RankSize is the number
of ranks.

For the data extrapolation, we do not use the smallest standard de-
viation to decide which model is the correct one, because we want
to get exact results, not an approximate one. So as long as the stan-
dard deviation is not zero, we assume that we cannot extrapolate.
We create the most common models. We also provide an interface
for users to add their own models for extrapolation.

We extrapolate the column dimension considering both weak
scaling and strong scaling: Weak scaling is simple since the val-
ues will be same for the different rank sizes. For strong scaling, we
also use the k/n + b model to predict the results for a target rank
size. After obtaining the first parameters from column extrapola-
tion, we combine them with the equation from row extrapolation
and then calculate the remaining parameters.

3.2.4 Handles and time extrapolation
As mentioned in Section 3.1, handles are coded into integers.

We just use the same technique as for extrapolating data-based pa-
rameters. Normally, handle extrapolation is simple. E.g., for a
file handle, in either SIO, N-to-N or N-to-1 I/O pattern, all ranks
perform same file open operation regardless of rank size, which re-
mains unchanged during extrapolation. For strong scaling, the open
operation depends on rank size. We can also address this with the
techniques mentioned above. We reuse time extrapolation of our
prior work by mathematical modeling.

3.3 ScalaIOReplay
ScalaIOReplay provides time-accurate as well as fast-forward

replay options unique to I/O requirements. A parallel trace replay
of all events across task ranks preserves per-rank ordering of events.
Hence, it replays preserve the I/O semantics of the original applica-
tion and may also serve as a means to verify the correctness of the
tracing framework. We focus on the unique aspects for I/O replay
in the following.

4. EXPERIMENTAL FRAMEWORK
We evaluate the correctness of our approach as follows:

C1 We compare the extrapolated trace file with the trace file gath-
ered from ScalaTrace, which is executed at the extrapolated tar-
get rank size. Ideally, the two traces file should be exactly same.
However, the delta execution time we extrapolated will have
some variance. So we ignore the execution time and compare
the structure of the two trace files.

C2 We replay the extrapolated trace file and compare the execu-
tion time with the original program running on same number of
processors. The two execution times should be similar.
We chose the following I/O benchmarks and mini-applications

with I/O:
IO-sample (Argonne National Laboratory) features a number

of benchmarks including POSIX-IO (an N-to-N pattern), MPI-IO

(shared N-to-1), and MPI-IO (N-to-N) with calls of derived I/O
datatypes and a variety of I/O calls.

Interleaved Or Random (IOR) (Lawrence Livermore National
Laboratory) is used for performance testing of parallel file systems
for high performance clusters [15]. IOR provides the interface for
users to verify the overall I/O size, individual transfer size, file ac-
cess mode (single shared file, one file per processor), and whether
the data is accessed using a chunk pattern or an interleaved pattern.

Based on the characteristics of the platforms, we verify our re-
sults differently in different cluster as explained next.

We conduct experiments on a cluster of 108 nodes, where a node
has two AMD Opteron 6128 processors with 8 cores each (16 per
node) and an InfiniBand interconnect between nodes. We varied
the number of target processors during I/O extrapolation and re-
played with a corresponding number of nodes. An identical config-
uration is important since I/O bandwidth and contention depends
on the number of tasks per node and the total number of nodes.
The filesystem type also impacts I/O behavior, as our experiments
cover a local filesystem, a shared network filesystem (NFS), and
a Parallel Virtual File System (PVFS2). Fig. 2 depicts the set of
experiments conducted on local, NFS and PVFS2 filesystems with
the same I/O application and the same input parameters (e.g., I/O
Size, I/O pattern).

Figure 2: Extrapolation Verification on ARC

5. RESULTS
We compare the traces, total I/O volume, statistics and execu-

tion time (e.g., number of total open, read, write, close opera-
tions) of our purposed approach. It is straightforward to com-
pare the first three results, since no matter how the environment
changes, they are fixed for identical input parameters and num-
ber of ranks. However, execution time comparison is complicated
due to significant time variations even in the same environment
and with the same I/O application due to contention and operat-
ing system noise. We therefore anticipate a slight difference be-
tween the extrapolated trace replay time and observed execution
time in all cases. The difference in execution time is calculated as
abs(Textrapolated − Tobserved)/Tobserved, where Textrapolated is
the replay time of the extrapolated traces and Tobserved is the exe-
cution time of the I/O application with the same number of ranks.

In order to minimize contention, we only run one experiment at
a time and collect execution time by averaging three captured runs.

5.1 Results on ARC
In order to verify the correctness as well as the accuracy of ScalaIOEx-

trap, we conducted our experiments on various filesystems. As
shown in Fig. 2, we compare the traces and execution times on
ARC with the available filesystems (local, NFS, PVFS2).

5.1.1 IO-sample

The IO-sample benchmark features both MPI-IO and POSIX-IO,
as well as the N-to-1 and N-to-N patterns. Our replay engine can
reconstruct the original benchmark irrespective of I/O patterns and
supported I/O libraries. For a set of input parameters as POSIX-IO
(I/O size: 8KB per processor; iterations: 100), MPI-IO (iterations:
3; I/O size : 1M, 2M and 3M bytes) we gathered traces for 8, 16,
24 and 32 ranks, which comprises the set of small traces. From the
small traces, we extrapolate and generate traces for 128, 192, 256
and 320 ranks. We use diff -wi to compare the ScalaIOTrace
and extrapolated traces with the same number of ranks. Excepts
for the time extrapolations, they match perfectly. Timings (y-axis)
are shown for different number of ranks (x-axis) in Fig. 3. For the

128 192 256 320
0

20

40

60

80

100

120

Number of Processors
E

xe
cu

tio
n

T
im

e(
s)

Tobserved (Local)
Textrapolated (Local)
Tobserved (NFS)
Textrapolated (NFS)
Tobserved (PVFS2)
Textrapolated (PVFS2)

Figure 3: Results of IO-sample benchmark in Local, NFS and
PVFS2

same I/O size and the same I/O pattern, the local filesystem takes
the shortest time because it is faster for nodes to access their local
memory. PVFS2 takes the longest time as explained later for IOR
results. The replay time fluctuates with application execution time.
Results show that time inaccuracy is within 5%.

5.1.2 IOR
IOR is a more complex I/O benchmark. We capture results for

different inputs classified as shared-file (chunk pattern), shared-
file (interleaved pattern) and file-per-processor. Both shared-file
(chunk pattern) and shared-file (interleaved pattern) follow a N-to-
1 pattern. They differ in how they order I/O. Consider four pro-
cessors, A, B, C and D, each of them performing four I/O opera-
tions. Shared-file (chunk pattern) performs I/O as AAAABBBBC-
CCCDDDD, while shared-file (interleaved pattern) performs I/O
as ABCDABCDABCDABCD. We select two patterns since they
differ in whether they use the collective buffering or not. The in-
terleaved pattern contains many small, distinct I/O requests that
are densely interleaved, so that MPI-IO uses collective buffering
to transfer the data to the file system from an aggregator for larger
I/O chunks [16]. E.g., if A is the aggregator, then B, C and D will
send their data to A, and A will write it as one big chunk. The
chunk pattern, in contrast, has a big gap between the regions of the
file that is being written, so MPI-IO has no choice but to issue them
as individual operations to the file system.

We select the I/O size to be TransferSize=128K, and each pro-
cessor accesses 2M data. As in the IO-sample benchmark, we use
the diff utility to compare the traces gathered from ScalaIOEx-
trap and ScalaIOTrace for the same number of ranks. They matched
perfectly. We depict the execution times of IOR (shared-file, except
for local, which is parallel/N-to-N) in Fig. 4 and Fig. 5.

Similar to IO-sample, the execution times for the local file sys-

128 192 256 320
0

20

40

60

80

100

120

140

Number of Processors

E
xe

cu
tio

n
T

im
e(

s)

Tobserved (Local)
Textrapolated (Local)
Tobserved (NFS)
Textrapolated (NFS)
Tobserved (PVFS2)
Textrapolated (PVFS2)

Figure 4: Results of IOR (chunk pattern)

128 192 256 320
0

50

100

150

200

Number of Processors

E
xe

cu
tio

n
T

im
e(

s)

Tobserved (Local)
Textrapolated (Local)
Tobserved (NFS)
Textrapolated (NFS)
Tobserved (PVFS2)
Textrapolated (PVFS2)

Figure 5: Results of IOR (interleaved pattern)

tem are the shortest among the three file systems. Chunk and inter-
leaved patterns do not differ for local storage, because nodes access
private resources.

For the NFS file system, collective buffering of MPI-IO makes
the interleaved pattern faster than the chunk pattern because NFS is
tuned for few, large operations instead of many small ones. We an-
ticipated that collective buffering would benefit PVFS2 as well [6],
but this is not the case in Fig. 5. This may be due to a poor inter-
action between the default MPI-IO and PVFS2 tuning parameters
on this platform; we will investigate this phenomenon further in fu-
ture work. For the purposes of this research, we observe that both
the original application and the extrapolated trace produce the same
result.

We also obtain timing results per processor for the N-to-N pat-
tern (see Fig. 6). When comparing the results shown in Fig. 4,
Fig. 5 and Fig. 6, PVFS2 performs best in terms of per processor
time because N-to-N I/O has the highest degree of parallelism. Al-
though I/O patterns and file systems are varied and even though
different extrapolation techniques are needed for different I/O pat-
terns, our extrapolated results match the actual application. By
avoiding contention as much as possible, we obtain time accuracy
within 5%, which means our approach reflects the behavior of ap-
plications quite well.

6. RELATED WORK
Leung et al. [7] proposed an analysis framework based on server-

side tracing data. Liu et al. [8] devised I/O signature identifiers, an

128 192 256 320
0

10

20

30

40

50

60

70

Number of Processors

E
xe

cu
tio

n
T

im
e(

s)

Tobserved (Local)
Textrapolated (Local)
Tobserved (NFS)
Textrapolated (NFS)
Tobserved (PVFS2)
Textrapolated (PVFS2)

Figure 6: Results of IOR file-per-processor

approach to characterize per-application I/O behavior on the server-
side in forms of the I/O volume read/written by the applications, the
frequency of the I/O operations, and throughput achieved on a file
system. In contrast, our work focuses on analysis of I/O behavior
when executing on a large-scale HPC systems, and our objective is
to save time and resources.

Wright and Hammond [18] analyzed the write bandwidth of MPI-
IO as well as POSIX file system calls originating from MPI-IO at
increasing scale by utilizing the RIOT toolkit, which is able to cap-
ture and record I/O operations of applications. In contrast, we focus
on extrapolating I/O traces to arbitrary number of ranks.

Eckert and Nutt [3, 2] studied the extrapolation of trace data
of multiple threaded programs on shared memory multiprocessors.
Our work focuses on I/O traces and is based on deterministic ap-
plication execution, i.e., we preserve the causal orders both for
ScalaIOTrace and ScalaIOExtrap.

Mohror and Karavanic [9] assessed different trace reduction tech-
niques. Their similarity metric (performance) resembles our wall-
clock time. Their per-core metrics lack scalability. If they were en-
hanced so that they scaled, they would be similar to our histograms.
Their compression reduction (based on flat distances) does not cap-
ture ScalaTrace’s structurally recursive compression.

7. CONCLUSION
We presented the design and implementation of the extrapolation

tool ScalaIOExtrap. By analyzing a set of smaller traces, modeling
the relation between parameters and the number of ranks, it cal-
culates parameters and generates a single trace for any number of
ranks. Experimental results demonstrate that structural trace com-
parison, I/O size and the number of operations are retained perfect
accuracy, and execution time remains sufficiently accurate.

Our results demonstrate that we preserve event ordering and time
accuracy in these large traces. With this technique, large-scale I/O
performance evaluation can be performed without executing the
target application at scale. We can conclude that our approach
opens up new opportunities for I/O performance analysis as we
have the capability of extrapolating traces to arbitrary number of
ranks from a set of smaller traces while retaining correct access
patterns, I/O size, and I/O operations. We have demonstrated that
we can also retain execution times of trace up to 320 processors for
representative HPC I/O workloads.

Acknowledgements
This work was supported in part by NSF grants 0958311, 1058779,
1217748 and by the U.S. Department of Energy, Office of Science,
Office of Advanced Scientific Computer Research (ASCR), under
contract DE-AC02-06CH11357. The research used resources from
Argonne Leadership Computing Facility (ALCF).

8. REFERENCES
[1] P. H. Carns, R. Latham, R. B. Ross, K. Iskra, S. Lang, and

K. Riley. 24/7 characterization of petascale I/O workloads. In
Proceedings of the First Workshop on Interfaces and
Abstractions for Scientific Data Storage, New Orleans, LA,
USA, 09/2009 2009.

[2] Z. K. Eckert and G. J. Nutt. Parallel program trace
extrapolation. In Parallel Processing, 1994. Vol. 1. ICPP
1994. International Conference on, volume 2, pages
103–107. IEEE, 1994.

[3] Z. K. F. Eckert. Trace extrapolation for parallel programs on
shared-memory multiprocessors. Technical Report, Spring
5-1-1996, 1995.

[4] D. J. Kerbyson, H. J. Alme, A. Hoisie, F. Petrini, H. J.
Wasserman, and M. Gittings. Predictive performance and
scalability modeling of a large-scale application. In
Proceedings of the 2001 ACM/IEEE Conference on
Supercomputing, SC ’01, 2001.

[5] S. J. Kim, Y. Zhang, S. W. Son, R. Prabhakar, M. Kandemir,
C. Patrick, W.-k. Liao, and A. Choudhary. Automated tracing
of I/O stack. In EuroMPI, 2010.

[6] S. Lang, P. Carns, R. Latham, R. Ross, K. Harms, and
W. Allcock. I/O performance challenges at leadership scale.
In Proceedings of the Conference on High Performance
Computing Networking, Storage and Analysis, page 40.
ACM, 2009.

[7] A. W. Leung, S. Pasupathy, G. Goodson, and E. L. Miller.
Measurement and analysis of large-scale network file system
workloads. In USENIX 2008 Annual Technical Conference,
ATC’08, 2008.

[8] Y. Liu, R. Gunasekaran, X. Ma, and S. S. Vazhkudai.
Automatic identification of application I/O signatures from
noisy server-side traces. In FAST, pages 213–228, 2014.

[9] K. Mohror and K. Karavanic. Evaluating similarity-based
trace reduction techniques for scalable performance analysis.
In High Performance Computing Networking, Storage and
Analysis, Proceedings of the Conference on, pages 1–12,
Nov 2009.

[10] F. Mueller, X. Wu, M. Schulz, B. R. De Supinski, and
T. Gamblin. Scalatrace: tracing, analysis and modeling of
HPC codes at scale. In Applied Parallel and Scientific
Computing, pages 410–418. Springer, 2012.

[11] M. Noeth, F. Mueller, M. Schulz, and B. R. De Supinski.
Scalable compression and replay of communication traces in
massively parallel environments. In Parallel and Distributed
Processing Symposium, 2007. IPDPS 2007. IEEE
International, pages 1–11. IEEE, 2007.

[12] M. Noeth, P. Ratn, F. Mueller, M. Schulz, and B. R.
de Supinski. Scalatrace: Scalable compression and replay of
communication traces for high-performance computing.
Journal of Parallel and Distributed Computing,
69(8):696–710, 2009.

[13] P. Ratn, F. Mueller, B. R. de Supinski, and M. Schulz.
Preserving time in large-scale communication traces. In

Proceedings of the 22nd annual international conference on
Supercomputing, pages 46–55. ACM, 2008.

[14] D. A. Reed, P. Roth, R. A. Aydt, K. Shields, L. Tavera,
R. Noe, and B. Schwartz. Scalable performance analysis:
The Pablo performance analysis environment. In Scalable
Parallel Libraries Conference, 1993., Proceedings of the,
pages 104–113. IEEE, 1993.

[15] H. Shan, K. Antypas, and J. Shalf. Characterizing and
predicting the I/O performance of HPC applications using a
parameterized synthetic benchmark. In Proceedings of
Supercomputing, November 2008.

[16] R. Thakur, W. Gropp, and E. Lusk. Data sieving and
collective i/o in romio. In 7th Symposium on the Frontiers of
Massively Parallel Computation, 1999. Frontiers ’99., pages
182–189, Feb 1999.

[17] K. Vijayakumar, F. Mueller, X. Ma, and P. C. Roth. Scalable
I/O tracing and analysis. In Proceedings of the 4th Annual
Workshop on Petascale Data Storage, PDSW ’09, 2009.

[18] S. A. Wright, S. D. Hammond, S. J. Pennycook, and S. A.
Jarvis. Light-weight parallel I/O analysis at scale. In
Computer Performance Engineering, pages 235–249.
Springer, 2011.

[19] X. Wu and F. Mueller. Scalaextrap: Trace-based
communication extrapolation for SPMD programs.
SIGPLAN Not., 46(8), Feb. 2011.

[20] X. Wu and F. Mueller. Elastic and scalable tracing and
accurate replay of non-deterministic events. In Proceedings
of the 27th International ACM Conference on International
Conference on Supercomputing, ICS ’13, 2013.

[21] X. Wu, K. Vijayakumar, F. Mueller, X. Ma, and P. C. Roth.
Probabilistic communication and I/O tracing with
deterministic replay at scale. In Proceedings of the 2011
International Conference on Parallel Processing, ICPP ’11,
2011.

